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Abstract: The sites of Hawelti–Melazo in the Tigray region of the northern Ethiopian Highlands is an archae-
ological hotspot related to the D’mt kingdom (ca. 800–400 BCE). The existence of several monu-
mental buildings, which have been excavated since the 1950s, underline the importance of this area
in the Ethio-Sabaean period. We investigated the geomorphological and geological characteristics of
the site and its surroundings and carried out sedimentological analyses, as well as direct (lumines-
cence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions,
which we integrated into the wider context of Tigray. Luminescence dating of feldspar grains from
the May Agazin catchment indicate enhanced fluvial activity in the late Pleistocene, likely connected
to the re-occurring monsoon after the Last Glacial Maximum (LGM). The abundance of trap basalt on
the Melazo plateau, which provides the basis for the development of fertile soils, and the presumably
higher groundwater level during the Ethio-Sabaean Period, provided favourable settlement conditions.
The peninsula-like shape of the Melazo plateau was easily accessible only from the east and north-
east, while relatively steep scarps enclose the other edges of the plateau. This adds a possible natural
protective function to this site.

Kurzfassung: Die Stätte Hawelti–Melazo in Tigray im nördlichen Hochland von Äthiopien ist ein archäologischer
hotspot, der im Zusammenhang mit dem Königreich D’mt steht (ca. 800–400 BCE). Seit den 1950er
Jahren wurden dort mehrere Monumentalbauten entdeckt, die die Stellung dieses Gebiets zu äthio-
sabäischer Zeit unterstreichen. Wir haben die geomorphologischen und geologischen Eigenschaften
des Gebiets untersucht, sedimentologische Analysen durchgeführt sowie direkte (Lumineszenz) und
indirekte (Radiokohlenstoff) Sedimentdatierungsmethoden angewandt, um die Paläoumweltbedin-
gungen zu rekonstruieren, die wir im weiteren Kontext von Tigray einordnen. Lumineszenzdatierun-
gen an Feldspat-Körnern aus dem Einzugsgebiet des May Agazin deuten auf eine gesteigerte fluviale
Aktivität im Spätpleistozän hin, die möglicherweise mit dem wiedereinsetzenden Monsun nach dem
LGM in Verbindung steht. Der Trapp-Basalt des Melazo-Plateaus, der die Basis für die Bodenen-
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twicklung bildet, und die wahrscheinlich höheren Grundwasserstände zur äthio-sabäischen Zeit boten
gute Siedlungsbedingungen. Durch die halbinselartige Form des Melazo-Plateaus war es nur vom Os-
ten und Nordosten einfach zugänglich, während die anderen Seiten des Plateaus durch steile Hänge
begrenzt werden. Dies gab der Stätte eine zusätzliche natürliche Schutzfunktion.

1 Introduction

Located at the Horn of Africa, the northern highlands of
Ethiopia are a region with a diverse and complex geologi-
cal and archaeological history. The basaltic plateaus and the
moderate subtropical climate with annual precipitation ex-
ceeding 600 mm at elevations around 2000 m a.s.l. (above sea
level) provide the framework for the development of fertile
soils and favourable living conditions not only throughout the
Holocene. The abundance of natural resources, such as gold,
obsidian, gums, incense, and more, led to the integration of
this region in the ancient trade network between the Mediter-
ranean and the Indian Ocean (Fattovich, 2012). In terms of
archaeology, the area is probably best known for the King-
dom of Aksum (starting in the early first millennium CE),
a state polity with the city of Aksum as its centre (French
et al., 2009; Harrower et al., 2019). Prior to the Aksumite
Period, the archaeological records show that groups related
to the foreign Saba kingdom arrived during the first millen-
nium BCE from the Arabian Peninsula (Japp et al., 2011;
Fattovich, 2012, 2010). The most prominent remnants of this
Ethio-Sabaean culture (ca. 800–400 BCE) in the present-day
state of Tigray are several monumental buildings in the South
Arabian style in Yeha, Wuqro, and Hawelti–Melazo, which
give evidence for a complex hierarchical society and polity,
which is named “D’mt” in literature (Fattovich, 2012). All of
them are still being investigated or are still being excavated
(Japp et al., 2011). D’mt disappears from the archaeological
records at ca. 400 BCE, around the time of the decline of the
Saba kingdom. The area did soon after witness the rise of
the aforementioned, millennium-lasting Kingdom of Aksum
(Fattovich, 2010).

Several studies investigated palaeoenvironmental changes
and geomorphic activity phases in the northern Ethiopian
Highlands (Tigray) and provided data to compare them to
cultural epochs or relatively recent political upheavals in the
region (Lanckriet et al., 2015; Nyssen et al., 2014, 2004,
2006b; Machado et al., 1998; Pietsch and Machado, 2014).

Here, we focus on the Daragá region of Tigray, which in-
cludes the archaeological sites of Hawelti–Melazo (de Con-
tenson, 1961, 1963; Leclant, 1959) and lies within the
basaltic Highlands (ca. 2000 m a.s.l.) about 10 km southeast
of Aksum. Hawelti–Melazo are important Ethio-Sabaean and
Aksumite find places (Menn, 2020). However, their direct
surroundings have so far not been in the scope of palaeoen-
vironmental research. The aim of this study is to understand
the late Pleistocene–Holocene environmental conditions of

the area, which provided the base for the Ethio-Sabaean and
the subsequent Aksumite occupations, using sedimentologi-
cal analyses, luminescence and radiocarbon sediment dating
methods, micromorphological analyses, and geomorpholog-
ical mapping.

2 Study area

2.1 Archaeological overview

About 10 km southeast of Aksum, the archaeological sites
of Hawelti–Melazo are to be found. In simplified terms, the
most relevant sites are the hill of Hawelti and the so-called
“plateaus” – most importantly Melazo – on the eastern banks
of the river May Agazin, about 1.5 km southeast of Hawelti
(Fig. 1).

The area first came into scientific consideration in the mid-
1950s when a local farmer had accidentally discovered sev-
eral (Ethio-Sabaean) finds at Goboshila (Melazo). This in
turn led to the first excavations in Melazo, bringing to light
a temple dedicated to the Sabaean god Almaqah (Leclant,
1959). Excavations continued in 1958 and 1959. On the
Melazo plateau (specifically Inda Cherqos), two consecutive
churches on top of each other were found, dating to Aksum-
ite and probably medieval times – the older one incorporating
spolia of Ethio-Sabaean heritage (de Contenson, 1961). Also,
the stelae field on the hill of Hawelti was excavated reveal-
ing about 20 stelae, 2 buildings (“temples”), and some 500
finds (de Contenson, 1963). With regard to their dating, the
results have to be considered as inconclusive since some of
the features and finds are most probably from Ethio-Sabaean
times (e.g. the stelae themselves), while others could be later
additions. Furthermore, the interpretation of the stelae field’s
function remains uncertain.

Apart from minor surveys, no further investigations took
place in Hawelti–Melazo until the still-ongoing Ethiopian–
German cooperation project “Yeha and Hawelti–Melazo”
took up work in 2009. Since then, the project has so far de-
livered one further major excavation site, as well as some 70
more find locations (Japp et al., 2011; Menn, 2020). Mostly,
these sites and find locations point to Aksumite and Ethio-
Sabaean heritage (Gerlach, 2018). While the former seem to
be scattered all over the area, the latter appear to be con-
centrated on the hill of Hawelti and primarily the plateau
of Melazo where also the excavation site is located about
60 m east of the church of Inda Cherqos. Here, a monumen-
tal building could be identified. With the construction method
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Figure 1. Geological and geomorphological map of the study area, modified from Tadesse (1999) and Hagos et al. (2010). “Melazo arch.
site” refers to the location of current excavations. Several other archaeological sites were reported on the Melazo plateau to the south of the
current site. Upper inset map shows the position in Ethiopia. Lower inset map shows the position in northern Ethiopia/Tigray.

similar to Yeha’s Grat Be’al Gebri (Japp et al., 2011), finds
corresponding to those in Yeha, and radiocarbon dating re-
sults pointing to the first half of the first millennium BCE, it
can be concluded that it is of Ethio-Sabaean origin (Menn,
2020). However, several isolated finds identified during the
extensive surveys also indicate the presence and possibly the
settlement of people from the lithic period through to the
present. Thus, the Hawelti–Melazo area has to be regarded
as an archaeological hotspot.

2.2 Climate and palaeoenvironment

The study area lies in the warm and temperate subtropical
highland climate zone (Cwb after Köppen–Geiger classifi-
cation). Rainfall is mostly of monsoonal type showing a bi-
modal annual rainfall distribution with short rains (belg in
Amharic) in March and long rains (krempt in Amharic) in
June–August and a total annual precipitation of 600–700 mm
(Harrower et al., 2020).

Information on late Pleistocene palaeoenvironmental con-
ditions of the northern Ethiopian Highlands is sparse. Ac-
cording to Lamb et al. (2007b), Lake Tana was desiccated
during the Last Glacial Maximum (LGM) due to drought

caused by reduced monsoon strength (Lamb et al., 2018).
A similar effect – although in a completely different envi-
ronmental context – is also known for lakes in the now cen-
tral Sahara (Hoelzmann et al., 2007; Umer et al., 2004). The
basin of Lake Tana started to fill again at around 15 ka. In
the same sense, Moeyersons et al. (2006) report increasing
humidity from ca. 15 ka onwards based on numerical dat-
ing of tufa dams near Mekele (Tigray), which indicate a
raised groundwater table during the late Pleistocene. Wet-
ter conditions than today prevailed from ca. 15 ka until the
mid-Holocene (ca. 5 ka; Armitage et al., 2015), owing to or-
bitally forced increased monsoon strength (Umer et al., 2004;
Williams et al., 2006).

Climatic reconstructions for the area based on palaeope-
dological findings indicate that precipitation rates might
have decreased in the course of the Holocene, which is
in agreement with the declining monsoon strength after
5 ka (Armitage et al., 2015). Based on samples obtained
close to Yeha, palaeoprecipitation rates of 870 mm a−1

were determined for the Early Holocene, which decreased
to 780 mm a−1 in the first millennium BCE (Pietsch and
Machado, 2014). This general trend corresponds to the find-
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ings of Dramis et al. (2003), who parallelized stratigraphic
sequences in Tigray with lake level records in the Rift Val-
ley.

Machado et al. (1998) describe three “wetter” phases dur-
ing the last 4000 years with enhanced soil formation, cor-
responding to so-called stability phases (∼ 2000–1500 BCE,
500 BCE–500 CE, 950–1000 CE), and two “drier” phases,
which are represented by an increase in fluvial debris
transport (1500–500 BCE, 1500–1000 CE). Lanckriet et
al. (2015) compare these phases of varying morphodynam-
ics to palaeoenvironmental studies from Lake Hayk (Lamb et
al., 2007a) and Lake Ashenge (Marshall et al., 2009), as well
as results from their own study site at May Tsimble (east of
Mekele). This comparison confirms the general morphody-
namic trends but also emphasizes several additional phases
of higher and lower geomorphic activity, triggered by either
climatic changes or human impact (Lanckriet et al., 2015).
Human impact on the landscape in the form of land use
and land cover changes comprises repeated phases of vegeta-
tion removal and intensified agriculture or livestock grazing,
which have been proven throughout the last 2000–3000 years
(Nyssen et al., 2004; Lanckriet et al., 2015, and references
therein). Another important human imprint on the landscape
are footpaths, which can incise into the land surface (Zgło-
bicki et al., 2021) and, for example, influence soil properties
(Nir et al., 2022) and the gully erosion susceptibility (Busch
et al., 2021). A footpath close to the study site was recently
investigated by Nir et al. (2022) in terms of soil chemistry
and micromorphology.

2.3 Geomorphological setting

The relief of the northern Ethiopian Highlands is largely
structurally (tectonically and geologically) determined. Se-
lective erosion of different rock types produced a stepped
landscape, which is locally termed amba landscape (Coltorti
et al., 2007). Several planation surfaces, the oldest being of
pre-Ordovician age, once weathered and eroded at low alti-
tudes before Cenozoic uplift of the Ethiopian Highlands, can
now be found at altitudes exceeding 2000 m a.s.l. Thus, on-
going erosion not only results in stepped slopes and valleys
but also exhumes relatively level palaeosurfaces (Coltorti et
al., 2007; Machado, 2015).

The most typical present-day soils of the region are Ver-
tisols and (vertic) Cambisols, which develop predominantly
on the basalt surfaces and in the alluvial plains (Ferrari et
al., 2015). These soils are characterized by a high content of
swelling clays (montmorillonite) (Frankl et al., 2012), black
colour, and relatively high fertility (Nyssen et al., 2008).
Due to their high swelling potential and the seasonality of
the local climate, Vertisols (locally termed walka; Nyssen et
al., 2008) are prone to soil piping and gully erosion (Frankl
et al., 2012; Nyssen et al., 2006b; Busch et al., 2021; Nir et
al., 2021). Moreover, the swell-and-shrink cycles of the Ver-
tisols trigger an upward movement of rock fragments orig-

inating from the subsurface (argillipedoturbation; Nyssen et
al., 2006a).

3 Materials and methods

3.1 Fieldwork and sampling strategy

Two exposures corresponding to sections at eroded channel
banks were investigated in the field and sampled for further
analysis in February and November 2019. The first site in
Daragá (PG1) lies on the southwestern bank of May Gube-
dish, a small creek flowing in a northwest direction ca. 50 m
northeast of the current excavation site of Melazo. The sec-
tion was chosen due to the proximity to the archaeological
site, as it appeared as a potential cultural archive. The sec-
ond section of Daragá (PG2) was located at the northwestern
bank of May Agazin, the receiving stream of May Gubedish,
ca. 300 m west of the Melazo temple and 1.5 km south of
Hawelti (Table 1).

In terms of chronological control, the silty-clayey PG1
section was sampled for AMS radiocarbon dating (14C), as
several charcoal pieces were macroscopically visible during
the sampling procedure. Oppositely, organic residue could
not be found in the other sections of profile PG2, where suit-
able layers (sand sized, well sorted) were selected for lumi-
nescence dating. Luminescence samples were taken by driv-
ing opaque plastic cylinders (25 cm length, 5 cm diameter)
into the freshly cleaned sediment, and additional samples
from the bulk material were secured for radionuclide anal-
ysis.

3.2 Sedimentological analyses

The basic sedimentological analyses were performed at the
physical geography laboratory of the Department of Earth
Sciences, Freie Universität Berlin.

As a first preparation step, the bulk samples were dried at
105 ◦C, aggregates were crushed, and particles larger than
2 mm in diameter were removed by sieving. The pH val-
ues were measured with a pH meter in a solution of 10 g of
dried sediment and 25 mL of 0.01 M KCl. Electrical conduc-
tivity was measured in a solution of 10 g of dried sediment in
25 mL of bi-distilled water.

The content of total carbon (TC) was determined with a
Leco TruSpec CHN analyser by means of infrared CO2 de-
tection during sample combustion. The content of total inor-
ganic carbon (TIC) was measured with a Woesthoff Carmho-
graph C-16. Total organic carbon (TOC) was subsequently
calculated by the substraction of the content of TIC from the
content of TC. A laser diffractometer (Beckman Coulter LS
13320) was used to determine the grain size distributions of
the fractions< 1 mm. Sample preparation for grain size anal-
ysis included treatment with HCl for removal of carbonates
and dispersion with sodium pyrophosphate (Na4P2O7). Sed-
iments from the representative units selected for dating and
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Table 1. Sample overview for the studied locations.

PG1 PG2

Location/coordinates May Gubedish/14.066703◦ N, May Agazin/14.065173◦ N,
(decimal WGS84) 38.800879◦ E 38.795278◦ E

Bulk samples for physical and 27 8
chemical analyses

Micromorphology samples 5 3

Radiocarbon samples 6 (bulk/charcoal) /

Luminescence samples / 2

micromorphological investigation were also mineralogically
analysed by X-ray powder diffraction (XRD; Rigaku Mini-
Flex 600).

3.3 Micromorphological analyses

For micromorphological analyses, five sediment blocks were
extracted from different sedimentary units along the profile
of the main outcrop (PG1: M1–M5) and three more at sed-
imentary transition zones from the reference outcrop (PG2:
M6_R–M8_R). Blocks were sampled using plastic boxes or
jackets of gypsum bandages (plaster of Paris) depending on
the sediment type and possible extraction techniques.

The micromorphological samples were dried for 4 d at
room temperature (ca. 18 ◦C) and later heated to 50 ◦C for
30 h. Following this, sediments were impregnated by a 6 : 4
(v : v) mixture of polyester resin and acetone and a small
amount of hardener (5–10 mL to 1 L of the above mixture).
Due to the heavy saturation and cracking of the clay-enriched
sediments, acetone removal was performed, and amounts and
ratios were changed according to the reactions and impreg-
nation of the sediments. Sampled blocks were then dried for
several weeks at room temperature and cut with a slab saw to
ca. 6× 5 cm “hand-sized” units. These units were sent for
30 µm thick thin section preparation to Quality Thin Sec-
tion Labs, Arizona. The analysis of the slides was performed
applying a Zeiss polarizing microscope following a process
performed by common micromorphological studies (Junge et
al., 2018; Stoops, 2020; Verrecchia and Trombino, 2021).

3.4 Luminescence dating – sampling, preparation and
experimental set-up, and radiocarbon dating

All preparation steps and luminescence measurements were
carried out in the Vienna Laboratory for Luminescence Dat-
ing (VLL) at the University of Natural Resources and Life
Sciences (BOKU) in Vienna, Austria. Sample preparation
followed a standardized procedure at the VLL (Lüthgens et
al., 2017; Rades et al., 2018), yielding extracts of potassium-
rich feldspar and pure quartz. Samples for radionuclide de-
termination were dried and subsequently stored in sealed

Petri dishes (∼ 60 g dry weight) for at least a month to re-
establish secondary secular radon equilibrium. Details on the
radionuclide content and the overall dose rate calculations
are provided in Table 3. All luminescence measurements
were carried out on Risø TL/OSL DA-20 readers equipped
with a 90Sr/90Y beta source (Bøtter-Jensen et al., 2000, 2003,
2010). Gamma spectrometry measurements for the calcula-
tion of the dose rate were performed using a Baltic Scientific
Instruments (BSI) high-purity germanium (HPGe) p-type de-
tector (∼ 52 % efficiency). The age calculation was done us-
ing the software ADELE (Kulig, 2005). Initial tests revealed
very low sensitivity of the quartz in the samples, so all subse-
quent measurements were conducted using single aliquots of
feldspar, which revealed good luminescence qualities in dose
recovery experiments using a single aliquot regenerative dose
protocol for the dating of feldspar (for details see Table 3).
The resulting equivalent dose distributions were not signifi-
cantly skewed, and average doses were calculated using the
central age model (CAM; Galbraith et al., 1999). Unfortu-
nately, only a few aliquots passed the rejection criteria for
sample VLL-0492-L (for details see Table 3).

AMS radiocarbon dating was done at the Poznan Ra-
diocarbon Laboratory. The C-14 dates were calibrated with
the software OxCal v. 4.2.3 using the IntCal13 atmospheric
curve (Reimer et al., 2013).

4 Results

4.1 Geomorphology

The Daragá area is situated at an elevation between 2000 and
2200 m a.s.l. within the Aksum plateau, which consists of the
Oligocene trap basalts (Hofmann et al., 1997) and the Meso-
zoic Adigrat Sandstone (Tadesse, 1999; Hagos et al., 2010).
Post-trap tectonic uplift of the region triggered extensive ero-
sion of the flood basalts, resulting in several isolated table
mountains (flat-topped mountains, locally named ambas) and
larger plateau complexes. The plateaus are eroded by in-
ward movement of the surrounding scarps. The inward ero-
sion is promoted by weathering and mass wasting processes
(Duszyński et al., 2019), possibly accelerated by human land
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use (Nyssen et al., 2006a). The archaeological site of Melazo
is situated at the southern fringe of the Aksum plateau on
a peninsula-like plateau remnant corresponding to an out-
lier mountain (Fig. 1). The plateau remnant measures ca.
1.6 km in southwest–northeast direction and up to 600 m in
the northwest–southeast direction. Its surface is flat-topped
at an altitude of 2080 m a.s.l. The surrounding valley bottoms
are incised up to 60 m, resulting in steep to cliff-like scarps
surrounding the plateau, which expose the various colourful
(reddish) facies of the Adigrat formation. To the north, the
valley of May Gubedish dissects the plateau. May Gubedish
is a tributary to May Agazin, which dissects the plateau on
the western side. The valley of May Agazin is up to 400 m
wide, and its valley cross profile ranges from an asymmet-
ric V shape to box-like. The valley follows a tectonic lin-
eament (Hagos et al., 2010). Alluvial plains have developed
on the wide valley floors; at profile PG2, located ca. 1 km
downstream of the confluence of the tributary May Gubedish,
these alluvial deposits are exposed. All hydrological regimes
of nearby streams are periodical (EMA map sheet 1438 D4)
and recent hydraulic constructions such as weirs and check
dams were installed to control the runoff (Fig. 2).

Especially to the northeast of the Melazo plateau the soil
cover is thin, resulting in frequently outcropping bedrock.
The area is rural with sparse settlements; basically the whole
plateau is used for arable farming while the alluvial plains of
the valley bottoms are used for grazing. Stone bunds sepa-
rate the fields on the plateau and the slopes, acting as erosion
protection measures (Fig. 2). The widespread abundance of
rock fragments covering the surface of the plateau areas can
be explained by argillipedoturbation, accelerated by the use
of ploughs (Nyssen et al., 2002).

The catchment of May Gubedish measures 2.27 km2. It
has a length (east–west) of roughly 3 km and a width (north-
northwest–south-southeast) of up to 1 km. Ca. 30 % of the
catchment is grounded in Adigrat Sandstone, while the re-
maining 70 % of the catchment drains trap basalt. The sand-
stone dominates the lower section of the catchment and is
found partly also in its middle reach. The whole headwater
area consists exclusively of basaltic bedrock.

While flowing through basaltic bedrock the valley profile
of May Gubedish corresponds to a shallow hollow valley. To
the north of the Melazo plateau, entering the Adigrat Sand-
stone, the May Gubedish valley is incised 10 to 20 m with a
now box-like valley profile. Thus, the flanks are steeper than
in the upper catchment, and slope erosion is more intense. To
the northeast and north of Melazo, profile PG1 is exposed at
an undercut bank where the channel of May Gubedish today
incises ca. 3 m into its own sediments deposited at a local val-
ley widening upstream of a narrow point. Downstream of the
narrow point the valley profile gets box-like and is infilled
by alluvial deposits. The slopes flanking the channel are cov-
ered by numerous loose blocks and stone bunds stabilize the
slopes where tillage occurs; gullies can be witnessed on both
valley flanks frequently stabilized by check-dams.

4.2 Sedimentology and dating results

The sediment profile PG1, located at the southwestern bank
of the May Gubedish creek (Fig. 2), is built of three major
lithofacies units: the overlying 160 cm sediments are formed
of alternating strata each with a thickness up to 15 cm, sum-
marized as laminated sand, silt, and mud occurring alterna-
tively with horizontally bedded sand facies (Fl/Sh). At 160–
310 cm below surface, sedimentary facies are of massive
mud and silt (Fm), underlain by clast-supported, horizon-
tally stratified gravel (Gh) 310 cm below surface. The transi-
tion between the three lithofacies units takes place gradually.
In total, six different sedimentary units occurring in vary-
ing thickness and frequency could be observed in the profile
(Fig. 3).

Units I and V build the major part of the outcropping sed-
iments. Units II, III, IV, and VI are coarse-grained layers of
limited thickness (2–15 cm), which separate units I and V.
Unit I has a dark gray-black colour and a clayey-sandy ma-
trix containing sharp-edged gravel. It forms the main sedi-
mentary unit of the Fl/Sh facies of the section and can only
be found until a depth of 90 cm. In its uppermost part, at
0–50 cm below surface, unit I is intersected four times by
unit II, a poorly sorted stone layer with a sandy-clayey matrix
and a thickness of up to 10 cm; the stones have rounded edges
and a diameter of 5–10 cm. Unit III is characterized by coarse
gravels in a sandy-clayey matrix occurring in thicknesses of
5–10 cm, being recorded five times between 100 and 160 cm
below surface. Sedimentary unit IV was recorded in six lay-
ers of up to 12 cm thickness between 40 and 90 cm below sur-
face. It corresponds to a red-white-grayish sand layer, occa-
sionally containing cobbles less than 3 cm in diameter. Below
90 cm depth sedimentary unit V appears, becoming the dom-
inating sedimentary unit 160–310 cm below surface (Fm).
Unit V is a gray-green massive silty clay, which is heavily
compacted. Between 90 and 160 cm below surface gravel
layers of unit III are repeatedly embedded into the clayey
sediments of unit V. The base of the section (Gh), below
310 cm depth, is characterized by several coarse gravel and
stone layers (unit VI) intercalated by unit V. Round-edged
stones 15–20 cm in diameter were recorded.

The pH values across most parts of the section are rather
heterogeneous and range between pH 5.9 and pH 7.1. The
lowest values were measured between 170 and 220 cm be-
low surface (pH 5.2–5.5). The electrical conductivity of the
sediments ranges between 0.06 and 0.46 mS cm−1. The up-
permost 70 cm of the section show very low conductivity val-
ues (0.07–0.09 mS cm−1). Below 70 cm depth, from top to
bottom, the electric conductivity values of the sediments in-
crease. The contents in organic (TOC) and inorganic (TIC)
carbon are at a generally low level below 0.8 wt % with only
minor excursions (Fig. 3).

The radiocarbon dating resulted in ages ranging from
1432± 85 BP (DAT4) to 4603± 185 BP (DAT5; Table 2).
However, the ages are not in a chronostratigraphic order.
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Figure 2. Geomorphological and geological map of the study area. Geology modified from Tadesse (1999) and Hagos et al. (2010). Hillshade
and isolines (2.5 m spacing) based on AW3D30 digital elevation model (Jaxa, 2005).

Table 2. Overview of radiocarbon ages. All ages derived from sec-
tion PG1 at May Gubedish (14.066703◦ N, 38.800879◦ E). Cali-
brated ages calculated using OxCal v. 4.2.3 and the IntCal13 at-
mospheric curve (Reimer et al., 2013). Values in bold represent the
calibrated ages referred to in the text.

Lab code Field Depth Raw C-14 Calibrated
code (cm) age BP age BP

POZ-126495 DAT1 65 1600± 30 1470 ± 65
POZ-114362 DAT2 70 2840± 360 3021 ± 898
POZ-123179 DAT3 100 2425± 30 2525 ± 173
POZ-123180 DAT4 180 1530± 30 1432 ± 85
POZ-126496 DAT5 365 4045± 35 4603 ± 185
POZ-122126 DAT6∗ 30 605± 30 598 ±85

∗ Sample DAT6 was taken 5 m downstream from PG1.

Sediment profile PG2, at the northwestern bank of May
Agazin (Fig. 2), exposes eight strata, summarized in three
different types of lithofacies: laminated sand, silt, and mud
(Fl) characterize the overlying strata of the profile (0–260 cm
below surface), interrupted by a layer of clast-supported, hor-
izontally stratified gravel (Gh) 30–65 cm below surface. Be-
low 260 cm depth lithofacies of the outcropping sediments
correspond to high-energy fluvial deposits of planar-cross-
bedded gravel (Gp) and planar-cross-bedded sand (Sp). The
top layer (layer 1, 0–30 cm below surface) is of dark brown
colour and consists of sandy silt with nested pockets filled
with gravels and stones. Layer 2 (30–65 cm below surface)
consists of compacted, light brown to gray silty sand with
a gravelly matrix, and locally semi-angular stones are hori-
zontally embedded. Underlying layer 3 (65–68 cm below sur-
face) is composed of compacted brown to dark gray silt; its
boundaries to the overlying layer 2 and underlying layer 4
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Figure 3. Sediment section PG1. Unit I: gray-black, fine roots, heavily compacted, clayey-sandy matrix with sharp-edged gravel content.
Unit II: poorly sorted stone layer, 5 up to max 10 cm in diameter, rounded edges, sandy-clayey matrix. Unit III: coarse gravel layer, sandy-
clayey matrix. Unit IV: red-white-grayish sand grains, occasional cobbles less than 3 cm in diameter. Unit V: gray-green massive silty clay,
heavily compacted, partially embedded gravel layers (III), vertically elongated rust stains up to 1 cm length. Unit VI: gravel and stone layer.
Lithofacies codes according to Miall (1996): Fm – massive mud, silt; Fl – laminated sand, silt, and mud; Sh – horizontally bedded sand; Gh
– clast-supported, horizontally stratified gravel. Photographs of section PG1 can be found in the Supplement.
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are in sharp contact. Layer 4 (68–74 cm below surface) cor-
responds to a light brown sandy silt in a gravelly matrix.
There are several vertical cracks cutting the whole layer,
which are filled with the material of layer 3. These cracks
continue throughout the underlying layer 5 (74–87 cm below
surface), which has a light brown colour with orange patches
and consists of sandy silt with a less gravelly matrix than the
above layer. It is connected with a diffuse contact to underly-
ing layer 6 (87–97 cm below surface), a 10 cm thick layer of
silt with distinct horizontal rust bands. The aforementioned
cracks end in layer 6. Layer 7 (97–152 cm below surface)
consists of silt and has a yellowish gray colour. Occasionally
there are gravels and stones (2–4 cm in diameter) embedded.
Luminescence dating of layer 7 revealed at 120 cm below
surface a burial age of 15.9±1.5 ka (fading corrected; see Ta-
ble 3) for this layer. The exposed basal layer 8 (below 152 cm
below surface) is characterized by an intercalation of sev-
eral sorted sub-layers with various grain sizes; below 220 cm
depth the sub-layers become bevelled. Rust and manganese
bands occur occasionally. The luminescence measurements
for layer 8 (260 cm below surface) yielded a depositional age
of 19.5± 1.5 ka (fading corrected; see Table 3).

Comparable to section PG1 the pH values of the sediments
in section PG2 range between pH 6.7 and pH 7.1. The highest
pH value was recognized in layer 2, at a depth of ca. 50 cm.
The electrical conductivity increases from ca. 0.2 mS cm−1

in layer 1 to the bottom, peaking in layer 4 (0.4 mS cm−1).
The TOC content is the highest in layer 1 (1.2 wt %) with
two minor peaks in layers 3 (0.3 wt %) and 5 (0.23 wt %).
Below 100 cm depth, the TOC decreases to values less than
0.2 wt %.

4.3 Micromorphology

At the May Agazin section (PG1), the groundmass is com-
posed of silty to clayey weakly developed sub-angular blocky
peds (Fig. 5a, c, d). The dominating colours are brown-gray-
red with reduced grey more present at the bottom part, likely
due to changes in groundwater level. Overall pedo-features
are mostly in the form of organic and iron impregnations with
some pedoturbation and little bioturbation. Little change is
evident along the profile with Fe oxides, organic residues,
and limpid clays detected along infilled channels. At 65–
70 cm below surface (Fig. 5a), disordered interlayerings of
coarse sands and gravel-sized grains with finer material are
found at times along planar voids or infilled channels. They
are mostly layered semi-diagonally at a 45–60◦ angle. These
sub-rounded gravel-sized grains could be a result either of
redeposition of fluvial sediments due to sheet erosion from
the slopes or of a low-energy fluvial deposition. Sub-rounded
sand-sized black metal oxide pseudomorphs are more domi-
nant at this depth. The latter do not seem to be in situ pedo-
features but oxidized and redeposited or pedoturbated within
planes. At 110 cm below surface, the grey-gley colour de-
creases, and a brown-red Fe matrix dominates the micro-
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mass, indicating either more intense oxidation, most likely
due to post-depositional percolation, or the groundwater not
reaching up to this level (Fig. 5b). The latter process ap-
pears to be more dominant. Voids coated or infilled with
limpid clay, sand-sized minerals, and hyper-coated nodules
are mostly in association with planes and suggest older plane
(crack) formation and therefore several cycles of pedoturba-
tion. This process could occur either near the surface or as
result of the total de- and re-hydration of the entire soil col-
umn. Some smaller voids are more rounded than the larger
ones, and chambers and vesicles are common. These features
indicate bioturbation occurred or is preserved over the over-
lying pedoturbation on the smaller scale (20–100 µm; Fig. 5,
Appendix A).

Section PG2, exposing fluvial deposits of May Gubedish,
exhibits silicious cementation, as well as vertical Fe oxi-
dized cracking (Fig. 5e, f). The three micromorphological
samples taken show sand- to gravel-sized volcanic minerals
along with basalt rock fragments (Fig. 5e, f, g). The gravel-
sized grains are coated by clay but seem to lack silt, sug-
gesting a surface-related process of mud drying on these
grains rather than a post-depositional one. The differences
between the layers are related to void sizes (compaction) and
to some extent to a dominance of the clayey matrix. The lay-
ers, however, exhibit large sub-angular sand- to gravel-sized
grains and occasional Fe/Mn pseudomorphs. This suggests a
strictly fluvial, medium-energy deposition with very minimal
post-depositional activities. At 120 cm below surface (Ap-
pendix A) sand-sized grains are deposited sub-horizontally
following the inclination of the present-day surface. Iron ox-
ide nodules are mainly ordered vertically along cracks and
infilled channels while some of the grains are aggregated.
These observations indicate a lower-energy deposition for
layer 7 (97–150 cm) than for the lowermost layer (layer 8;
Fig. 5g), with some vertical voids indicating roots and/or
dehydration cracks (related to the nearby surface above) in-
filled with oxides. A further decrease in stream energy is ev-
ident at 68–74 cm below surface (layer 4, Fig. 4), where the
groundmass is compacted, matrix supported, and dominated
by clays. A post-depositional silicious cementation has likely
replaced biogenic features and post-dates all other features
(Fig. 5e, f).

5 Discussion

Both investigated sedimentary sections and the geomorpho-
logical mapping provide insights into the late Pleistocene–
Holocene palaeoenvironmental development of the Daragá
area.

At the May Agazin site (PG2), the outcropping sediments
are all of fluvial origin. In the basal layer 8, the sorted sands,
gravels, and pebbles indicate fluvial deposition at a point
bar close to the channel under varying, but generally rather
high, velocities (Pazzaglia, 2013). In the overlying layer 7,

laminated sands and fine gravels indicate floodplain depo-
sition possibly related to a shift in the meandering channel
in the rather wide May Agazin valley (Hooke, 2022). Ac-
cordingly, layers 6, 5, and 4 correspond to cycles fining up-
wards, indicating decanted floodplain deposits (Dunne and
Alto, 2013; Pazzaglia, 2013). In layers 4 and 5, organic car-
bon contents are slightly increased. While these increased or-
ganic carbon contents could relate to redeposited organic ma-
terial on the floodplain, they might also indicate soil-forming
processes in a phase of reduced flood frequency (Kennedy
and Woods, 2013). This interpretation agrees with the cracks
infilled with fines coated by Fe oxides pervading layers 4,
5, and 6, which are signs of desiccation at the surface (Ver-
recchia and Trombino, 2021). Also the presence of silicified
plant material observed in layer 4 (Fig. 5e) indicates that this
layer formed a surface for at least some time and possibly
underwent soil-forming processes. We assume that this sur-
face was partly eroded before the accumulation of overlying
layer 3 as indicated by the sharp contact between layers 3
and 4. The minor thickness of layer 3 and its sandy charac-
ter indicate a single smaller flood event (Knox and Daniels,
2002). Also in layer 3, increased organic carbon contents
are taken as indicators for post-sedimentary soil development
and, thus, indicate a post-sedimentary phase of low flood fre-
quency (Dixon, 2013). In contrast, in the overlying layer 2
the 50 cm thick package of unsorted sand, gravel, and sharp-
edged rocks indicates strong flood activities (Benito, 2013)
possibly with material contribution from the steep surround-
ing slopes (Nyssen et al., 2006a). However, as there is no
age control for the uppermost metre of the sediment profile,
a possible connection between late Holocene human impact
such as deforestation (Lanckriet et al., 2015) remains highly
speculative.

The deposition of layers 8 (VLL-0492-L; 19.5± 1.5 ka)
and 7 (VLL-0491-L; 15.9± 1.5 ka) falls into the LGM–late
Pleistocene glacial–interglacial transition period. Within 1σ
error, both ages almost overlap, and within 2σ error, both
ages do overlap. Given the poor luminescence properties
(dim signals) of both samples, which required 4 mm aliquots
each containing several hundreds of grains to be measured,
signal averaging may lead to an overestimation of the ages:
the luminescence signals from well-bleached grains will be
masked by the much brighter luminescence signals from
older feldspar grains which were not sufficiently bleached
during the last sedimentary cycle (Thrasher et al., 2009;
Rhodes, 2011). This is especially true for sample VLL-0492-
L, which required measuring in a very broad grain size range
from 100–300 µm (compared to a grain size range of only
150–200 µm for sample VLL-0491-L). This increases the av-
eraging effect even more because a higher number of grains
is measured per aliquot, which may serve as an explana-
tion of the age offset of the two ages. In addition, the lo-
cation of the PG2 section lies in the headwater area of the
May Agazin catchment, roughly 4 km away from the divide.
Thus, the possible transport distances of the feldspar grains
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Figure 4. Sediment section PG2 (May Agazin). Layer 1: sandy silt, gravel, and stones, layered in pockets of the matrix, sub-angular small
stones. Layer 2: silty sand, matrix more gravelly, rounded and semi-angular stones (2–12 cm), mostly horizontally bedded. Layer 3: sandy silt.
Layer 4: sandy silt, gravels part of the matrix, sub-angular small stones. Layer 5: sandy silt with few gravels, very fine. Layer 6: silt. Layer 7:
silt, occasional gravels and stones (2–4 cm), unsorted. Layer 8: intercalations of sorted layers, bedded: stones, gravels, sometimes sandy
matrix. Lithofacies codes according to Miall (1996): Gp – planar-cross-bedded gravel; Sp – planar-cross-bedded sand; Gh – clast-supported,
horizontally stratified gravel; Fl – laminated sand, silt, and mud. A photograph of section PG2 can be found in the Supplement.

are low, reducing the bleaching possibilities owing to only a
relatively low rate of possible sedimentary cycles (Mcguire
and Rhodes, 2015; Bonnet et al., 2019). Bearing in mind the
possible age overestimation owing to methodological issues
especially for sample VLL-0491-L, it appears more likely
that both luminescence ages should be associated with the
younger late Pleistocene and not with the LGM (in the case
of unit 8). Consequently, both fluvial sedimentary units re-

late to the last glacial–interglacial transition and the abrupt
onset of the summer monsoon at around ca. 15 ka (Williams
et al., 2006; Gasse et al., 2008; Foerster et al., 2012). Be-
ing connected to the Nile catchment via the Tekezé and At-
bara rivers, this notion is also supported by the increasing
contribution of Ethiopian trap basalt components recorded in
the Nile delta at the onset of the last African Humid Period
(AHP) at ca. 15 ka (Revel et al., 2010; Ménot et al., 2020).
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Figure 5. Thin sections of PG1 (a–d) and PG2 (e–g). PPL = plane polarized light, and XPL = cross polarized light. (a) At 65–70 cm below
surface (PPL) notice that the grains undergoing Mn coating are not expressed in the micromass. (b) At 100–110 cm below surface (PPL)
clay coating and Fe–Mn oxides in a reducing and oxidizing mixed (Fe depletion) groundmass. Notice sub-vertical void along a dark brown
groundmass, both typical of the matrix. (c) At 245–250 cm (PPL) notice that accommodating and non-accommodating planes, as well as
grey and red-brown parts of the micromass, with organic impregnation and Fe–Mn oxides, are more easily differentiated. (d) At 365–370 cm
(PPL) red-brown colour and non-accommodating planes are both more dominant. (e) At PG2 layer 4, 68–74 cm depth (XPL) notice that the
(most likely silicious) cement is infilling voids that are cutting through the Mn–Fe oxide micromass, indicating its layer formation. (f) At
PG2 layer 7, 115–125 cm depth: similar to panel (e) in PPL. (g) At PG2 layer 8, 255–265 cm depth (XPL) notice the basalt grain in the upper
left part and limpid clay coating most of the larger grains and aggregates.
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Thus, the lower parts of the PG2 section were deposited
due to increased fluvial activity in response to the onset of
monsoonal rainfall after a drought period during the LGM.
For Lake Ashenge, Marshall et al. (2009) report increasing
precipitation due to the returning monsoon already at ca.
16.2 kyr BP, which is in very close agreement with our lu-
minescence data.

The sedimentological record from the riverbank of May
Gubedish (PG1), a tributary of May Agazin, indicates com-
pletely different fluvial dynamics. The base of this section
is formed by a ca. 50 cm thick package of coarse clasts
(Gh facies) indicating deposition in the channel under con-
ditions of high stream energy (Pazzaglia, 2013). The whole
overlying lithostratigraphic unit (Fm facies) is dominated by
silty-clayey deposits, which are in its upper layers horizon-
tally streaked with coarser, sandy-gravelly layers (Fl/Sh fa-
cies). Either these deposits are indicative of deposition in
a still water body (Reeves, 1968) or they correspond to al-
luvial deposits on a floodplain under very low stream en-
ergy (Pazzaglia, 2013). Deposition in a stagnant water body
would require a damming situation downstream of the sec-
tion, which could have been caused by a local rockfall or
landslide along the river banks (Korup, 2013). The outcrop-
ping sandstone of the Adigrat Formation along the steep
valley flanks and the apparent signs of ongoing gravita-
tional mass movements at the slopes affirm this assumption
(Fig. 2). Nyssen et al. (2006a) identified rockfall as an im-
portant geomorphic process in the northern Ethiopian high-
lands, most recently often triggered by livestock trampling.
At present, however, no geomorphological evidence of a nat-
ural damming situation due to mass movements could be ob-
served along the valley floor. The parent material of the silty-
clayey deposits is the weathered trap basalt, which makes
up a large part of the May Gubedish catchment (Fig. 2).
The repeated occurrence of thin (few centimetres) sand and
gravel layers may represent stronger rainfall events trigger-
ing slope wash and increased discharge (Cammeraat, 2013).
The large clasts, which at times are embedded into the silty-
clayey layers, were most likely laterally washed in from the
adjacent slopes. Within the silty-clayey parts of the section
signs of stratification are lacking due to pedoturbation caused
by dry–wet cycles starting from the surface and influenced
by a periodically alternating water table level. Consequently,
Fe reduction–oxidation cycles, organic decomposition, and
clay-bound swell-and-shrink processes were identified in the
micromorphological analyses. The process of argillipedotur-
bation, which causes intense turbation of the material, has
been described for Vertisols in Tigray before (Nyssen et
al., 2002, 2006a). However, the sand and gravel layers above
ca. 160 cm below surface have visibly not been incorporated
in the pedoturbation process. Thus, we conclude that pedo-
turbation has not affected the larger grains and in general has
mostly occurred prior to their deposition. Generally, planes
and other void types are smaller than the gravels and sands
in this unit and are not infilled by organic or Fe oxides as is

the case for much of the lower section or even a few of the
layers in this unit; i.e. gravel-sized pedomorphic organic fea-
tures may have been transported within a layer in the unit but
not between layers (Fig. 5).

For C-14 dating, bulk soil organic carbon was used and,
thus, should be treated with caution, as soil organic carbon
can be redeposited several times (e.g. old wood effect) and
re-precipitate or move vertically owing to pedo- or bioturba-
tion (Sloss et al., 2013). Our dates therefore should reflect a
general time frame for the accumulation of the PG1 profile
using different stratigraphic constraints to interpret the accu-
racy of these dates. A C-14 date from the lower part of this
profile (DAT5: 4603± 185 BP) reveals that the early accu-
mulation of the coarse, clast-rich Gh facies likely took place
during or after the mid-Holocene. From the fines of the Fm
facies, one sample was derived (DAT4: 1432± 85 BP), and
from the layered Fl/Sh facies, three samples for C-14 dat-
ing were extracted from gravel layers (DAT1: 1470± 65 BP;
DAT2: 3021±898 BP; DAT3: 2525±173 BP). Even includ-
ing an age inversion due to pedoturbation, these dates indi-
cate that sedimentation took place during the first millennium
BCE and the first millennium CE; thus, it temporally corre-
sponds to the Ethio-Sabaean and Aksumite material cultures
(Phillipson, 2012). An additional date was derived from a
sediment sample taken 5 m downstream of the PG 1 pro-
file (DAT6: 598± 53 BP) from silty-clayey deposits (Fm fa-
cies) at a depth of 30 cm, which represents a younger re-
accumulation of the May Gubedish, probably as a lower ter-
race segment. This age provides a frame for the incision of
the May Gubedish river into its infilled valley floor, forming
a river terrace that today forms the surface of PG1, which
consequently took place after 598± 53 BP. This is in agree-
ment with the conclusions of Lanckriet et al. (2015), who re-
port increased channel incision especially in recent and sub-
recent times due to strongly increased surface runoff as a re-
sult of strong deforestation. Two C-14 outliers are likely due
to syn- and post-depositional processes. Within the gravel
layer DAT2 was dated 500 years older than the 50 cm deeper
sample of DAT3 but with the error range of 898 years, over-
lapping with DAT3. However, one substantial outlier (DAT4)
within the well-pedoturbated material at 1 m below this unit
falls into the middle of the first millennium CE, still confirm-
ing the general age of the deposition to the late Holocene
but contradicting the three ages above. This C-14 outlier is
likely a result of roots activities or pedoturbation below the
horizontal gravel layer. The maximum age for the deposition
of the upper 180 cm of the PG1 section falls into the time
of or after the decline of the Aksumite Empire (ca. 1400–
1000 CE) (Phillipson, 2012), when the geomorphic activity
was high due to intensified agriculture and increasing defor-
estation under comparably drier climatic conditions (Fig. 6;
Lanckriet et al., 2015; Darbyshire et al., 2003; Machado et
al., 1998).
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Figure 6. Integration of our results in an environmental and cultural context of northern Ethiopia. 1: Moeyersons et al. (2006), Lamb et
al. (2007b), Umer et al. (2004). 2: Armitage et al. (2015). 3: this study and Lanckriet et al. (2015). 4: Bard et al. (2014), Fattovich (2012).

6 Conclusions

The environmental conditions on and around the Melazo
plateau were favourable during the time of the Ethio-Sabaean
settlement. This is also reflected in the findings of mon-
umental buildings from this period. The landscape of the
May Gubedish valley close to the Melazo archaeological site
probably looked different during the Ethio-Sabaean period
than today. The groundwater level was presumably higher,
and water in the valley was probably easier to access than
today due to less relief as May Gubedish was flowing at
a higher level than today in its own sediments at the val-
ley floor. Also the geological conditions appear favourable:
the omnipresent Adigrat Sandstone provides building mate-
rial, which is also used today for building walls and other
structures. The trap basalt, found in the inner part of the
Melazo plateau and the surrounding plateaus, provides fertile
soils. Beyond, the peninsula-like Melazo plateau has a strong
protective function as it is only easily accessible from the
east–northeast, while in all other directions steep scarps en-
close the plateau. The resulting large viewshed of the Melazo
plateau also had tactical advantages as it allowed visitors to
be recognized at an early stage. The landscape of the much
wider May Agazin valley, however, was probably rather sim-
ilar to most recent conditions. May Agazin like today was
a hindrance for traffic, and during rainy seasons the channel
could probably only be crossed at dedicated, and thus easy to
control, places.

Our study provides evidence for increased fluvial activity
in the May Agazin during the late Pleistocene, which is prob-
ably related to the re-occurrence of the monsoonal rainfall
after the LGM. In the May Gubedish valley, being a tribu-
tary to the valley of May Agazin, coarse fluvial sediments
indicating high-energy fluvial dynamics at the base of the
channel were deposited around the transition from the mid-
dle to late Holocene. During the Ethio-Sabaean and probably
early Aksumite period slow aggradation of the valley floor
started with most likely increasing depositional rates during
the late and post-Aksumite period. Since medieval or sub-
recent times the channel of May Gubedish incised into its
own valley floor sediments – exposing the sediments of PG1
and forming a terrace which today is used for an orchard.
These observations generally correlate with other studies on
geomorphic activity phases in Tigray.
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Appendix A

Table A1. Sedimentary analysis of selected depositional units in the PG1 and PG2 profiles. Grain sizes used are gravel (g), coarse sand (cs),
medium sand (ms), fine sand (fs), silt, and clay. Sediment grain size categories are based on laser grain size analysis, while mineral occurrence
is interpreted from XRD spectra. Micromass structure, mineral shapes and sizes (for those also visually identified), and pedo-features were
obtained through micromorphological observation.

Site Depth Unit Grain size and structure Dominant minerals Pedo-features
(cm) (ordered by abundance)

PG1 30 Young Clay. Weakly developed Quartz: sub-angular (ms-fs); kaolinite, Iron mottling.
accumulation sub-angular blocky and muscovite, and chlorite (silt-clay); Large accommodating

crumble porous peds feldspars (fs-silt); rosenhahnite planes and aggregates

65–70 I/IV Loam. Weakly developed Quartz (cs-fs, sub-rounded larger Iron mottling, organic
sub-angular blocky peds, grains to sub-angular smaller impregnation,
poor sorting, few grains), kaolinite, muscovite, Mn–Fe pseudomorphs
sub-horizontal and chlorite: mostly as coating (g-ms), planes
grain-supported layers (fs-clay); plagioclase feldspar
of g-cs-sized grains (fs); pyroxene: weathered

(cs-fs) very rare

75–79 I/IV Loam. Planes – ms sized Quartz (g-fs, sub-angular), kaolinite, Some planes are infilled by
in width. Moderately muscovite, and chlorite: mostly as the coarser material including
developed sub-angular coating (fs-clay); plagioclase aggregates and pseudomorphs
blocky peds, feldspar (fs); pyroxene: weathered
poor sorting (g-cs-fs) very rare

95–111 V Silty clay loam. Quartz mostly elliptic shaped (cs-fs); Iron mottling and organic
Sub-angular blocky peds, plagioclase feldspar and pyroxene: impregnation, accommodating
weakly developed in sub-angular to sub-rounded (fs); and non-accommodating planes.
a massive microstructure kaolinite, muscovite, and Voids are coated and some

chlorite: mostly as coating infilled by limpic clay and
(silt-clay); rosenhahnite Fe–Mn oxides. Cs-sized grains

are associated with planes

345–350 V/VI Silty loam. Weakly developed Quartz: sub-angular (ms-fs), Brown micromass with iron
peds with poor sorting and feldspar (fs-silt), kaolinite, mottling and organic impregnation.
open grain-supported structured muscovite, and chlorite (silt), Bioturbation is slightly more
cs-g grains at the lower possible rosenhahnite evident from the impregnation of
part of the groundmass oxides, and limpid clays feature

also along infilled channels

PG2 65–68 3 Loamy sand, blocky and Quartz: sub-rounded (cs-fs); Planar voids coated and filled
moderately developed peds basalt: sub-angular (g-cs); with clays or larger grains

clinopyroxene: sub-rounded (fs);
olivine: (silt) rare;
orthopyroxene: (fs) rare

68–74 4 Sandy loam, blocky in Quartz: sub-rounded (ms-fs); Cemented by amorphous silica.
a poorly to moderately clinopyroxene: sub-rounded (fs); Rare (g) size orthopyroxene
developed peds basalt: sub-angular (cs) rare grains with surrounding
structure constrained minerals (corona

texture) – geological feature

97–152 7 Loamy sand with structural Basalt: sub-rounded (g-ms); Clay coating on most of
and planar voids. pyroxene: sub-angular to the sand-sized grains.
Large grains (cs-g) sub-rounded (cs-fs); Many of the large grains
are crossing olivine: (ms-fs) rare; are aggregates. Mn–Fe oxide
sub-horizontally kaolinite, muscovite: nodules (pseudomorphs) are

coating (clay) also found along vertical
lines (cracks)

152–335 8 Sandy gravel dominant Quartz: sub-rounded (cs-fs); Three sub-units with g- and s-sized grains:
in open grain- pyroxene: sub-rounded to 1. in large voids,
supported structure sub-angular (ms-fs); 2. dominant clay-coating and

basalts: sub-rounded (g-ms) 3. combination of (1) and (2) Mn–Fe
oxides pseudomorphs (cs-ms)
and Fe mottling.
Depositional cycles
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