

Supplement of

Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages

Ludwig Zöller et al.

Correspondence to: Ludwig Zöller (ludwig.zoeller@uni-bayreuth.de)

The copyright of individual parts of the supplement might differ from the article licence.

1 Supplements

 Fig. S1 The Zaprężyn section with OSL ages (quartz fine grains) obtained in the Bayreuth laboratory. This plot clearly demonstrates that samples 11 and 12 are situated below the unconformity (here at 3 m depth) and sample 13 above it (see Fig. 5).

13 abo

Fig. S2 Tyszowce, heterogeneity of periglacial loess above the ice wedge pseudomorph (bottom left) and samples
TYS 1-4 (Foto P. Antoine).

12 Fig. S3 Age-depth profiles for quartz OSL ages (fine grains) (left) and for pIRIR₂₉₀ ages (polymineral fine grains, for

13 a=0.1) (right) from Biały Kościół. Depth is not to scale. The pIRIR₂₉₀ age of BT 1688 is not plotted as it is too far out

14 of the age scale. The grouping of ages (see text) is illustrated.

15

Fig. S4a BK18-6 (BT 1673) OSL quartz fine grains. Top: natural (blue) and regenerated (orange, 1 900 s 6, ca. 228

- *Gy*) *decay curves; bottom: dose-response curve of a suitable aliquot, single exponential fit, regeneration dose ca.* 215 Gy.

Fig. S4b BK18-5 (BT 1672) OSL quartz fine grains. Top: natural (blue) and regenerated (orange, 1 400 s 6, ca. 168

Gy) *decay curves; bottom: dose-response curve of a suitable aliquot, single exponential fit, regeneration dose ca.* 212 Gy.

45 Fig. S4c BK18-8 (BT 1675) OSL quartz fine grains. Top: natural (blue) and regenerated (orange, 2 800 s β with

- 46 weaker source, ca. 100 Gy) decay curves; bottom: dose-response curve of a suitable aliquot, single exponential fit,
- 47 regeneration dose ca. 120 Gy.
- 48

- 49
- 50 Fig. S5 BK18-8 (BT 1675) OSL quartz fine grains, Preheat Plateau Test and Recuperation.
- 51 BT1668 BK18-1 pIRIR₂₉₀

Fig. S6 BK18-1 (BT 1668) pIRIR₂₉₀. Top: natural (blue) and regenerated (orange, 39 000 s 6, ca. 1370 Gy) decay
curves; bottom: dose-response curve of a suitable aliquot, single exponential fit, regeneration dose ca. 1150 Gy.

Fig. S7 Grain size composition of the Zaprężyn section (obtained by laser diffractometer Malvern Mastersizer
2000).

old profile

	44
	64
	з.
	Ξ.
1	œ.
	from
	8
	th

1/8 3 811443 T/8 4 871494 T/8 5 871495 T/8 6 871495 T/8 7 871497	ZL 6 BT 1490 Tys_1 BT 1491 Tys_2 BT 1492 Tus_3 BT 1492	건 3 건 4 건 5 명	22.1 22.2	Zapr_12 Zapr_13	Zapr_1	Zapr Zarv	Zap	Zab 467	7ap	Zap	Ŗ	<u>8</u>	READ	BK18	BK18	묫	R	R	R		R	BK18	PK18		Field co	
BT 1483 BT 1494 BT 1485 BT 1486 BT 1487	BT 1490 BT 1491 BT 1492	9999			-1	5 0	0	90	4	G	4	م (2	3 É	a	99	8	20	500	5 4	ω.	Ń	-		ě.	
		F 1487 F 1488 F 1489	BT 1485 BT 1486	BT 1477 BT 1478	BT 1476	BT 1474	BT 1473	BT 1472	BT 1469	BT 1468	BT 1484	BT 1483	BT 1482	BT 1679	BT 1677	BT 1676	BT 1675	BT 1674	RT 1673	BT 1671	BT 1670	BT 1669	BT 1668		Lab. code	
38,6 35,0 37,5	386 386	35,6 37,3 38,4	38,8 37,7	38,5	38,7 7	362	37,5	35 9 36 9	3 % 2	8'52	40,0	38,5	30 5	-90,2 40,2	40,4	37,2	53,8	37.3	80,0	38,7	32,6	34,8	37,1	[cph]	Mean	Alpha
0,52 0,51	0,8 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0 8,0	0,51 0,53	0,65	0,64	0,63	0.48	0,44	0,43	0,51	0,43	0,68	0.54	0.00	0,48	0,49	0,47	0,50	0,38	0,00	0,39	0,44	0.8	0,47	(error)		counting
21,0 14,1 16,5 15,9 16,7	13,2 16,0 17,3	14,6 18,3 18,2	15,9 20,0	22,7 16,9	16,7	16.8	17,7	15,3	16,9	12,5	17,8	25.2	25.1	18.0	18,9	16,3	18,3	16,2	18.7	20,2	12,5	14,0	18,8	[cph]	Th	
2,05 1,68 1,83	2,19 1,92	1,73 1,98	2,27	2,53	225	3,5	1, B2	1,51	3 8	1,53	2,38	1.08	ن. م	1,72	1,88	1,69	1.87	8	Ē.	1,48	1,47	.1. 158	1,76	(error)		
17,6 18,5 14,6 20,5	21,2 20,5	21,0 19,0 21,2	22,9 17,8	18,0 19,7	23,0	3,4	19,8	0,02	19,5	13,5	22,2	13,3	14.4	24,2	20,4	21,0	17.5	21.1	24.5	18,5	20,1	20,8	18,4	[cph]	c	
2,11 3,34 1,76 1,90	2,10	1,80 1,97 2,00	2,36	2,61	2,34	3 1.80	1,88	ย	1.8	1,58	2,46	1.77	3 41	1. 8 2	1,83	1,76	1.83	1. 8	1 85 8	1,53	1.8	19	1.83	error)		
11,6 7,8 8,8 9,2	7,3 9,6	10,1 10,1	11,1	12,6	8,3	8,9 8,0	8,8	8,4	8,4 9,4	6,9	8,8	13,9	13 0-	10 A	11,0	9,0	10,1	9,0	200	5,2	6,9	7,8	10,4	[ppm]	Thoriun	
1,01 1,05	1.00	1,1,0 9,08	,1, 1, 1, 13	1,20	13	1 0.90	0,90	0,84	1,0	0,85	1,32	0.83	388	5,G	1,03	0,94	1.03	0,75	0,9	0,82	0,81	0,86	0,97	+	3	
2,85 2,85 2,36 3,31	3,31 3,80	3,39 3,42	3,70	2,90	3,71	3,78	3,20	3,23	3,15	2,17	3,58	2,15	220	3,33	3,30	3,39	2,83	3,41	3910	2,99	3,25	3,35	2,97	[ppm]	Uraniun	
0,38 0,38	0,37	0,32 0,32	0,38	0,37 0,37	0,38	0.27	0,27	80	0,31	92,0	0,40	0,28	5 S	8,0	0,31	0,28	0.31	0,23	0.24	2,02	82,0	0,26	0,30	+	-	
14,7 15,6 14,2 13,3	15,1 15,7 12,6	134 144 151	14,6 13,6	15,5	14,9	16,0	15,5	16,0	16,7	10,7	18,5	17.3	18.0	18,1	18,8	17,8	17.9	18,2	101	18,1	5	14,5	10,6	(%.)	(mg/g) K	ICP-OES
1345 1845 1845	15±5	15±5 15±5	15±5	12±1.2	12±1.2	14±1.4	19±1.9	17±1.7	23±2.3	11±1.1	10±5	70±5	355	5 0±10	11.1±1.1	14±1.4	5 <u>+</u>	14±1.4	14+1.4	17:11.7	16±1.6	11.1±1.1	11.1±1.1	± (estim)	moist. W (est/m)	
3,18 2,76 2,83 2,74 2,74	3,03 3,10	2,92 3,09 3,24	3,17 3,03	3,43 2,96	3,31	3,35	3,03	3,03	2,95	2,28	3,71	3,53	3.47	3,40	3,64	3,35	3,40	3,47	382	3,32	2,81	3,01	277	(Gy/ka)	Dose rate (Gy/ka)	Q 4-11 µm
0,30 0,29 0,24	0,28	0,19 0,20 0,21	0,20	0,34	0,33	0,30	0,28	0,27	0,28	0,22	0,29	0,26	0.33	0,30	0,33	0,30	0.30	0,30	0.31	0,21	0,26	0,28	0.26	(Gy/ka)	error	
/6.0±4./ 84.6±1.9 81.4±3.3 186±14 119±5.3	20.9±5.1 76.8±2.7 78.8±3.0	83.1±4.6 85.2±5.5 85.9±3.6	159±16 117±10	180±7.8 54.5±2.1	188±11.6	217±11.2	208±7.1	217:43	223±10	218±8.7	219±11	228±14.2	131+4.1	90.013.3	92.0±4.2	93.8±3.1	120±3.7	185±7.1	21548.4	18816.1	208 ±2.8	225.±5.4	312±17	(Gy)	De	
23.9±2.0 30.7±2.2 27.8±1.9 67.9±7.0 43.3±3.0	26.7±1.9 25.1±1.6 25.4±1.7	31.9±1.9 27.6±2.0 26.5±1.5	50.0±5.4 38.6±3.6	52.5±3.7 18.4±1.2	56.844.7	64.744.8	67.9±4.3	71,814.0	75.5±5.4	95.7±6.6	59.0±4.0	64.944.9	37.742.4	26,412.2	25.3±1.8	8.140.82	35.3±2.1	56.343.6	59 4 4 3 5	56.6±3.5	74.344.1	74.714.5	112±8.6		Age (ka)	1
	-+-+-+-	+-+-+-		_		-			-				1.14.00.01	4,33±0.35	4.27±0.35	3.92±0.32	3.75±0.32	4.04±0.31	4 25+0 33	3.89±0.31	3.31±0.27	3.57±0.29	3.36±0.27	(Gy/ka) a=0.085	Dose rate	PM 4-11 µm
													0.0230	13010.0	122±4.4	165±12	174±9.6	298±17	307+17	272±15	346±19	365±13	1150±20	(Gy)	ß	pIRIR290
													0.720.0	31.0=2.2	28.7±1.7	42.0±3.6	46.5±3.4	73.8±5.5	72 3++5 3	09.9±5.0	105±7.7	102±6.1	343±18		Age (ka)	
													A NEW YOU	4 22 10 30	447±0.38	4 10±0.33	3.91±0.33	4 21±0.32	4 44+0 33	4 06±0.31	3.45±0.28	3.74±0.30	3.53±0.28	(Gy/ka) a=0.1	Dose rate	PM 4-11 µn
													0.170.07	30.612.1	27.4±1.6	40.2±3.4	4.643.3	70.8±5.2	82450	76.045.2	100±7.3	97.7±5.7	326±17		Age (ka)	3

62

Table S1 Analytical data and ages 63

Note: In column "moisture W" W means the saturation water content, here defined as the weight of water 64

divided by the *dry* weight of sediment (Aitken 1998, p.58) in %. 65