
E&G Quaternary Sci. J., 72, 219–234, 2023
https://doi.org/10.5194/egqsj-72-219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

A 1100-year multi-proxy palaeoenvironmental record from Lake
Höglwörth, Bavaria, Germany
Sudip Acharya1, Maximilian Prochnow1, Thomas Kasper2, Linda Langhans1, Peter Frenzel3, Paul Strobel1,
Marcel Bliedtner1, Gerhard Daut1, Christopher Berndt2, Sönke Szidat4,5, Gary Salazar4,5, Antje Schwalb6, and
Roland Zech1

1Institute of Geography, Friedrich Schiller University Jena, 07743 Jena, Germany
2Institute for Geography and Geology, University of Greifswald, 17489 Greifswald, Germany
3Institute of Geosciences, Friedrich Schiller University Jena, 07743 Jena, Germany
4Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
5Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
6Institute of Geosystems and Bioindication, Technische Universität Braunschweig, 38106 Braunschweig, Germany

Correspondence: Sudip Acharya (sudip.acharya@uni-jena.de)

Relevant dates: Received: 21 March 2023 – Revised: 4 September 2023 – Accepted: 28 September 2023 –
Published: 14 November 2023

How to cite: Acharya, S., Prochnow, M., Kasper, T., Langhans, L., Frenzel, P., Strobel, P., Bliedtner, M., Daut, G.,
Berndt, C., Szidat, S., Salazar, G., Schwalb, A., and Zech, R.: A 1100-year multi-proxy palaeoenvi-
ronmental record from Lake Höglwörth, Bavaria, Germany, E&G Quaternary Sci. J., 72, 219–234,
https://doi.org/10.5194/egqsj-72-219-2023, 2023.

Abstract: Anthropogenic activities have exerted strong influence on ecosystems worldwide, particularly since
1950 CE. The local impact of past human activities often started much earlier and deserves de-
tailed study. Here, we present an environmental record from a 278 cm long sedimentary core from
Lake Höglwörth (Bavaria, Germany). Sedimentological and geochemical parameters indicate that the
organic-rich bottom sediments of the record consist of peat that formed prior to 870+140

−160 CE, when
lake sediments started to accumulate. After 870+140

−160 CE, distinct shifts in lithology, elemental com-
position, and the biological record are visible and are interpreted to result from the construction of
a monastery on the lake peninsula in 1125 CE and/or the damming of the lake. From 1120± 120
to 1240+110

−120 CE, the lake environment was relatively stable. This period was followed by enhanced
deforestation that led to a more open landscape and soil erosion, visible in increased allochthonous
input from 1240+110

−120 to 1380+90
−110 CE. This was accompanied by high aquatic productivity and bottom

or interstitial water anoxia from 1310+100
−120 to 1470+90

−100 CE, possibly triggered by increased nutrient
availability. Enhanced allochthonous input and a substantial shift in the aquatic community can be
assigned to the construction of a flour mill and related rerouting of a small creek in 1701 CE. High
aquatic productivity and bottom or interstitial water anoxia after 1960± 10 CE correspond to recent
eutrophication resulting from accelerated local anthropogenic activities. The sedimentary record from
Lake Höglwörth exemplarily demonstrates that anthropogenic activities have had substantial environ-
mental impacts on aquatic environments during the past millennium.
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Kurzfassung: Anthropogene Aktivitäten haben insbesondere seit dem Jahr 1950 CE weltweit einen starken Ein-
fluss auf Ökosysteme. Jedoch hatten menschliche Aktivitäten oft schon viel früher Auswirkungen
auf Ökosysteme und verdienen eine detaillierte Untersuchung. Hier präsentieren wir sedimentolo-
gische, geochemische und paläontologische Ergebnisse eines 278 cm langen Sedimentbohrkerns aus
dem Höglwörther See (Bayern, Deutschland), der die letzten 1100 Jahre abdeckt. Sedimentologis-
che und geochemische Parameter deuten darauf hin, dass die unteren organikreichen Sedimente aus
Torf bestehen, der sich vor etwa 870+140

−160 CE bildete, bevor sich die Seesedimente ablagerten. Nach
870+140
−160 CE sind deutliche Änderungen in der Lithologie, der Elementkomposition und der biolo-

gischen Zusammensetzung zu erkennen, die auf den Bau des Klosters Höglwörth auf der Halbinsel
des Sees um 1125 CE und/oder eine Aufstauung des Sees zurückzuführen sind. Von 1120± 120 bis
1240+110

−120 CE war die Ökologie des Sees relativ stabil. Danach folgte eine verstärkte Entwaldung,
die zu einer offeneren Landschaft und stärkerer Bodenerosion führte, was durch erhöhten allochtho-
nen Eintrag von etwa 1240+110

−120 to 1380+90
−110 CE sichtbar ist. Dies führte zu einer hohen aquatischen

Produktivität und Anoxie des Hypolimnions von etwa 1310+100
−120 to 1470+90

−100 CE – möglicherweise
ausgelöst durch eine erhöhte Nährstoffverfügbarkeit. Der Bau einer Getreidemühle und die damit ver-
bundene Umleitung eines kleinen Baches im Jahr 1701 CE führten zu einem verstärkten allochthonen
Eintrag und einer erheblichen Veränderung der aquatischen Gesellschaft. Die hohe aquatische Produk-
tivität und die Anoxie des Hypolimnions nach 1960±10 CE zeigen die rezente Eutrophierung, die auf
verstärkte lokale anthropogene Aktivitäten zurückzuführen ist. Die Sedimente des Höglwörther Sees
zeigen somit beispielhaft, dass anthropogene Aktivitäten während des letzten Jahrtausends erhebliche
Auswirkungen auf aquatische Ökosysteme gehabt haben.

1 Introduction

Abrupt shifts in ecosystems all over the globe during the past
decades are related to human activities and are in stark con-
trast with ranges of the natural variability evident at least dur-
ing the Holocene (Steffen et al., 2015). To define this marked
shift in Earth’s environment, the term “Anthropocene” has
been suggested for a new geological era, which is proposed
to have started around 1950 CE and has prompted intense sci-
entific and societal debate (Waters and Turner, 2022; Crutzen
and Stoermer, 2021; Lewis and Maslin, 2015). However, the
onset of human impact often occurred much earlier, both
locally and regionally (Ruddiman et al., 2020; Waters et
al., 2016), and requires more detailed, local palaeoenviron-
mental studies.

Bavaria is a region significantly impacted by humans as
far back as the early medieval period (∼ 1000 CE) (Bauer
and Bauer, 1993) with increased settlements and agricul-
tural activities (Gilck and Poschlod, 2020; Klein Goldewijk
et al., 2011). The shift in land cultivation practices from sub-
sistence agriculture with livestock and crop production to
cattle grazing for meat and dairy production during the me-
dieval period led to the establishment of pastureland (En-
ters et al., 2008, 2006). This is documented in lacustrine
records as a decrease in tree pollen and an intensification
of soil erosion due to the widespread land use (Dotterweich,
2003). A significant decrease in population during the late
medieval period (from 1300 to 1450 CE) and beyond can be
attributed to military conflicts, epidemic plagues, and cooler

climate conditions associated with the Little Ice Age and led
to the abandonment of numerous villages and settlements
(Küster, 2020; Franz, 2019; Enters et al., 2006; Jäger, 1958).
These results are supported by findings of archeological ex-
cavations and historical documents from the region (Blei,
2011; Waldner, 1983). An increase in human impacts such
as nutrient loading, excessive use of fertilizers, and changes
in land use/land cover has led to a substantial alteration in
aquatic ecosystems, including the loss of biodiversity, eu-
trophication, and anoxia over the past few decades (Enters
et al., 2006; Alefs and Müller, 1999). Although these sig-
nificant human activities have been documented, it remains
unclear if and how the human activities during the past mil-
lennium impacted the natural ecosystem in the region. Also,
the available palaeoenvironmental records are mainly derived
from large lakes (Rösch et al., 2021; Schubert et al., 2020;
Lauterbach et al., 2011; Richard, 1996), which capture re-
gional signals and exhibit different environmental responses
compared to small lakes that record local signals (Adrian et
al., 2009; Enters et al., 2006).

Here, we present a study from Lake Höglwörth, a small,
eutrophic lake situated in south-eastern Bavaria, Germany
(Wasserwirtschaftsamt Traunstein, 2018). The lake has un-
dergone severe ecological alternation (algal production and
anoxia) over the past decades (Fam and Kerstin, 2018;
Wasserwirtschaftsamt Traunstein, 2018). A 278 cm long sed-
iment record from Lake Höglwörth was analysed using sedi-
mentological, geochemical, and biological methods. Specifi-
cally, our study aims to investigate (1) whether the recent al-
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gal production and anoxia in the lake did occur in the past and
(2) whether and how past human activities affected the litho-
logical, geochemical, and biological environment of Lake
Höglwörth over the past millennium.

2 Methodology

2.1 Site description

Lake Höglwörth (47.81° N, 12.84° E; 531 m above sea level;
Fig. 1) is a small (surface area 0.14 km2), irregularly shaped,
and eutrophic lake, located in a paraglacial meltwater chan-
nel that formed during the Last Glacial Maximum when the
Salzach Glacier forced drainage along its ice margin in a
north-western direction at the northern forelands of the Eu-
ropean Alps in south-eastern Bavaria, Germany. Postglacial
landslide and mudflow deposits of still unknown age (pre-
sumably during the Middle to Late Holocene) are present
north-west of the lake and are thought to be responsible for
blocking the valley and former damming of the lake as seen
in lidar imagery (Landesamt für Digitalisierung, 2022). To-
day, the lake has a maximum water depth of 6 m; has an av-
erage depth of 3.1 m (for a description of bathymetry, please
refer to the Supplement); and is fed by three small creeks, i.e.
Höglwörther Schornbach, Höglwörther Seebach, and Moos-
graben. Lake Höglwörth is drained by the Rauschbach. The
lake has a catchment area of 2.3 km2, and it is geologi-
cally characterized by deposits of the last glacial period and
patches of Cretaceous to Eocene bedrock (Glückert, 1974).
Cambisols and Luvisols are the most common catchment
soil types, whereas Stagnosols and Gleysols have developed
in the surrounding valleys (Landesamt für Digitalisierung,
2022).

On the peninsula of the lake, an Augustinian monastery is
located, constructed in 1125 CE (Brugger et al., 2008). On
the western side of the lake, a flour mill is situated, built in
1701 CE by diverting the Höglwörther Seebach into the lake
(Brugger et al., 2008); consequently the catchment of the
lake has enlarged since. The mill was torn down in 1922 CE.

At the meteorological station in Piding, ∼ 10 km south-
east of Lake Höglwörth, mean annual precipitation (1991 to
2020) is 1340 mm. Mean annual temperature is 9.2 °C, with
a temperature maximum during summer (June–July 18.5 °C)
and a temperature minimum during winter (January–
February −0.2 °C) (DWD Climate Data Center, 2020).

2.2 Sediment coring, core processing, and dating

Sediment cores were retrieved from Lake Höglwörth in
2019 from a water depth of 4.7 m (Figs. 1 and S2 in the
Supplement). For the uppermost (∼ 1 m) sediment section,
a UWITEC gravity corer with a diameter of 90 mm was
used, while longer sediment cores with a diameter of 63 mm
were retrieved in overlapping core sections (2 m each), us-
ing a platform-based UWITEC piston coring system. Cores

were split, photographed, and lithologically described at the
laboratory of the Physical Geography Department of the
Friedrich Schiller University Jena. Lithological marker lay-
ers within the core sections were used to establish a con-
tinuous sediment sequence with a total length of 278 cm
(Fig. S2).

In cooperation with the Laboratory for the Analysis
of Radiocarbon (LARA), University of Bern, Switzerland,
14C ages were obtained from eight macrofossil samples
and one bulk organic matter sample (Table 1) (Salazar et
al., 2015; Szidat et al., 2014), using a Mini Carbon Dating
System (MICADAS) accelerator mass spectrometer (AMS)
coupled online to an Elementar analyser (Ruff et al., 2010).
Prior to radiocarbon analysis, samples were treated with
∼ 4 % HCl at 60 °C for 8 h to remove carbonates. Ages ob-
tained from LARA were calibrated using the online ver-
sion of the software Calib 8.2 (Stuiver and Reimer, 1993),
combined with the IntCal20 calibration dataset (Reimer et
al., 2020) and the bomb peak Northern Hemisphere 1 cal-
ibration dataset (Hua et al., 2013), particularly for the 14C
age at 8 cm depth. Additionally, the upper 40 cm sediment of
core was analysed for 137Cs activity at Technische Univer-
sität Dresden, Germany. Final age–depth modelling was car-
ried out with the help of the software package rbacon 2.4.3
(Blaauw and Christen, 2011).

2.3 Lithology and geochemical analysis

Non-destructive X-ray fluorescence (XRF) scanning was car-
ried out with an ITRAX XRF core scanner at the Geomor-
phology and Polar Research Group (GEOPOLAR), Univer-
sity of Bremen, Germany. Single halves of core segments
were scanned at 5 mm intervals using a molybdenum tube
(Mo) as the X-ray source operating at 30 kV voltage, 50 mA
current, and an exposure time of 5 s. In order to eliminate
sediment matrix effects (i.e. interferences with water content,
surface roughness, and grain size variations), raw elemental
counts were normalized by logarithmic transformation and
are given as centred log ratios (Ramisch et al., 2018; Weltje
et al., 2015). XRF scanning produced reliable counts (ele-
ments with counts> 100 and mean square errors< 2) for ti-
tanium (Ti), iron (Fe), manganese (Mn), strontium (Sr), cal-
cium (Ca), and potassium (K). The degree of incoherent scat-
tering (inc) and coherent scattering (coh) is used to calcu-
late the inc / coh ratio, which is a proxy for organic mat-
ter content (Fortin et al., 2013; Guyard et al., 2007). Mag-
netic susceptibility was determined at 2 mm resolution, us-
ing a Bartington MS2E surface scanning sensor (Bartington
Instruments Ltd., Witney, UK).

Grain size and elemental analyses were conducted on 1 cm
sediment slices collected at an interval of 12 cm. For grain
size analyses,∼ 0.2 g of dry sediment was treated with H2O2
(∼ 10 % and ∼ 30 %) and ∼ 30 % HCl to remove organic
matter and carbonates. Grain size measurements were per-
formed using an LS 13 320 Laser Diffraction Particle Size
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Figure 1. (a) Overview of the study area. Red star shows the location of Lake Höglwörth. (b) Image of Lake Höglwörth and its modern
catchment indicated by red line (modified from © Google Earth, 2022). Blue line indicates the streams. Dashed yellow and blue lines indicate
the catchment and streams, respectively, before mill construction. The coring position is indicated by a yellow star.

Analyzer (Beckman Coulter, Brea, CA, USA). Samples were
measured with the aqueous liquid module in several 60 s cy-
cles until a reproducible signal was obtained. The “Fraun-
hofer” optical model of light scattering was used for com-
puting grain size distribution. Further statistical calculations
were done with a modified version of the software GRADI-
STAT 4.2 (Blott and Pye, 2001).

Approximately 20 mg of the freeze-dried sediments
(−50 °C, > 72 h) was packed into tin capsules for the mea-
surement of total carbon (TC), total nitrogen (TN), and iso-
topic composition of bulk nitrogen (δ15N). The total organic
carbon (TOC) and isotopic composition of bulk organic car-
bon (δ13C) were measured on decalcified sediment samples,
treated with ∼ 4 % HCl at 60 °C for 8 h, and washed with
deionized water until reaching pH neutrality. Carbonate con-
tent was calculated as CaCO3 from the difference between
TC and TOC, and the C/N ratio was calculated as the mo-
lar ratio. The measurements were carried out using an ele-
mental analyser (vario EL cube) coupled to an isotope ra-
tio mass spectrometer (IRMS, isoprime precisION; both de-
vices from Elementar, Langenselbold, Germany). The pre-
cision was checked by co-analysing L-Prolin, EDTA, and
USGS6 with known isotopic composition. The analytical un-
certainty for these standards was < 0.1 ‰ for both δ15N and
δ13C. The isotopic values of 15N and 13C are expressed in

delta notation (δ15N, δ13C) against air and Vienna Pee Dee
Belemnite (V-PDB), respectively.

2.4 Biological analysis

Sediment samples of 2–3 cm thickness and a volume of 16 to
47 mL each were stirred with deionized water in an overhead-
shaker for 1 to 5 h and sieved for organic and inorganic
macrofossils over mesh sizes of 1 mm and 200 µm, respec-
tively. Because samples below 238 cm depth could not be
disintegrated, H2O2 (5 %) was added, but disintegration was
insufficient, allowing a rough identification of the main sedi-
ment components only. After sieving, residues were washed
with deionized water and dried at ∼ 50 °C. All macrofos-
sils from the 1 mm sieve were identified to the lowest possi-
ble taxonomic level. Dried smaller sieve residues served for
the picking of specific microfossils. Ostracods, testate amoe-
bae and statoblasts of bryozoans were documented on the
species level, while counting of the other remnants (ephippia
of Cladocera, oospores of Charophyta, glochidia of Bivalvia,
eggs of uncertain origin, remains of fishes such as vertebra
and scales, oribatid mites, and charcoal) was on the group
level only. Relative abundance data for Ostracoda, testate
amoebae, and statoblasts rely on complete counts of all spec-
imens, but usually only up to 300 per group within the sam-
ples were counted. All taxa were photographed with the help
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of a Keyence VHX-6000 digital microscope. Additionally,
remains of other molluscs, insects such as weevils, and plants
such as fruits and seeds were documented (Table S1 in the
Supplement). Identification and autecological interpretation
of microfossils rely on Meisch (2000) and Fuhrmann (2012)
for Ostracoda, Schönborn (1966) and Scott et al. (2001) for
testate amoebae, Glöer (2015) for aquatic molluscs, Klaus-
nitzer (2019) for bryozoan statoblasts (Frenzel, 2019), and
datasets available on the Smithsonian Institution’s National
Museum of Natural History (https://naturalhistory.si.edu/,
last access: 4 October 2021) for other groups in a more gen-
eral way.

3 Results and interpretation

3.1 Lithology and dating

The sediment record from Lake Höglwörth shows four dif-
ferent lithological units (Figs. 2–4), which are derived from
changes in sediment colour, texture, and properties: Unit A
(from 278 to 238 cm) consists of overall dark-brown-to
black-coloured sediments with high organic carbon and sand
contents, as well as low carbonate and low clay contents
(Figs. 3 and 4). Greyish sand deposits were observed in sev-
eral depths throughout Unit A. A sharp boundary in lithology
and sediment colour is present at 238 cm depth and marks a
transition from Unit A to Unit B. The sediments in Unit B
(from 238 to 196 cm) are light reddish at the bottom and
grey-coloured at the top. Unit B has lower sand but higher
clay contents compared to Unit A, and silt is the dominant
grain size. Silt contents remain very high (> 70 %) in Unit C
(from 196 to 88 cm). Sediment colour changes distinctly at
196 cm, ranging from grey to black colour in a mottled pat-
tern. The change from dark grey to light grey sediments at
88 cm marks the transition to Unit D (from 88 cm to the top).
Brownish colours occur at 60 cm, whereas the top part of the
core reveals brighter sediments (Fig. 2).

The 14C ages from the Lake Höglwörth sediment core are
shown in Table 1. The calibrated median 14C ages range from
1620±120 BCE at 276 cm, to 2007±12 CE at 8 cm. The ma-
jority of the 14C ages from the Lake Höglwörth sediment
core are in stratigraphic order (Fig. 2; Table 1). Only one
sample at 67 cm depth shows an age reversal; however its er-
ror range overlaps with the age range of the sample at 92 cm
depth (Fig. 2).

The 137Cs activity shows two peaks at 14 and 26 cm
(Fig. 2). The first peak at 14 cm likely reflects the fallout
from the 1986 CE Chernobyl accident, while the second peak
at 26 cm likely reflects the fallout from the weapon testing in
1963 CE (Sirocko et al., 2013; Appleby et al., 1991; Appleby
and Oldfield, 1978).

https://doi.org/10.5194/egqsj-72-219-2023 E&G Quaternary Sci. J., 72, 219–234, 2023
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Figure 2. (a) Photo of the sediment core from Lake Höglwörth, units, and bacon age–depth model (Blaauw and Christen, 2011). The age–
depth model is based on the tie point of mill construction at 1701 CE, indicated by a red symbol, calibrated radiocarbon ages are displayed as
probability density functions of the 2σ distributions indicated by a blue symbol, and 137Cs ages are shown in green. (b) The 137Cs activity
(peak area h−1 g−1 sediment).

Figure 3. Variations in magnetic susceptibility and selected elements as well as carbonate content [%] along the depth profile at Lake
Höglwörth. Elemental data are shown as centred log ratios (clr).

E&G Quaternary Sci. J., 72, 219–234, 2023 https://doi.org/10.5194/egqsj-72-219-2023
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Figure 4. Variations in inc / coh, total organic carbon (TOC), total nitrogen (TN), the molar ratio of TOC [%] and TN [%] (C/N [molar]),
and the bulk isotopic composition of organic carbon δ13C and nitrogen δ15N [‰] as well as sand [%] and clay [%] contents along the depth
profile of Lake Höglwörth.

3.2 Geochemical analysis

Magnetic susceptibility values are low in Unit A and the
lower part of Unit B. The upper part of Unit B reveals
the maximum magnetic susceptibility of the entire record.
After a significant drop at the transition from Unit B to
Unit C, values remain on a quite constant high level with
only minor fluctuations up to 20 cm composite depth. How-
ever, one minimum stands out at 88 cm depth, marking the
transition to Unit D (Fig. 3). A trend towards lower val-
ues characterizes the top part of the core. The XRF analy-
sis shows several changes in elemental records, associated
with lithological changes (Fig. 3). Ti and K as proxies for al-
lochthonous minerogenic input and catchment erosion (Stro-
bel et al., 2021; Boes et al., 2011; Kastner et al., 2010) yield
mostly the same pattern throughout the record, with high
dynamic variability in Unit A but rather small variability
in the following units. Ca and Sr show an opposite pattern
compared to Ti and K. Ca and Sr are often linked to au-
thigenic carbonate precipitation, e.g. due to enhanced lake
productivity and/or evaporation (Kasper et al., 2012). The
log(Ca/Ti) ratio can thus be used as a proxy for lake pro-
ductivity versus minerogenic input. The very similar pattern
of the log(Ca/Ti) ratio and CaCO3 of our record corroborates
this interpretation (Fig. 3). Mn and Fe follow a very similar
pattern with decreasing trends from Unit A towards Unit B,
followed by persistently lower values. The log(Fe/Mn) ra-
tio was proposed as a proxy for redox conditions due to the
higher solubility of Mn in a reducing environment relative to
Fe (Makri et al., 2021; Żarczyński et al., 2019). Higher val-
ues thus indicate a stratified water column or reducing con-
ditions. The log(Fe/Mn) ratio might well be influenced by
other processes such as diagenesis and detrital input (Makri

et al., 2021). As during anoxia and when diagenetic processes
are dominant within the sediments, both the Fe and the Mn
are dissolved, while Ti remains a stable component (Aufge-
bauer et al., 2012; Boes et al., 2011). This would significantly
alter the log(Fe/Ti) ratio compared to the log(Fe/Mn) ratio.
Since this is not the case and both the ratios follow very
similar trends, the effects of diagenesis and detrital input
on the redox conditions derived from the log(Fe/Mn) ratio
are supposed to be negligible in Lake Höglwörth (Evans et
al., 2020; Kylander et al., 2013). Additionally, reconstructed
anoxia based on log(Fe/Mn) is corroborated by the biologi-
cal record discussed below. Despite the shift from Unit A to
Unit B, log(Fe/Mn) ratios show only small changes.

TOC values range between 2.8 % and 26.6 %, exhibit the
highest values in Unit A, and decrease towards Unit D. The
inc / coh ratio shows a quite similar pattern to TOC and thus
can be used as a proxy for organic matter as well (Fortin
et al., 2013; Guyard et al., 2007). TN values range from
3.5 % to 0.4 % and follow the pattern of TOC in the entire
record (Fig. 4). The C/N ratio ranges from 5.1 to 7.1 with
an average value of 6.3, indicating that organic matter is pri-
marily derived from autochthonous sources (Meyers, 2003).
δ13C ranges from −34.1 ‰ to −30.5 ‰ and shows a pattern
similar to the C/N ratio (Fig. 4), implying organic matter
is mainly authigenically derived. δ15N values vary between
−0.2 ‰ and 3.0 ‰ and show an increasing trend from the
bottom towards the top of the record.

3.3 Biological remains

Analysis of biological remains from the sediment core doc-
uments at least 30 different taxa from the sediment core
(Fig. S4a–b, Table S1). Species level identification was
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achieved for Mollusca, Ostracoda, and Bryozoa. Other fos-
sils encountered were oribatid mites, ephippia of cladocer-
ans, beetle remains, fruits and seeds of angiosperm plants,
oospores of charophytes, and fragments of mosses. Most taxa
are aquatic, but there are a considerable number of terrestrial
taxa as well.

Fossil remains are very rare in Unit A, suggesting un-
favourable conditions for their preservation. Higher abun-
dances in other units indicate better preservation. Broad max-
ima are visible in Units B and C for most taxa, suggesting
higher deposition of fossil remains in these units. Glochidia
do not appear before the upper part of Unit C and flourish in
Unit D, whereas charophytes and Hippuris are abundant in
Units B and C and disappear in Unit D.

Oribatid mites are highly abundant in Units B and C,
whereas their abundance decreased in the earlier portion of
Unit D. Ephippia are highly abundant in Unit B, but abun-
dances decrease afterwards to the top.

Fish remains in the sediment show a broad maximum in
the middle of Unit B, suggesting the start of and a substan-
tial increase in the fish population in Lake Höglwörth with a
short-lived breakdown at the limit to Unit C (Fig. 5).

Schoenoplectus is abundant in Units B and D but scarce in
Unit C. Bryozoan statoblasts are relatively stable in Unit C,
whereas they show a steady increase in the upper part of
Unit D. Charcoal is very rare in Unit A, abundances are
high in Units B and C, and they decrease throughout Unit D
(Fig. 5).

Dominant ostracod species are Cypridopsis vidua and
Candona candida (Fig. 6a). Swimming ostracod species such
as Cypridopsis vidua can avoid the oxygen deficiency of
the bottom water by swimming in between macrophytes and
are often found in highly productive waterbodies (Meisch,
2000). Their abundance is high at the middle of Unit C and
in the later portion of Unit D. Cypria ophtalmica reaches
high abundances in Units B and D but is almost absent from
Unit C. Limnocythere inopinata, Sarscypridopsis aculeata,
and Cyclocypris sp. are rare and restricted to the younger half
of the core. In contrast, Darwinula stevensoni, known to live
on mud in waterbodies such as fishponds (Meisch, 2000), is
frequent in the older part of the core and vanishes in Unit D.

Testate amoebae can be found in the younger three units
of the core in high abundances (Fig. 6b). There is a change
recognizable from dominating Difflugia oblonga in basal
Units C and B to prevailing Difflugia corona above in Unit D.
Difflugia urceolata is a species that prefers cooler waters and
can tolerate low oxygen contents as well (Scott et al., 2001).
Difflugia urceolata and Difflugia bidens are rare but typical
of Unit D.

Bryozoan statoblasts and most of the other fossil remains
are missing from Unit A (Figs. 4–6). The dominating taxon
is Plumatella spp., comprising the species Plumatella cas-
miana, Plumatella geimermassardi, and Plumatella repens,
which are hard to discriminate based on badly preserved
fossil material. Bryozoan statoblasts show highest abun-

dances in Unit C and steadily increase in the upper part of
Unit D (Fig. 5). The rarer species Plumatella fruticosa and
Cristatella mucedo replace each other over the record: the
former is typical of Units B and C, whereas the latter species
is abundant in Unit B and the youngest part of the core. The
zebra mussel Dreissena polymorpha appears in the upper
25 cm of the sediment core.

4 Discussion

4.1 Chronostratigraphy

Unit A is characterized by organic-rich, low clay, and high
sand contents and rare fossils. The calibrated 14C age in this
unit is substantially higher (> 2400 years) than the samples
from other units, suggesting a very low accumulation rate or
a discontinuous accumulation of the deposits (depositional
gaps and/or erosion events). The lithological, geochemical,
and biological records show a distinctly different deposi-
tional environment in Unit A compared to the other units.
A local small wetland, peat, or a floodplain of a small creek
with the presence of sedges and reeds is assumed. Since peat
or floodplain deposits with presumably discontinuous char-
acter were not the primary focus of this study, the 14C age at
276 cm was excluded from age–depth modelling. For Units B
to D, an age–depth model was calculated where during the
first iteration, only the 137Cs and 14C ages were considered
(Fig. S3). This reveals that the record roughly covers the last
1100 years. At 88 cm depth, where a distinct shift in lithol-
ogy and ecological species as well as minerogenic input oc-
curred, an age of 1650+80

−120 CE is obtained. Considering the
error range, this shift in the lacustrine environment matches
the time frame of the flour mill construction and diversion
of the input channel in 1701 CE. Therefore, we refined our
chronology in a second iteration and included this age as a
tie point for the final age–depth model (Fig. 2). It should be
noted that the 14C age at 67 cm shows a slightly older age in
both iterations, probably due to the input of older carbon as a
result of enhanced minerogenic input after the channel diver-
sion. However, this is still within the 2σ uncertainty range of
the age–depth model (Fig. 2).

4.2 Stages of lake evolution

4.2.1 Pre-lake deposits prior to 870+140
−160

CE

The lowermost part of the sediment record represents most
probably the pre-lake valley floor or a former wetland area
(floodplain of the creek), with peat forming prior to the mod-
ern Lake Höglwörth. Authigenic carbonate precipitation was
not favourable in this phase, as suggested by low contents
of CaCO3 and log(Ca/Ti) ratios. Furthermore, the presence
of preserved plant macro-remains and high log(Fe/Mn) ra-
tios indicate anoxia that is typical in swamp/fen/peat bog
environments. Several sandy layers suggest occasionally oc-
curring flash-flooding events. Two peaks of charcoal suggest
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Figure 5. Quantity of charcoal, statoblasts of freshwater bryozoans, Schoenoplectus, fish remains, ephippia of cladocerans, oribatid mites,
charophyte oospores, Hippuris, and glochidia of unionid bivalves (log(individual species (x)+ 1) / 100 mL) along core depth.

rare fire events in the area. The dominance of oribatid mites,
with some rare findings of charophytes, implies a terrestrial
or semi-aquatic habitat with dense vegetation and the pres-
ence of smaller waterbodies at this location (Frenzel, 2019).

4.2.2 From 870+140
−160

to 1120±120 CE

An abrupt change from high organic peat-like deposits to
more silty deposits suggests increasing water levels that es-
tablished a lacustrine environment after 870+140

−160 CE (Figs. 3–
6). Fossils become much more abundant and diverse dur-
ing this phase, and remains of many groups appear for
the first time (e.g. statoblasts of bryozoans, Schoenoplec-
tus, fish remains) or increase dramatically (e.g. Hippuris,
oribatid mites). High counts of Cladocera, Difflugia ob-
longa, statoblasts, and ostracods such as Candona candida
and Darwinula stevensoni characterize Lake Höglwörth as
a shallow and macrophyte-rich waterbody (Fuhrmann, 2012;
Meisch, 2000). In general, high abundances of ostracods sug-
gest high aquatic production (Ruiz et al., 2013), which is
further supported by increased carbonate precipitation. De-
creasing TOC and TN values document a shift in nutrients,
which is further supported by increasing δ15N and δ13C val-
ues (Meyers, 2003). Finer-grained sediments, a decrease in
submerged macrophytes after 870+140

−160 CE, and a substantial
increase in fish remains around 1000+130

−140 CE points towards
a slowly rising water level. A distinct increase in charcoal
abundance infers increasing fire events in the lake catchment
(Fig. 5).

The monastery Höglwörth on the lake peninsula was con-
structed in 1125 CE (Bauer and Bauer, 1993). During the
construction phase, the peninsula was probably enlarged by
soil material previously extracted from an artificial ditch

around the construction area (Landesamt für Digitalisierung,
2022). In addition, the lake was probably dammed, but
whether this was done before or during the construction of
the monastery and when these activities happened are not
known. Therefore, we cannot rule out that the sediments
that accumulated between 870+140

−160 and 1120±120 CE result,
at least partly, from these construction activities and/or the
damming.

4.2.3 From 1120±120 to 1701 CE

Human activities in the lake catchment increased during this
stage, as indicated by the charcoal content that likely reflects
high levels of firewood burning (Whitlock and Larsen, 2001;
Fig. 5). This is contemporaneous with an increase in human
activities in the region (Gilck and Poschlod, 2020; Enters et
al., 2006).

Decreasing abundance of statoblasts, ephippia, and charo-
phytes, as well as lower diversity in ostracods and testate
amoebae and increasing δ13C and δ15N values, points to an
increased trophic state of the lake (Figs. 4–6; Poikane et
al., 2018; Torres et al., 2012; Hartikainen et al., 2009).

In 1120± 120 CE, enhanced flux of minerogenic material
(Ti, K) was probably caused by the monastery construction in
1125 CE and would very likely have increased aquatic pro-
ductivity (Haas et al., 2019). A further increase in minero-
genic input from 1240+110

−120 to 1380+90
−110 CE associated with

higher clay contents as well as increased values for magnetic
susceptibility (Dearing et al., 1996) suggests increased soil
erosion in the catchment of the lake (Fig. 3). This coincides
with the massive medieval deforestation in Bavaria during
the 13th century as a result of a growing population and in-
creasing agropastoral activities (Gilck and Poschlod, 2020;

https://doi.org/10.5194/egqsj-72-219-2023 E&G Quaternary Sci. J., 72, 219–234, 2023



228 S. Acharya et al.: A 1100-year multi-proxy palaeoenvironmental record from Lake Höglwörth, Bavaria

Figure 6. (a) Distribution of ostracods and (b) testate amoebae and bryozoan statoblasts within the core from Lake Höglwörth. Ostracoda,
testate amoebae, and Bryozoa abundances are given as abundance for 100 mL of sediment and are log-transformed [log(x+ 1)].

van der Knaap et al., 2019; Enters et al., 2008). However,
enhanced terrestrial input could also be related to a series of
extreme precipitation and flood events such as the St Mary
Magdalene flood in 1342/1343 (Bauch, 2019; Reinhardt-
Imjela et al., 2018). During almost the same time (from
1310+100

−120 to 1470+90
−100 CE), anoxia occurred, as reflected by

higher log(Fe/Mn) ratios and the abundance of Cypridop-
sis vidua and Difflugia urceolata because these species can
avoid oxygen deficiency by swimming in between macro-
phytes (Fig. 7; Scott et al., 2001; Meisch, 2000). As the lake
is relatively shallow and water might be seasonally mixed,
the anoxia could mainly have occurred at the bottom of or in
the interstitial water (Fam and Kerstin, 2018). In combination
with bottom or interstitial water anoxia, abundances of ostra-

cods as well as charophytes and pronounced calcite precipi-
tation indicate overall enhanced aquatic productivity. There-
fore, deforestation probably led to higher allochthonous in-
put, which likely caused increased nutrient delivery. Simi-
lar processes were reported from other sites such as Lake
Salęt in Poland, where anthropogenic activities during the
medieval period led to stronger soil erosion and higher pro-
ductivity (Gąsiorowski et al., 2021). Lacustrine carbonate
precipitation (log(Ca/Ti) ratios, CaCO3) is not only affected
by biological productivity, but also driven by temperature
and thus higher evaporation (Kasper et al., 2012; Mueller et
al., 2009; Brown et al., 2007). Considering the chronologi-
cal uncertainties, carbonate precipitation increased in Lake
Höglwörth during periods of higher temperatures during the
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Figure 7. Distribution of selected environmental proxies for the
core from Lake Höglwörth. (a) The Ti centred log ratio (Ti [clr])
represents the minerogenic input; (b) log(Ca/Ti) indicates the au-
thigenic carbonate precipitation; (c) log(Fe/Mn) reflects redox con-
ditions; (d) inc / coh refers to organic matter deposition. (e, f) Ab-
solute abundance (log(x+ 1) 100 mL−1) of Cypridopsis vidua and
zebra mussels, respectively. Red shading indicates the periods with
prevailing bottom or interstitial water anoxia in the lake as inferred
from high log(Fe/Mn) and abundance of Cypridopsis vidua as well
as other species mentioned in the text.

past millennium for Europe (PAGES 2k Consortium, 2013).
Hence, increased biological production and higher tempera-
tures might have been responsible for the authigenic carbon-
ate precipitation in our record. The presence of glochidia,
which are larval stages of unionid bivalves that live as par-
asites on fishes (Glöer, 2015), reflect the fact that abundant
fish lived in Lake Höglwörth after 1620+50

−80 CE. Their dom-
inance within the uppermost, youngest part of the record
might have been driven by fish aquaculture as practised by
many monastery societies (Brugger et al., 2008).

4.2.4 From 1701 to 2019 CE

High allochthonous input and a substantial shift in aquatic
communities (e.g. disappearance of Plumatella fruticosa,
Hippuris, Darwinula stevensoni, and charophytes and ap-
pearance of glochidia) around 1701 CE coincided with the

construction of a flour mill and the related rerouting of the
Höglwörther Seebach (Figs. 3–7; Gałczyńska et al., 2019;
Melzer, 1999). An increased influx of water and minero-
genic input, associated with the mill construction, might
have affected lake water turbidity, water chemistry, and/or
mixing regimens, consequently changing the aquatic fauna
(Bhateria and Jain, 2016; Nilsson and Renöfält, 2008; Bunn
and Arthington, 2002). Additionally, the production of the
mill might have discharged wastewater into Lake Höglwörth,
causing enrichment in nutrients such as N and P.

Enhanced carbonate precipitation is documented from
1800+50

−40 to 2019 CE (Fig. 7). This was accompanied by a
reduced minerogenic input and thus perhaps caused by in-
creased primary productivity in the lake, leading to epil-
imnetic carbonate precipitation (Sun et al., 2019; Balci et
al., 2018). Additionally, the post-industrial revolution rise in
global temperature may have led to increased lake evapora-
tion and thus enhanced carbonate precipitation (DWD Cli-
mate Data Center, 2023; IPCC, 2021; DWD Climate Data
Center, 2020). The high abundance of Difflugia urceolata and
Cypridopsis vidua after 1850+40

−50 CE point towards anoxia in
the lake (Fig. 7). The high abundance of the testate amoebae
Difflugia urceolata and the appearance of Difflugia bidens af-
ter 1850+40

−50 CE suggest a higher trophic state, possibly due to
increased nutrient input from anthropogenic activities. This
is corroborated by decreasing δ15N and δ13C values.

After around the 1960s, Lake Höglwörth was affected
by eutrophication due to increased agriculture activities and
the associated input of nutrients as inferred from decreasing
δ15N values. This is in line with increased anthropogenic ac-
tivities globally and the start of the industrial revolution in
the region (Steffen et al., 2015; De Vries, 1994). Eutroph-
ication is common for lakes in Bavaria (Enters et al., 2006;
Bayrisches Landesamt, 1996) and central Europe (Bartram et
al., 2002). The zebra mussel Dreissena polymorpha, a neo-
zoon, an invasive species, and native to lakes in Russia and
Ukraine, appeared in Lake Höglwörth around 1960± 10 CE
(Fig. 7; Neumann and Jenner, 1992). This is contempora-
neous with its spread to alpine lakes (Minchin et al., 2002;
Binder, 1965).

5 Conclusion

This study analysed a sediment core from Lake Höglwörth
for lithology, geochemistry, and biology to investigate the
palaeoenvironmental conditions and anthropogenic impact
on a lacustrine system. Our findings suggest that a wetland
environment (peat formation) existed prior to 870+140

−160 CE,
when the lake sediment started to accumulate. Distinct shifts
in sedimentology, elemental composition, and the biological
record from 870+140

−160 to 1120± 120 CE are attributed to the
construction of the monastery in 1125 CE and/or damming of
the lake. Our record documents increased allochthonous in-
put from 1240+110

−120 to 1380+90
−110 CE related to enhanced soil
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erosion. Prevailing bottom or interstitial water anoxia from
1310+100

−120 to 1470+90
−100 CE can be related to higher nutrient

input as a consequence of enhanced anthropogenic activities
such as deforestation. A shift in the sedimentological and bi-
ological record at 1701 CE is possibly caused by the diver-
sion of a small creek necessary for the operation of a newly
built mill. Channel diversion increased the allochthonous in-
put into the lake and had a significant impact on aquatic com-
munities. Overall, this study shows that past human activ-
ities during the last millennium have had a significant im-
pact on the lithological, geochemical, and biological environ-
ment, causing algal blooms and anoxia in Lake Höglwörth
repeatedly during the last millennium prior to recent decades.
Also, this study demonstrates that dam construction can have
severe impacts on aquatic ecosystems. Lakes have under-
gone significant environmental changes in the past for var-
ious reasons, and understanding the causes and impacts of
these changes can be valuable for predicting future ecologi-
cal pathways as well as for restoration efforts.
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