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Abstract: Micromorphological analysis using a petrographic microscope is one of the conventional methods to
characterise microfacies in rocks (sediments) and soils. This analysis of the composition and structure
observed in thin sections (TSs) yields seminal, but primarily qualitative, insights into their formation.
In this context, the following question arises: how can micromorphological features be measured,
classified, and particularly quantified to enable comparisons beyond the micro scale? With the Micro-
morphological Geographic Information System (MiGIS), we have developed a Python-based toolbox
for the open-source software QGIS 3, which offers a straightforward solution to digitally analyse mi-
cromorphological features in TSs. By using a flatbed scanner and (polarisation) film, high-resolution
red–green–blue (RGB) images can be captured in transmitted light (TL), cross-polarised light (XPL),
and reflected light (RL) mode. Merging these images in a multi-RGB raster, feature-specific image in-
formation (e.g. light refraction properties of minerals) can be combined in one data set. This provides
the basis for image classification with MiGIS. The MiGIS classification module uses the random for-
est algorithm and facilitates a semi-supervised (based on training areas) classification of the feature-
specific colour values (multi-RGB signatures). The resulting classification map shows the spatial dis-
tribution of thin section features and enables the quantification of groundmass, pore space, minerals,
or pedofeatures, such nodules being dominated by iron oxide and clay coatings. We demonstrate the
advantages and limitations of the method using TSs from a loess–palaeosol sequence in Rheindahlen
(Germany), which was previously studied using conventional micromorphological techniques. Given
the high colour variance within the feature classes, MiGIS appears well-suited for these samples, en-
abling the generation of accurate TS feature maps. Nevertheless, the classification accuracy can vary
due to the TS quality and the academic training level, in micromorphology and in terms of the classi-
fication process, when creating the training data. However, MiGIS offers the advantage of quantifying
micromorphological features and analysing their spatial distribution for entire TSs. This facilitates re-
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70 M. Zickel et al.: MiGIS: digital thin section analysis

producibility, visualisation of spatial relationships, and statistical comparisons of composition among
distinct samples (e.g. related sediment layers).

Kurzfassung: Die mikromorphologische Analyse mithilfe eines petrografischen Mikroskops gehört zu den konven-
tionellen Methoden um Mikrofazies in Gesteinen (Sedimenten) und Böden zu charakterisieren. Die
Analyse des Inhalts und der Struktur anhand von Dünnschliffen (TSs) liefert wegweisende, jedoch
größtenteils qualitative Daten zu deren Bildung. In diesem Zusammenhang stellt sich die Frage: Wie
können mikromorphologische Merkmale gemessen, klassifiziert und vor allem quantifiziert werden,
um Vergleiche über die Mikroskala hinaus zu ermöglichen? Mit dem Micromorphological Geographic
Information System (MiGIS) haben wir eine auf Python basierende Toolbox für die Open-Source-
Software QGIS entwickelt, die eine unkomplizierte Lösung bietet, um mikromorphologische Merk-
male (Features) in TSs digital zu analysieren. Durch die Verwendung eines Flachbettscanners und
(Polarisations-) Folie lassen sich hochauflösende RGB-Bilder im Durchlicht (TL), polarisierten Licht
(XPL) und reflektiertem Licht (RL) Modus aufgenehmen und verarbeiten. Durch die Zusammenfas-
sung dieser Aufnahmen in einem Multi-RGB Raster können dann Feature-spezifische Bildinformatio-
nen (z.B. Lichtbrechungseigenschaften von Mineralen) in einem Datensatz kombiniert werden. Dieser
bietet die Grundlage für die Bildklassifikation mit MiGIS. Das MiGS-Klassifikationsmodul nutzt den
Random Forest Algorithmus und ermöglicht eine halbüberwachte (auf Trainingsflächen basierende)
Klassifizierung der Feature-spezifischen Farbwerte (Multi-RGB-Signaturen). Daraus resultiert eine
Klassifikationskarte, welche die räumliche Verteilung der Features im Dünnschliff zeigt und eine
Quantifizierung von Grundmasse, Porenraum, Mineralen oder pedogenen Merkmalen (Pedofeatures)
wie Eisenoxidkonkretionen und Tonkutanen ermöglicht. Wir demonstrieren die Vorteile und Grenzen
der Methode anhand von TSs aus einer Löss-Paläosol-Sequenz in Rheindahlen (Deutschland), die
zuvor mit konventionellen mikromorphologischen Techniken untersucht wurde. Hier zeigt sich, unter
Beachtung der hohen Farbvarianz innerhalb der Feature-Klassen, dass MiGIS für diese Sedimente
gut geeignet ist und somit genaue TS-Feature Karten erstellt werden können. Die Klassifikation-
sgenauigkeit kann allerdings durch die TS-Qualität und den mikromorphologischen Kenntnisstand
bei der Erstellung der Trainingsdaten variieren. Im Allgemeinen bietet MiGIS jedoch den Vorteil,
dass mikromorphologische Merkmale quantifiziert und deren räumliche Verteilung für den gesamten
TS analysiert werden können. Dies ermöglicht eine Reproduzierbarkeit, Visualisierung räumlicher
Beziehungen und statistische Vergleiche der Zusammensetzung zwischen verschiedenen Proben (z.B.
aus ähnlichen Schichten).

1 Introduction

A common task in petrography, sedimentology, and soil sci-
ence is the microscopic characterisation of rocks (sediments)
or soils aiming to describe the overall composition, facies
type, or pedogenic features of the materials. This can pro-
vide valuable clues on their nature and formation. The analy-
sis is usually done under the optical microscope using polar-
isation techniques (i.e. a petrographic microscope) and thin
sections (TSs) prepared from the sample. While the princi-
pal optical techniques originate in petrography, the analytical
method has been further elaborated and widely used in soil
science and palaeopedology, where it is known as soil micro-
morphology (e.g. Bullock and International Society of Soil
Science, 1985; FitzPatrick, 2012; Stoops et al., 2018), and
more recently in sedimentology (van der Meer and Menzies,
2011) and archaeology (Canti and Huisman, 2015; Courty
et al., 1989; Nicosia and Stoops, 2017).

Principally, conventional micromorphological analysis
yields qualitative data on the size, shape, arrangement, and
count of pores, minerals, and organic matter in the sedi-
ment or soil groundmass. This also applies to the analysis
of pedofeatures, secondary accumulations that are diagnostic
for soil formation (Stoops, 2020). Various light path modes,
e.g. PPL (plane polarised light), XPL (cross-polarised light),
and OIL (oblique incident light), applied with a petrographic
microscope are indispensable to identify and distinguish par-
ticles in TSs by their specific light refraction properties (e.g.
FitzPatrick, 2012; Ligouis, 2017; Nesse, 2013). This pro-
cedure implies that fragmented, microscopic field-of-view
observations must be recombined after completion of the
TS analysis. In this concern, it is essential to follow ac-
curate documentation and classification guidelines, such as
the standards established by Georges Stoops (2020) for mi-
cromorphology. As a result, constituent (feature) quantities
and spatial relationships, which are important to detect pat-
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terns (microstructure, groundmass composition, inclusions,
pedofeature abundance, etc.), can be determined. This con-
ventional procedure allows very precise statements on sed-
iment or soil composition with regard to depositional and
post-sedimentary formation processes (e.g. Bullock and In-
ternational Society of Soil Science, 1985; FitzPatrick, 2012;
Stoops et al., 2018). However, the conventional approach is
laborious and requires intensive academic training. The same
applies to the point counting technique, which is a common
option to quantify micro-observations or to study spatial re-
lationships (Drees and Ransom, 1994; Pires de Lima et al.,
2020; Tang et al., 2020).

Recently, semi-quantitative approaches using standardised
forms (e.g. estimation tables) have been employed to quan-
tify micromorphological constituents, thereby enabling the
comparison of microfacies (Brönnimann et al., 2020; Lo
Russo et al., 2022). Nevertheless, expert analysis can be
subjective, and the standardisation of micromorphological
descriptions is still low (Stoops, 2020). Quantification and
spatial analysis are time-consuming, and interpretations are
difficult to reproduce, display, and discuss. Usually, trans-
parency requires a shared microscope session or workshops
to study the respective TSs (Shahack-Gross, 2015).

To deal with these challenges, various approaches have
already been developed involving the digitisation of TSs,
for example by using transmitted light (TL), cross-polarised
light (XPL), and reflected light (RL) flatbed scanning (Arpin
et al., 2002; Haaland et al., 2018) or microphotography mo-
saicking techniques (Sauzet et al., 2017). Also, attempts have
already been made to establish a microscopic information
system (MIS). Tarquini and Favalli (2010) developed such
a GIS (geographic information system)-based approach for
petrographic analysis. Concerning image classification algo-
rithms, in addition to image segmentation methods (Tarquini
and Favalli, 2010; Visalli et al., 2021), significant progress
has been made in the field of machine learning (ML) and
deep learning, especially for petrographic studies. The suc-
cessful determination of porosity and mineral composition
in rock TSs via the classification of microphotographs using,
for instance, DA (discriminant analysis), ANNs (artificial
neural networks), CNNs (convolutional neural networks),
support vector machine, and random forest algorithms has
already been demonstrated (Ghiasi-Freez et al., 2012; Naseri
and Rezaei Nasab, 2021; Rubo et al., 2019; Tang et al., 2020).
So far only microphotographs, small areas of sedimentolog-
ical TSs, have been promisingly classified using these ap-
proaches (Arnay et al., 2021), whereas, to our knowledge,
no advances have been made when it comes to the semi-
supervised classification of entire TSs using a combination
of TL, XPL, and RL red–green–blue (RGB) imagery. By as-
sessing TL, XPL, and RL information, micromorphological
constituents or features can be reliably determined (Stoops
et al., 2018). Referring to multispectral imagery in remote
sensing, gained extended spectral dimensions are beneficial
concerning the application of ML-based image classification

(Lillesand et al., 2015). However, this requires the processing
of large (high-resolution) data sets. GIS, such as the open-
source software QGIS 3, is designed to process extensive
data. It provides highly efficient image manipulation, clas-
sification algorithms, and the opportunity to analyse spatial
patterns. Especially at the macroscopic level spatial relation-
ships between features that are important for interpretations
are revealed in the TS.

Therefore, we developed the Micromorphological Geo-
graphic Information System (MiGIS) toolbox, a geoalgo-
rithm processing chain integrable in QGIS 3 (QGIS Develop-
ment Team, 2022a), which is tailored to handle TS imagery.
Our goal was a straightforward and reproducible workflow
(Fig. 1) which facilitates GIS integration (Fig. 1b), pre-
processing, and training for a random forest algorithm-based
semi-supervised classification, as well as accuracy assess-
ment and spatial class statistics (Fig. 1c).

As an auxiliary tool for the conventional approach de-
scribed above, it should enable the visualisation, quantifi-
cation, and analysis of spatial relationships of TS con-
stituents. The MiGIS toolbox consists of four Python pro-
cessing scripts, which can be easily imported to the QGIS
processing toolbox.

As a case study, we selected a well-described loess–
palaeosol sequence from Rheindahlen in Germany (Kehl
et al., 2024). The aim was to classify and quantify the pore
space and main micromorphological constituents: four dif-
ferent groundmass types (Gm); coarse constituents, such as
medium sand and fine gravel grains (Sg); clay granules (Cg);
charred organic material (Ch); and pedofeatures including
different clay coating types (Cc, Cci, Ccd) and iron hydrox-
ide (Fe)- and manganese oxide (Mn)-dominated constituents.
The methodological advantages of MiGIS are demonstrated
using a selection of TSs from Bt horizons.

2 Materials and methods

We composed a digital data set of 21 flatbed-scanned TSs
from a 6.5 m thick loess–palaeosol sequence sampled at a
former brickyard at Rheindahlen (Germany). The TSs were
prepared and analysed in stratigraphic order allowing ob-
servations on changes in the type and intensities of soil
formation with time. These have already been micromor-
phologically analysed in detail and described using con-
ventional methods in Kehl et al. (2024). The Rheindahlen
sediment sequence contains three different palaeosols char-
acterised by pedogenic illuviation of clay (Bt horizons),
which were interpreted to have formed during warmer phases
(i.e. interglacials) of the Middle and Late Quaternary. These
palaeosols are intercalated in diverse loess deposits that are
associated with colder and drier phases (glacials) in the past
(Kehl et al., 2024). Undisturbed Bt horizons typically con-
tain coatings of oriented clay minerals (clay coatings), whose
specifications and distribution are basically of micromor-
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Figure 1. Workflow diagram showing digital thin section (TS) analysis principles and main processing steps. TL: transmitted light; XPL:
cross-polarised light; RL: reflected light; CRS: coordinate reference system; ROI: region of interest.

phological interest because they are evidence of the pedo-
genic process of clay illuviation (Stoops, 2020; IUSS Work-
ing Group (WRB), 2022). From a micromorphological per-
spective, the samples contain a modest variation of particles,
microstructures, and pedofeatures, thus providing a suitable
input for our classification test series. The Rheindahlen loess
loam exhibits a distinct groundmass mineral composition,
featuring a preponderance of angular, spherical grains of silt-
sized quartz and feldspar, in addition to elongated mica par-
ticles. All TS data sets were classified with MiGIS and sta-
tistically evaluated. To illustrate the advantages of a digital
TS analysis in detail, a subset of three thin sections of the

above-mentioned Bt horizons was selected. TS A4 originates
from the modern Bt horizon sampled at a depth of 113 cm be-
low surface (b.s.), B7 was taken from a second Bt (Erkelenz
soil) at a depth of 305 cm b.s., and C5 belongs to the third
Bt (Rheindahlen soil) extracted from a depth of 524 cm b.s.
(Kehl et al., 2024). Since in some cases individual methods,
feature classifications, or phenomena are more illustrative in
other classified TSs from Rheindahlen, some of these addi-
tional results (Appendix B) appear in the figures.
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2.1 Micromorphological samples, analysis, and class
definitions

High-quality uncovered TSs, 60 mm× 80 mm large and
25 µm thick, were produced by Thomas Beckmann
(Schwülper-Lagesbüttel, Germany) involving the impregna-
tion of air-dried sediment blocks with polyester resin under
vacuum, hardening over several weeks, as well as cutting,
grinding, and polishing as described in Beckmann (1997).
Conventional micromorphological analysis (as well as the
determination and verification of training areas for the semi-
supervised image classification) was accomplished using a
polarisation microscope at magnifications of 12.5×, 25×,
100×, 200×, or 500×, as well as different illumination
techniques (PPL, XPL, and OIL). The micromorphological
description was carried out according to the protocol and
terminology of Stoops (2020). To differentiate between the
various clay coating types, appropriate terms suggested by
Brewer (1964) were used (Table 1). Features considered in
the semi-supervised TS image classification using the MiGIS
toolbox in this study are listed and described in Table 1. The
feature classes were established based on material screening
and conventional micromorphological analysis under the mi-
croscope. Corresponding results and interpretations are de-
scribed in detail in Kehl et al. (2024).

Pore space as observed in TSs under the microscope is
less than the total porosity within a sediment or soil horizon
due to geometry-related effects such as the Holmes effect or
wedging effects (Stoops, 2020). Usually, fine- to medium-
sized pore space cannot be detected under the microscope.
Indeed, it is assumed that the image classification approach
captures a random selection of larger pore cross sections
which results in a minimum pore space proportion.

Regarding the groundmass, the resolution limit (here
25 µm) resulting from the section thickness must be taken
into account. Since the fine fraction of the groundmass can-
not be differentiated due to the overlapping of the particles
(Stoops, 2020), we have specified different groundmass types
and accordingly created “mixed” training areas for each class
(Table 1).

Besides intact clay coatings (Cc), corresponding frag-
ments (clay papules) occur in the sequence and were in-
cluded in the same class. In addition the class “Fe” represents
iron hydroxide.

In general, the colour values of Fe and manganese (Mn)
pedofeatures can vary greatly (Vepraskas et al., 2018). In
our study, the iron hydroxides appear mainly reddish-brown,
whereas manganese-oxide-dominated features appear black
under PPL/TL (Stoops, 2020, p. 24). Therefore, we decided
to define two separate classes of Fe and Mn pedofeatures de-
pending on their colour under different illumination settings
(Table 1).

For each of the listed classes training data were collected
(Sect. 2.4.2). If a certain feature class listed in Table 1 was not

present in the TS, it was marked with “n/a” (not applicable)
in the tabular classification results (Appendix B).

2.2 Thin section imagery acquisition and pre-processing

All TSs were TL scanned (Fig. 1a) with the transmitted light
unit of Canon’s CanoScan 9000F flatbed scanner, which is a
relatively cost-efficient approach compared to professional
film scanner and microscopy equipment (Haaland et al.,
2018). Apart from test scans using 2400 dpi (Sect. 3.1), the
digital scanning resolution was set to 1200 dpi, which repre-
sents the maximum optical resolution of the Canon scanner.
The resulting RGB image has an approximate pixel ratio of
2801× 4194 and a pixel size of 0.02 mm× 0.02 mm.

The captured images of 56.02 mm× 83.88 mm and 24 bit
colour depth yield in an uncompressed JPG file size of ap-
proximately 8 MB. The identical scan resolution should be
applied to each TS (TL, XPL, and RL) image of the data set.
To produce XPL imagery, two orthogonally oriented polar-
isation films were positioned below and on top of the TS
(Arpin et al., 2002). To obtain surface reflection informa-
tion (RL), a black plastic sheet was added on top of the
section and scanned with the regular flatbed unit. A metal
frame (e.g. film holder for transmitted light scans) was ap-
plied to keep the TS in an exact position and orientation. If
necessary and after capturing the image, contrast and bright-
ness can be adjusted using image processing software. For
GIS integration, the TL, XPL, and RL images of each TS
must be stacked and supplied with spatial reference points
(i.e. crosses; Fig. 1b). To achieve this, we used the open-
source image processing software Inkscape. If the resolution
and dimensions of each scan are equal, the individual images
can be assigned to layers in Inkscape and accurately posi-
tioned on top of each other. However, no exact co-registration
of the images on pixel scale is required. An additional layer
contains the reference points, which needs to be activated be-
fore exporting each aligned image. Since the image proper-
ties do not have to be adjusted anymore and with regard to a
reduced file size, it is recommended to save the images with
8 bit colour depth before processing them in GIS. Concerning
the georeferencing process in QGIS, a metric CRS (coordi-
nate reference system) needs to be applied to the previously
aligned images. For instance, EPSG:32634 (WGS 84/UTM
zone 34N) was used in this study. This is mandatory to obtain
realistic metric dimensions for subsequent spatial analysis in
GIS. The spatial resolution of 0.02 mm× 0.02 mm (pixel) of
the imported images results in clearly visible single features
of a size down to approximately 0.1 mm. Below this size, the
TS constituents have fuzzy boundaries, but for instance fine
sand grains can still be distinguished due to their high inter-
ference colours.

Related templates for an Inkscape project and a QGIS
Georeferencer POINT data set are provided in the MiGIS
repository on GitHub (“Code and data availability” section).
These can be used for straightforward georeferencing of
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Table 1. Micromorphological features observed in thin sections (TSs) from the Rheindahlen loess–palaeosol sequence and class codes for
semi-supervised TS image classification.

Feature/type Class description Class ID

Pore space Different types of voids filled with embedding resin Po

Groundmass Mineral and organic material composing the matrix of the sediment, at Rheindahlen mainly composed of
silt with different shares of fine sand grains, clay minerals, and iron and manganese oxides

Type 1 Mainly silt grains, redoximorphic loss of iron and manganese oxides (“bleaching”), light beige
colour (PPL/TL)

Gm1

Type 2 Mainly silt grains, faint staining due to iron/manganese oxides, medium beige colour (PPL/TL) Gm2

Type 3 Mainly silt grains, increased staining due to iron/manganese oxide and clay content, strong
contrast to the surrounding lighter groundmass, dark beige to brown colour (PPL/TL)

Gm3

Type 4 Lenses of pure silt Gm4

Type 5 Mainly silt grains, faint staining due to iron/manganese oxides and increased clay content,
brown colour under PPL/TL

Gm5

Sand and gravel Medium sand to fine gravel-sized quartz, feldspar, and quartzite grains Sg
grains

Clay granules Sand-sized aggregates mainly consisting of clay Cg

Charred organic Charcoal fragments and charred plant material Ch
material

Pedofeatures Group of features indicative of soil formation

Clay coatings Limpid intrusive/matrix argillan pedofeature: coated voids, grains, or aggregates, also as clay
papules in the matrix

Cc

Impure clay Intrusive/matrix silt banded argillan pedofeature: coated voids, grains, or aggregates Cci
coatings

Dark clay coatings Intrusive/matrix ferri-argillan pedofeature: coated voids, grains, or aggregates Ccd

Iron hydroxide Nodules, coatings and diffuse impregnations: brown-yellow to reddish-brown colour (PPL/TL),
yellowish-green/black colour, and dull or metallic luster (OIL)

Fe

Manganese oxides Nodules, coatings, and diffuse impregnations: black colour (PPL/TL), black colour and dull
luster (OIL)

Mn

60 mm× 80 mm TS scans with 1200 dpi resolution. Also, de-
tailed instructions on how to stack images and spatial refer-
encing are accessible there.

2.3 Semi-supervised classification of thin section
imagery

ML algorithm-based semi-supervised image classification is
often used to process remote sensing data, e.g. to create land
surface models and other remote sensing products. Using en-
hanced multispectral information increases the identification
accuracy of different surface types, for instance bare soil ver-
sus grassland (Lillesand et al., 2015). The expanded spectral
data dimension which provides feature-specific spectral sig-
natures enables the classifier to assign pixels with specific
values to discrete classes. MiGIS follows a similar approach
by using bundled RGB (red–green–blue) information (colour

depth) from the TL, XPL, and RL RGB bands, which are
composed in a multi-band raster. This raster image thus con-
tains 3 times as much information per pixel as a single image.
With only three values (simple RGB image) of, for exam-
ple, a single TL image, it is likely that the values of different
features are too similar in the majority of the channels for a
successful division into classes. The extended information in
the multi-band raster, on the other hand, allows a clear as-
signment of a multi-RGB signature for the different features.
In Fig. 2 this principle is illustrated by randomly selected
single-pixel values for different feature classes.

To assign pixels to predefined classes (e.g. pore space,
clay coating, or manganese) the random forest algorithm
needs to be trained by providing a set of regions of interest
(ROIs) which cover representative features (pixels) for each
class. Based on this data set and using a certain classification
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Figure 2. Random single-pixel values for different abundant ma-
terials in sediment thin sections (TSs) captured from TS A4. The
“signatures” of the features are illustrated by artificial lines between
the measured pixel values to highlight differences.

scheme, in this case a random forest, the algorithm is able
to assign each pixel of the multi-band raster to one of the
specified classes.

The implementation of the “Dzetsaka Qgis classification
plugin” by Karasiak (2016) in MiGIS enables the use of the
random forest classifier of the scikit-learn 1.0.1 Python pack-
age (Pedregosa et al., 2011; Scikit-learn developers, 2007–
2023) in QGIS 3. The application of feature importance prop-
erties and averaging multiple predictions makes the random
forest a robust learning method. By default, a fixed number of
100 trees is set, which proved to be a reasonable size to pre-
vent overfitting (Breimann, 2001; Rubo et al., 2019). During
the construction each tree is split at every internal node using
the square root of the number of features (n):

max_features=
√

(n_features). (1)

The features are determined and randomly selected from the
training data (n_features): the pixel values defined by the
ROIs (regions of interest). The training data set should there-
fore have a reasonable size. The size depends on the indi-
vidual data set properties and the desired class number, and
there is no standard for this. Nevertheless, it should be taken
into account that oversizing can also have negative effects
because it will prevent the random forest from learning. The
number of samples doubles in each tree level, which results
in increased computing time and a fuzzy classification result
(Breimann, 2001; Pedregosa et al., 2011; Scikit-learn devel-
opers, 2007–2023).

2.4 MiGIS toolbox

Within the toolbox several automated processing steps are
covered, ranging from the creation of a cropped multi-band
raster, random forest-based image classification, and calcu-
lation of class statistics to the accuracy assessment. Orig-
inally, MiGIS was composed using QGIS Graphical Mod-
eler (QGIS Development Team, 2022b). Adaptions and ex-
tensions of the processing chain have been carried out in

Table 2. MiGIS processing steps and related time expenditure per
sample (Intel i7 processor, 32 GB RAM).

Processing step Time span
(approx.)

Total (scan inclusive) 1.5–2.5 h

Familiarisation with the software 0.5–1 h

Preparation (georeferencing, create
multi-RGB raster and training data)

0.5 h

MiGIS computation total 10 min

1200 dpi classification 7 min

2400 dpi classification 8 min

Python. The workflow diagram in Fig. 1 illustrates process-
ing steps and the basic principles to apply the presented
method. Detailed guidance is available in the MiGIS repos-
itory on GitHub (“Code and data availability” section). The
four available MiGIS scripts concatenate QGIS 3 (QGIS De-
velopment Team, 2022a) and GDAL (GDAL & OGR con-
tributors, 2022) geoalgorithms (both available through the
official QGIS 3 repository) in combination with image clas-
sification algorithms compiled by Karasiak (2016) within the
Dzetsaka Qgis classification plugin. To take advantage of the
random forest algorithm in MiGIS the scikit-learn Python
package needs to be installed via the QGIS OSGeo4W shell
(Windows systems) beforehand (“Code and data availabil-
ity” section). Detailed references of the applied algorithms
are provided in Appendix A.

In terms of processing time, the total effort of 1.5 to 2.5 h
per TS (Table 2) can be considerably reduced after becom-
ing familiar with the software and the various preparation
steps. It should be emphasised that digital processing does
not replace detailed micromorphological analysis under any
circumstance. Instead, it serves as a tool to enhance clas-
sical micromorphological analysis with quantitative, statis-
tically viable data. Simultaneously, it offers a convenient
method for feature mapping, a capability not found in semi-
quantitative approaches such as point-counting (Drees and
Ransom, 1994; Murphy et al., 1977) or comparison with es-
timation charts. Therefore, it significantly improves the pre-
sentation and archiving of collected data in a sustainable and
illustrative manner.

2.4.1 Pre-processing georeferenced thin section images

A cropped multi-band raster, containing the target classifica-
tion area of the TS (sample section) and multi-RGB infor-
mation of the TL, XPL, and RL bands, is the centrepiece for
a successful classification of micromorphological features in
TSs. The tool “MiGIS 1 preprocess TS images” (“Code and
data availability” section) facilitates the creation of a multi-
band raster with six bands (TL and XPL RGB image) or nine
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bands (TL, XPL, and RL RGB image). The resulting raster
data set can be further refined by clipping it to the extent
of a custom vector polygon layer (see Appendix A). Usu-
ally, this is the part of the glass slide covered by the sample.
Gaps, such as processing artefacts (e.g. drying cracks, label
section), should be omitted from the polygon area (QGIS De-
velopment Team, 2022b). In this way, irrelevant image parts
can be excluded to obtain precise spatial statistics.

2.4.2 The classification model

In combination with microscopic analysis, the cropped
multi-band raster is examined and ROI polygons (separate
vector data set for training) are set where they cover specific
TS constituents (features), exemplary for each target class
(Sect. 2.1, Table 1). As an input for the tool “MiGIS 2.1
train algorithm”, each ROI vector polygon must include an
ID (identifier value) and must be assigned to a user-defined
class by a unique numerical value. Also, class descriptions
(label) can be set.

Every classification process requires at least two classes,
each with a minimum of one ROI polygon. The sum of ROI
polygons of a specific class determine the number of pix-
els used to train the random forest algorithm on the spe-
cific class. In our study the ROIs covered a total number of
approximately 60–1800 pixels per class to test the optimal
training size. After gaining some experience with the mate-
rial, we were able to lower the ROI number per class to about
14 with about 60 pixels each. Also, the appropriate training
data size depends on the TS data set (Sect. 2.3). If the feature
variation is high or shows increased similarity, the sampling
should be increased (e.g. more ROIs per class). In most cases
in the analysis, all feature classes are of equal importance
because the aim is to determine overall rock or soil composi-
tion and structure. To prevent under- or overfitting, each class
training set should include an approximately equal number
of pixels. By running the tool MiGIS 2.1, which is based
on the Dzetsaka QGIS classification plugin (Karasiak, 2016),
the generated training data set is applied to the cropped TS
multi-band raster, which results in the construction of a ran-
dom forest (Sect. 2.3) classification model.

2.4.3 Optional training data evaluation

Misclassifications may occur where pixel counts of a spe-
cific class are too low or the variation in values per class
is too high. Using the MiGIS 2.2 tool offers a straightfor-
ward option to evaluate the training data set’s validity. Based
on a spatial query using the ROI geometries, class value
bandwidth can be assessed before running the classifica-
tion and prediction. The tool creates boxplot diagrams out
of zonal statistics derived from the multi-band raster (TL–
XPL–RL image). The input ROI zones provide information
about the pixel value range (mean ROI value) per class and
for each raster band. Also, class standard deviation is dis-

played, which helps to identify outliers (Fig. 3). Accord-
ingly, the class width can be narrowed down by adjusting
non-representative ROIs that cause values outside the class
range (Fig. 3).

2.4.4 Classification, accuracy, and spatial analysis

By running “MiGIS 3 classification”, the classification map
(Fig. 1) is generated based on the random forest classifica-
tion model processed in MiGIS 2.1, and the classification ac-
curacy can be assessed (Sect. 3.1) as an indispensable part
of the accuracy assessment (Congalton and Green, 2019).
This step requires an independently collected ROI reference
data set. In remote sensing analysis this would correspond
to ground data (field reference). In MiGIS we use the same
vector format ROI data set (Sect. 2.4.2) as for the training.
In addition, our reference data sets had the same size as the
training data sets to avoid a bias due to different weights.
With this second ROI data set, reference values for the in-
dividual classes are collected and compared to the classifica-
tion result. Since our case study was conducted with a modest
number of fairly well distinguishable materials and classes,
the same processor created the reference data set.

Using the classified and the reference data, a confusion
matrix can be calculated and classification accuracy statis-
tics can be derived. The reference data are represented by the
columns and the classification result by the rows. Summing
all correctly classified pixels (c) divided by the total number
of classified pixels (t), the overall accuracy (Eq. 2) indicates
the percentage of all pixels that were correctly classified.

Overall accuracy=
cn

tn
× 100 (2)

Producer’s accuracy=
crn
trn
× 100 (3)

User’s accuracy=
ccn
tcn
× 100 (4)

For Eqs. (2), (3), and (4), c is sum of all correctly classified
pixels, t is total pixel count of classified pixels, cr is correctly
classified pixels in reference data (per class), tr is the sum
of all classified pixels in reference data (per class), cc is the
correctly classified pixel in classified data (per class), and tc
is the sum of all classified pixels in classified data (per class).

The producer’s accuracy (Eq. 3) indicates what percent-
age of the respective class areas was correctly identified as
such. The user’s accuracy (Eq. 4), on the other hand, shows
what percentage of the areas assigned to a class is actually
part of that class “at ground level” (Congalton and Green,
2019). This allows us to distinguish whether a misclassifi-
cation (i.e. confusion) occurs due to the training data being
inaccurate or because very similar colour properties of two
classes evoke increased confusion.

Spatial statistics can be derived from the classification
map. If the classification was applied to a cropped image
(see Sect. 2.4.1), also the pore space can be quantified. If
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Figure 3. MiGIS integrated ROI assessment illustrates training data set validity: class value ranges and standard deviation for each of the
RL, TL, and XPL RGB bands 1–9. Data of TS B7 imagery.

not, the glass slide rim around the section area would also
be included in the pore space’s area quantification. Based
on the classification map MiGIS 3 calculates feature class-
based spatial statistics, which enables the analysis of relative
feature quantities in the TS, such as the abundance of a cer-
tain feature (e.g. clay coatings). In addition to an output table
of pixel areas per class, this can be optionally visualised by
running an implemented bar plot function. The classification
map itself can be used for further studying distribution pat-
terns in GIS. Classes of interest can be highlighted in colour,
whereas other classes can be excluded from the visualisa-
tion (see Appendix C1). Such selective visualisations can be
used, for example, to illustrate the distribution of diagnos-
tic features. These derivate maps can easily be exported as
scaled image files.

3 Results

The semi-supervised image classification with MiGIS
yielded 21 classification maps displaying the distribution of
classified features (Sect. 2.1, Table 1) in each TS. Spatial
statistics and accuracy assessment results for all TSs of the
Rheindahlen sequence are summarised in Appendix B. In

Sect. 3.2 we will describe the produced classification maps
and spatial statistics of three selected TSs – A4, B7, and C5
(Appendix B) – originating from different Bt horizons of the
Rheindahlen sequence (Kehl et al., 2024). This serves to il-
lustrate the classification performance by means of typical
micromorphological features, such as pore space (Po), dif-
ferent groundmass types (Gm1/Gm2), quartz sand and gravel
grains (Sg), clay coatings (Cc), dark clay coatings (Ccd), iron
hydroxide (Fe), and manganese oxides (Mn) pedofeatures. In
the following Sect. 3.1, we will describe the methodical out-
come (Figs. 4 and 5) and experimental results, conducted to
find the most appropriate parameter settings for MiGIS.

3.1 MiGIS classification performance

A detailed examination of Fig. 4 demonstrates that fine lin-
ear basic distribution patterns, indicative of disparities in
groundmass composition, can be reliably detected, as well as
pores, clay coatings, medium to coarse sand and fine gravel
grains (quartz), iron hydroxide, and manganese oxide ped-
ofeatures. This outcome underscores the great performance,
especially when looking at the clear delimitation of poly-
crystalline quartz grains from the groundmass and the dis-
tinction of finest layer beddings. However, in A7 finer pores
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Figure 4. Details of selected classification results (Class. map) compared to captures of the transmitted (TL), cross-polarised (XPL), and
reflected light (RL) scans of B2: linear basic distribution pattern; A7 (top): clay coating in a vugh; A4: coarse sand grain; A7 (bottom): orthic
manganese oxide and iron hydroxide nodule.

Figure 5. Confusion matrices for the classification examples of TS A4 with an overall accuracy of 100 %, B7 with an overall accuracy of
97 %, and C5 with an overall accuracy of 87 %.
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are wrongly determined, which may have an influence on the
overall porosity; A4 also shows that parts of the sand grain
are not recognised, but fine pores are identified as quartz.

Nevertheless, the figure also illustrates the occurrence of
misclassifications, especially of fine constituents of the ma-
trix. In the results of TS A7, very fine pores were sometimes
classified as groundmass. In A4, however, some small quartz
crystals as well as small parts of the larger grain in the mid-
dle seem to have been classified as part of the groundmass
(Fig. 4).

Examining the classification accuracy (Fig. 5), it must be
considered that B7 was one of the first TS data sets to be
classified and C5 one of the last. Note that the confusion ma-
trix of B7 has relatively high pixel counts, and that of A4
is medium and that of C5 is relatively low (Fig. 5). This
is due to increased confidence in the selection of training
and reference data during the test series (Sect. 2.4.2). While
the classification of TS A4 achieved an overall accuracy of
100 %, it reaches 97 % accuracy for the classification of TS
B7. TS C5 achieves an overall accuracy of only 87 % (Fig. 5
and Appendix B). Comparing all PA values (producer’s ac-
curacy) indicates that the classifier exhibited varying accu-
racy in identifying the targeted feature classes (Appendix B).
The same applies for the UA (user’s accuracy): the train-
ing data accuracy varies between classes. Pore space (Po),
medium to coarse sand to fine gravel (Sg), and manganese
oxide (Mn) could be identified with a precision of 100 %,
whereas Groundmass 1 (Gm1), Groundmass 2 (Gm2), and
clay coatings (Cc) indicate confusion in some classification
runs: Gm1 only reaches 53 % PA in C5, Gm2 reaches be-
tween 98 and 89 % in PA and 97 %–80 % in UA, and the class
Cc in B7 achieved only 94 % PA (Appendix B). Apart from
this, all PA and UA values for these classes amount to 100 %.
Nevertheless, only about half of Gm1 in TS C5 could be
correctly identified (Fig. 5). In contrast, the iron-hydroxide-
enriched clay coatings (Ccd) in C5 could be identified 100 %
of the time. Iron hydroxide (Fe) and class Cc could generally
be identified very well, apart from minor confusion regard-
ing Gm2 and Mn in B7. The user’s accuracy (UA) assess-
ment indicates a similar pattern to the PA. The classes Po,
Sg, and Mn, with a slight variation for Mn in TS B7 (UA:
99 %), are indeed these features as well. Also, in the classes
Cc and Ccd, all targeted features can be assigned to the dif-
ferent clay coating types. However, some confusion occurs
in the classification of Gm1, Gm2, and Fe in TS B7 and C5.
Nevertheless, Fe could also be assigned 100 % of the time
in TS A4 and B7. The Fe UA value for TS C5, on the other
hand, indicates only a very low accuracy of about 25 % for
this class.

A comparison of the classified feature areas and class ac-
curacies of a 1200 dpi and a 2400 dpi scanned data set shows
no big differences with regard to the classified feature area. A
maximum deviation of 4.8 % in area coverage was observed
in class Gm1 (Fig. 6). Indeed, no significant difference in the
effective optical image resolution could be observed in direct

comparison of the images, whereas there are few discrepan-
cies when comparing the producer’s and user’s accuracy of
the classes.

We further tested whether a classification model trained on
one TS data set can be applied to another data set (Fig. 7).

For this purpose, we selected two TSs with maximum
classification “overall accuracy” and a similar composition
(i.e. with the same feature classes). The sections C7 and C8
were classified once again with the opposite classification
model, and the results were compared. It can be seen that
the class areas calculated from these differ significantly in
most cases (Fig. 7). This suggests that the classes in the clas-
sification models of C7 and C8 are defined by divergent pixel
values. Accordingly the multi-RGB signatures differ.

3.2 Digital micromorphological results

All recorded micromorphological features of the different Bt
horizons in Rheindahlen are described in detail in Kehl et al.
(2024). Here we focus on the micromorphological implica-
tions of the classification result. The visual comparison of
the classification maps in Fig. 8 facilitates the identification
of distinct differences in the microstructure of the selected
TSs.

In A4, vughs, many large channels, and chambers are vis-
ible. In contrast, these are smaller and less frequent in B7.
Fine planar voids associated with the (sub-)angular blocky
microstructure, on the other hand, appear particularly well.
These are also found in C5 along with a few channels. In
terms of the pore space area, TS B7 and C5 have moderate
values between 3.4 % and 2.8 %. In A4, a greater pore space
area of 5 % (Po, Fig. 9) indicates increased porosity.

In total five different groundmass types were distinguished
in all TSs, and Groundmass 1 (Gm1) and Groundmass 2
(Gm2) are present in the three selected TSs. Qualitative anal-
ysis of these two groundmass types indicates that the lighter-
coloured (bleached) areas represented by Gm1 are charac-
terised by a decrease in the concentration of iron hydrox-
ide and manganese oxides. In contrast the darker-coloured
Gm2 shows an increase in diffusely distributed iron hydrox-
ide. The area ratio of Gm1 and Gm2 is approximately 1 : 2,
with values between approximately 25 % (A4 and B7) and
35 % (C5) for Gm1 and values of approximately 57 % (C5),
58 % (B7), and 63 % (A4) for Gm2 (Fig. 9). It demonstrates
that the two upper Bt horizons reveal a similar groundmass
distribution pattern, whereas the Bt of C5 has a higher frac-
tion of bleached zones. However, the PA score is compar-
atively low for the class Gm1 in the C5 data set (Fig. 9).
The microstructure becomes particularly clear in the sepa-
rate map representation of the corresponding feature class
(Appendix C1). These Bt horizons are characterised by sub-
angular blocky (A4 and B7) to angular blocky or weakly de-
veloped platy microstructures (C5), with locally small sub-
angular blocky peds with rounded shapes. The subangular
blocky microstructure appears especially well in the classifi-
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Figure 6. Comparison of classified area (CA) proportions and class accuracy parameter (overall, producer’s (PA), and user’s (UA) accuracy)
for thin section (TS) C5, scanned with 1200 and 2400 dpi resolution (data: Appendix B).

cation map of B7 (Fig. 8). Additionally, A4 is one of a few
sections of the sequence that contains medium to coarse sand
to fine gravel grains whose distribution in the groundmass is
visible in the classification map (Fig. 8).

A comparison of all classified pedofeatures indicates dis-
tinct spatial distribution patterns, especially when looking at
clay coating proportions (Appendix B). These are particu-
larly frequent in Bt horizon TSs from the sequence but are
also detected in non-Bt horizons. Mostly they include limpid
and occasionally layered slightly impure clay coatings (Cc).
They are found in pores, on aggregates, or as fragments (clay
papules) in the groundmass. In A4 (3.3 %) and C5 (2.7 %) the
proportion is increased. Here mostly intact clay coatings are
found, but the amount is low in comparison to the classifica-
tion results of B7 (8 %). However, the classification map of
B7 emphasises a different pattern which links the increased
Cc proportion to a high number of clay papules in the matrix.

In contrast, class Ccd, which includes dark clay coatings
(enriched with iron hydroxide), is unique for C5 and is rep-

resented with 0.2 %. The Fe proportion in C5 is slightly in-
creased (2.0 %), but the manganese oxide proportion is com-
paratively scarce. However, the UA score is comparatively
low for the Fe class (Fig. 9). Even though there is little iron
hydroxide in A4, there is a comparatively high proportion of
manganese oxide (1.3 %). With an area fraction of 2.8 %, iron
hydroxide is very abundant in B7, compared to manganese
oxide amounting to 1.2 %.

4 Discussion

4.1 Methodological implications of MiGIS

At a first glance, it can be observed that all feature classes can
effectively be distinguished by the classifier (Figs. 4, 5, and 9
and Appendix C1). The random forest algorithm proves to be
a suitable machine learning method, proficient in handling an
expanded number of classes efficiently. Such high class num-
bers are usually necessary in micromorphology to encompass
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Figure 7. Comparison of class area proportions derived from results based on a classification model trained on the same thin section (TS)
versus opposite TS. Note the various y-axis scale ranges to ensure the illustration of relative differences within the classes.

internal class variations and the irregular occurrence of fea-
tures in TSs. Rubo et al. (2019) achieved similarly good re-
sults when comparing mineralogical and porosity classifica-
tion model performance of random forest and artificial neural
networks. In addition, limiting the trees to a minimum of 100
was considered to fit this variety and proved to perform well
(Rubo et al., 2019).

The overall accuracy of the most imprecise classification
result of C5, which was 87 %, achieved satisfactory accu-
racy with regard to established accuracy standards (Anderson
et al., 1976). However, in remote sensing analysis, classifica-
tion results can be affected by atmospheric effects, such as
diffuse radiation or clouds, in the input data (Lillesand et al.,
2015; Whitcraft et al., 2015). In contrast, we profit from lab-
oratory conditions for the classification of TSs, which in-
creases classification accuracy (Rubo et al., 2019). Neverthe-
less, a certain “cloudiness” or level of disturbance cannot be
neglected. Depending on the TS quality, air bubbles, cracks,
etc. influence the classification results.

The classification result details in Fig. 4 illustrate the high
accuracy that can be achieved using the random forest al-
gorithm to classify TS scans. By combining the information

from three distinct input images (TL, XPL, RL) in the multi-
RGB data set, it becomes possible to differentiate features
that share similar colour properties in one or even two of
the single images. This approach is particularly advantageous
when it comes to distinguishing between the Fe and Mn
classes. We interpret these classes as predominantly consist-
ing of either iron hydroxides (Fe) or manganese oxides (Mn)
(Table 1). Depending on the iron oxide content, both can ap-
pear blackish in TL/PPL. Indeed, iron hydroxide has a red-
dish to brown colour when observed under RL, while man-
ganese oxide appears black as well. The same principle ap-
plies to quartz and pore space, which are whitish in TL/PPL,
but in XPL quartz shows specific interference colours, and
pores are isotropic and hence appear black. (Fig. 4). How-
ever, in the case of predominantly occurring fine sand, it is
possible that a significant number of the small quartz grains
might be oriented in an extinction position without being
realised. In this scenario, the probability of confusion with
pore space increases due to the overlapping colour values of
both entities in XPL. In the RL image, colour distinctions
between the two classes are noticeable, likely contributing to
the relatively successful classification. Also confusion with
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Figure 8. Input and output of the image classification of thin section (TS) A4, B7, and C5, which originate from Bt horizons of the Rhein-
dahlen sequence. The classification maps on the right combine the multi-RGB information of the TL, XPL, and RL input images and visualise
the spatial distribution patterns of the micromorphological features.

the groundmass occurs that is not detected by the accuracy
assessment (Fig. 5). This is due to a certain amount of quartz
contained in the groundmass. It is conceivable that the clas-
sification process might lead to an underestimation of quartz
particles in the sand fraction. Consequently, the proportion of
sand particles should be considered indicative of minimum
values. In contrast, if the interference colours of various oc-
curring mineral grains differ enough, first classification at-
tempts of TS from other sites show that even small mineral
grains can be reliably identified. For instance, this applies to
carbonates (e.g. limestone) or mica.

Concerning the producer’s accuracy, whereas features
which are predominantly monochrome (e.g. Po and Mn)
reached 100 % identification accuracy, there were minor mis-
classifications in other classes with increased colour or in-
tensity variation. A confusion of iron hydroxide (Fe) and
Groundmass 2 (Gm2) can be related to the fact that iron hy-
droxide particles are also present in Gm2 (Fig. 4). This il-
lustrates the difficulty of the classifier to properly separate

these two classes. Nevertheless, an acceptable classification
accuracy of those classes can be yielded, which allows us to
estimate the relative distribution of iron hydroxide in the TS.

Regarding the user’s accuracy, iron hydroxide could also
be assigned 100 % within the classifications of A4 and B7.
But the UA for the TS C5, on the other hand, reaches only a
very low accuracy of about 25 %. There Fe was largely con-
fused with Gm1, which basically means that some of the cre-
ated Fe class ROIs must contain pixels that are actually part
of the class Gm1. Hence, this training data input should be
adjusted.

Initially it is likely that some confusion occurs between
feature classes with high similarity in colour such as iron hy-
droxide and manganese oxides. However, the MiGIS 2.2 tool
(Sect. 2.4.3) deals with this issue by visualising the ROI pixel
value range per class and band. By a brief examination of the
automatically produced boxplot diagrams, it can be investi-
gated whether some ROI positions or their quantity within
the respective class would have to be adjusted to improve the

E&G Quaternary Sci. J., 73, 69–93, 2024 https://doi.org/10.5194/egqsj-73-69-2024



M. Zickel et al.: MiGIS: digital thin section analysis 83

Figure 9. Results of the class-based area assessment for thin section A4, B7, and C5. Po: pore space; Gm1: Groundmass 1 (bleached); Gm2:
Groundmass 2 (iron hydroxide abundance); Sg: medium and coarse sand and fine gravel; Cc: clay coatings; Ccd: dark clay coatings; Fe: iron
hydroxide concretions; Mn: manganese oxide concretions; PA: producer’s accuracy; UA: user’s accuracy (data: Appendix B).

classification performance (Sect. 2.4.4). Moreover, it is im-
portant to consider all of the presented accuracy assessment
parameters (i.e. confusion matrix) when assessing the classi-
fication result (Fig. 5).

Smaller particles or pedofeatures, such as thin clay coat-
ings, offer few opportunities for setting sufficient training ar-
eas and can therefore also cause misclassifications due to the
lack of adequate class size and variation.

In this concern, the application of object-based image
analysis (OBIA) instead of colour information classifica-
tion only could represent a further reasonable adaption, as it
combines pixel value classification with segmentation steps
(Thierion and Lang, 2018; Visalli et al., 2021). Also, this
could be helpful to study geometrical properties of particles,
such as single grain rounding and void geometry assessment.

At this stage, we can demonstrate that a classification
model trained and applied on an individual TS performs well.
However, overfitting can be observed when transferring a
created model to another data set. Among others, a successful
classification is evoked by representative training data (Vap-
nik, 2000). Since the colour values of the features between
TSs can differ, depending on the type of manufacture, sam-
ple, and imagery, the learning of one model might not cover
the variation in another TS data set. To avoid model over-
fitting (Breimann, 2001), more multi-RGB data (i.e. signa-
tures) could be collected from common materials (e.g. fea-
tures) in TSs. Intensified training on several TS data sets
could be a solution to create representative training data to
classify TSs produced using a similar resin, technique, and
thickness. Such a combined classification model would pos-
sibly increase the classification robustness (Breimann, 2001;
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Vapnik, 2000). In this regard, providing multi-RGB signa-
tures of different features within the application could prove
to be supportive for the creation of representative training
data. Similar offers exist for remote sensing products, for
example provided by the USGS (Kokaly et al., 2017). Nev-
ertheless, the reproducibility of feature signatures based on
multi-RGB imagery in terms of increased variation concern-
ing differing colour values between TS images still needs to
be investigated. However, our test results (Fig. 7) suggest that
great effort is needed to follow this approach, since each TS
is a unique product, which implies individual quality charac-
teristics.

In general, a successful classification requires accurately
produced TSs. Deviations caused by preparation, such as
varying section thickness and embedding resin mixes, air
bubbles, and other artefacts, might have a negative effect on
the classification result. This is due to the related increased
variation in colour of the constituents (i.e. mineral interfer-
ence colours). Also this limits the transfer of classification
models, models which were trained on different TSs (Rubo
et al., 2019) and applied to an “untrained” TS data set. There-
fore, the application of ML models has so far been broadly
limited to the specific TS data set (Sect. 3.1, Fig. 7). At the
moment we suggest constructing separate classification mod-
els for each thin section.

Apart from preparation quality, classification errors can
also be the consequence of discrepancies in the image ac-
quisition (e.g. skewed images, image distortions). For this
study, a flatbed scanner with transmitted light imaging was
used. This has the advantage that diffuse ambient radiation is
greatly minimised by the closed scanner lid. In contrast, such
problems can occur when capturing sections with a single-
lens reflex (SLR) camera, in addition to an increased prob-
ability of distortion due to the curved lens (Carpentier and
Vandermeulen, 2016).

Nevertheless, light refraction effects can occur during
scanning due to the highly reflective glass slide (Sect. 2.1).
At the sample section border they can be excluded during
pre-processing in MiGIS 1 (Sect. 2.4.1). Still, light refrac-
tion effects can occur at the margins of the pore space. In
these transition areas, the embedding resin may not be evenly
distributed, which can amplify such effects and consequently
cause misclassification. This could possibly be corrected by
post-processing through the application of filter algorithms
to remove interfering pixel values, for instance by Gaussian
smoothing. A similar approach was implemented in the study
of Tang et al. (2020).

In general, optical resolution (i.e. spatial resolution) is a
limiting factor because this determines the minimum size
of detectable micromorphological constituents. The Canon
scanner used for this study should be able to produce high-
resolution scans of up to 9600 dpi. TS scans of high quality
are already obtained at a resolution of 1200 dpi. TS scans
taken at 2400 dpi have a higher digital resolution which
means that they appear sharper but do not show signifi-

cantly more detail. Comparing the classification results of
both versions the classified feature area differs only mini-
mally (Sect. 3.1, Fig. 6). Thus, the 2400 dpi image does not
have a higher spatial resolution. Nevertheless, a direct com-
parison is difficult because separate training data sets are
used for the two image data sets due to the different reso-
lution. This results in the deviations observed in the PA and
UA values. However, it is probable that the manufacturer’s
specification of 9600 dpi refers to the merely maximum pos-
sible digital resolution, whereas the maximum optical res-
olution is 1200 dpi. Furthermore, the pixel values will be
interpolated when scanning with a higher-resolution setting
than 1200 dpi. This will result in increased file size, and the
scanned image appears sharper due to increased digital reso-
lution, but the effective optical resolution remains the same.

Professional film scanners, with a usually much higher op-
tical resolution, can possibly increase the image quality sig-
nificantly. Thus, approaching the overall resolution limit of
25 µm, especially regarding the fine fraction of the ground-
mass, all features would appear sharper, and light refrac-
tion effects might be minimised. In this regard, it would
also be possible to increase the minimum size of observable
and analysable constituents, which is 0.1 mm using 1200 dpi
scans in this study. However, it must be taken into account
that such devices are much more cost intensive than trans-
mitted light flatbed scanners (Haaland et al., 2018).

The total processing (Table 2) time is not constant but is
determined, among other things, by the level of experience
in creating training areas. In the initial phase of the test se-
ries (first TSs classified), the ROIs contained relatively high
numbers of pixels (Appendix B). With increasing compre-
hension of the feature class properties and the algorithm’s
behaviour, fewer pixels per class were needed to achieve sim-
ilarly good classification results in later classification runs.
Nevertheless, the size of the reference data set used to as-
sess accuracy should correspond to the individual properties
(e.g. sample type, resolution, number of classes) of the TS
data set (Sect. 2.3). Compared to point counting, which also
requires considerably more effort than digital image analy-
sis, it is an advantage that the accuracy does not depend so
much on the size of the constituents, as the classification is
pixel-based and visual acuity independent (Drees and Ran-
som, 1994; Murphy et al., 1977).

4.2 Interpretation of the digital micromorphological
results

Though an exhaustive interpretation of sediment and soil for-
mation processes at Rheindahlen exceeds the confines of this
paper, we aim to provide illustrative examples of how the de-
rived proportions and distribution patterns of classified con-
stituents can augment the comprehension of conventional mi-
cromorphological analyses and to improve the dissemination
of the findings.
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The visualised microstructure and the determined poros-
ity values (Sect. 3.2) can be well assigned to the Bt horizon
spectrum (Kehl et al., 2024). Compared to most other sam-
ples, the bleached Groundmass 1 (Gm1) is less represented
in all analysed TSs, whereas Groundmass 2 (Gm2), char-
acterised by evenly distributed and stronger iron staining,
is much more represented. Gm1 identifies parts where iron
hydroxide is lacking due to redoximorphic bleaching. This
can be easily brought into proportion through the classifica-
tion and enables an estimation of the relative iron hydroxide
content and depletion rates under the assumption that Gm2
represents the pre-depletion state (Sect. 3.2 and Kehl et al.,
2024).

The uppermost part of the studied profile, including the
modern Bt horizon represented by TS A4, contains a no-
table amount of medium to coarse sand and fine gravel. In
silt-dominated loess deposits, inclusion of such grains indi-
cates reworking of the aeolian deposit by overland flow or so-
lifluction. In addition, the patchy distribution pattern of such
grains in thin section A7 can be linked to cryoturbation pro-
cesses (Kehl et al., 2024).

In all presented TSs of the Bt horizons many well-
developed clay coatings are preserved (Fig. 9), especially in
large pores. B7 has the highest proportion of clay coatings
in the entire sequence, indicating a particularly intensive and
long-term character of soil formation during the related in-
terglacial period (Kehl et al., 2024). The clay coatings of the
lower Bt horizons displayed in B7 and C5 are often frag-
mented, and clay papules are abundant (Sect. 3.2). Frost ef-
fects are attributed to this mechanical disruption of clay coat-
ings, a phenomenon not observed in the modern Bt horizon
of A4.

The abundance of redoximorphic pedofeatures in TS A4 is
particularly well displayed in the respective single maps (Ap-
pendix C1). In general, these features indicate the effect of
stagnant water conditions. In the presented TSs, they are less
than 1 mm in diameter, but also some larger nodules, mea-
suring more than 5 mm, have been observed in some parts,
such as in TS A4. However, especially in thin section C5, the
increased number of iron hydroxide and manganese oxide
nodules, microscopically determined in the lower part of the
sequence (TS C5–C8; Kehl et al., 2024), are not reflected by
the classification results. This could be partly attributed to the
classification method, which quantifies the aerial percentage
of nodules rather than their numerical count.

Nevertheless, the increased confusion with class Gm2,
which contains fine-grained iron hydroxide, accompanied by
the low UA score, seems to have led to the underestimation
of the corresponding classes Fe and Mn (Appendix B).

4.3 Implications for micromorphology

The employment of MiGIS as an auxiliary instrument reveals
its efficacy in mapping and quantifying soil and sediment
constituents based on their multi-RGB signature (Fig. 2),

thereby demonstrating the advantageous integration of this
supplementary digital dimension into micromorphological
analysis. Nevertheless, the MiGIS classification using the
random forest algorithm is based on colour values (TL, XPL,
and RL) of the TS features. A classification based on shape
and size is not included yet. This could possibly be imple-
mented by using OBIA algorithms through the process of
image segmentation (Sect. 4.1).

However, the semi-automatic classification approach of
MiGIS enables users, e.g. well-trained micromorphologists,
to define suitable training data for specific feature classes.
This offers the advantages of qualitative control concerning
TS imagery, as well as a suitability assessment of colour
value differences between constituents. The application of
a mask layer to crop the multi-band layer, which is used
to select the classification area (sample section) in MiGIS
1, also enables the definition of relevant parts of the sam-
ple. Thus, artefact sections such as drying cracks can be
excluded. Comparatively fast digital documentation within
1.5–2.5 h processing time (software familiarisation inclusive)
per TS enables a straightforward assessment of the overall
composition, pore space volume, distribution patterns, and
microstructure, in combination with an automated visualisa-
tion of these results. Trends and anomalies can thus be high-
lighted (e.g. by setting a high-contrast colour for a specific
feature class), and at the same time feature occurrence can
be recorded for statistics without much effort. By classifying
entire TSs, feature quantities and spatial patterns can be com-
pared between different TSs (i.e. stratigraphical units). This
is of minor interest in digital petrographic analyses, which
is mostly focused on the classification of microphotographs
(Ghiasi-Freez et al., 2012; Naseri and Rezaei Nasab, 2021;
Rubo et al., 2019; Tang et al., 2020), but very innovative for
micromorphological analyses. Nevertheless, MiGIS can also
be used for the classification of microphotographs. More-
over, it would be conceivable to use the method to ver-
ify sedimentological anomalies, for instance, to identify a
weakly expressed archaeological context or feature. Within
our working group, MiGIS has already been tested on TSs
from archaeological sediments. Even though the material di-
versity can be significantly higher due to anthropogenic in-
put, the first promising results have already been achieved,
e.g. for cave occupation layers and floor contexts in tell sedi-
ments. Thus, we plan to evaluate the application of MiGIS to
archaeological TSs.

Similar to the studies of Tarquini and Favalli (2010) and
Visalli et al. (2021), the GIS environment, which was ap-
plied here, is advantageous to survey and query the TS im-
agery and the classification map within a metric spatial refer-
ence system. Thus, realistic spatial measurements, provided
by the use of a metric CRS (Sect. 2.2), allow native QGIS
measurement and spatial analysis tools (QGIS Development
Team, 2022b) to be used to capture the dimensions or distri-
bution of micromorphological features. In addition, vectori-
sation in post-processing of the classification maps enables

https://doi.org/10.5194/egqsj-73-69-2024 E&G Quaternary Sci. J., 73, 69–93, 2024



86 M. Zickel et al.: MiGIS: digital thin section analysis

the use of geometric analysis and further query tools (Visalli
et al., 2021). In this sense, the combination of mapping and
quantification of constituents in TSs can be gainfully applied
for micromorphological analysis and documentation.

However, there are some limitations regarding the sig-
nificance of measurement results and quantification. Still,
a proper classification requires expert microscopic analysis,
specifically to assess the individual use of principally under-
estimated pore space quantification which is obtained by the
digital classification approach (Sect. 2.1). Nevertheless, by
classifying the pore space of an entire TS, the microstruc-
ture can be visualised to a high degree of effectiveness. The
classification of the groundmass is also an advantage for cap-
turing the respective spatial composition. For instance, this
enables the recognition and illustration of bedding features
or linear basic distribution patterns, as well as the degree of
soil formation (Sect. 3.1, Fig. 4).

Also, improvements could be made with regard to the mis-
classifications of manganese oxides and iron hydroxide. Our
approach is based on the classification of colour values only,
but these can vary not only due to the TS quality, but also
in the case of manganese and iron oxide concretions due to
the presence of other chemical elements such as phospho-
rus (Vepraskas et al., 2018). Accordingly, a precise micro-
morphological analysis is always a prerequisite for the digi-
tal analysis, although, referring to Rubo et al. (2019), using
chemical or element mapping imagery (micro-XRF) as addi-
tional input to improve the classification could be very useful
in this concern (Mentzer, 2017; Visalli et al., 2021). Compar-
ing MiGIS classification to element mappings could also pro-
vide an independent, detailed compositional reference. For
instance, element maps could be used to verify the spatial
distribution of specific elements, such as Fe or Mn.

5 Conclusions and outlook

We presented the freely accessible MiGIS toolbox, an inno-
vative tool for digital micromorphological TS analysis based
on multi-RGB TS imagery. It can be applied by integrat-
ing Python processing scripts (“Code and data availability”
section) into the open-source software QGIS 3. The applica-
tion of a metric CRS enables realistic measurements based
on scanned TL, XPL, and RL imagery. The ability to clas-
sify TS features using their colour value signature, quantify
them, and visualise spatial relationships makes MiGIS a use-
ful supplement to conventional micromorphological analysis
(Sect. 4.3).

In particular, the visualisation of the spatial distribution
of pedofeatures and their quantification could be profitably
used for the determination of Bt horizons from the Rhein-
dahlen loess–palaeosol sequence. In this way micromor-
phological observations become vivid and to a certain ex-
tent reproducible. Moreover, the computed spatial statistics
enable the quantification of observations (i.e. features) to

compare the composition and structure of different sam-
ples. Likewise, this could prove to be useful for pedolog-
ical, sedimentological, and microfacies analyses. However,
the achieved classification accuracy depends on the user’s
academic training level (i.e. in micromorphology or petrog-
raphy) and the ability to create representative training data.
Thus, basic knowledge of the principles of ML-based im-
age classification and GIS functionalities in general are indis-
pensable. Nevertheless, implemented control instances, such
as pre-classification ROI evaluation (Sect. 2.4.3) and using
a set of independent ROIs for reference, allow for a certain
self-control. Further it turned out that a scan resolution of
1200 dpi is sufficient to produce suitable classification re-
sults. Also, the random forest algorithm seems to be well-
suited for the semi-supervised classification of typically high
colour value variation in TS features and high number of
classes (Sect. 4.2).

The application of element maps (micro-XRF) could serve
as a further reference but could also boost the classification
accuracy especially of Fe and Mn features (Sect. 4.1). Even
involving several feature classes (Table 1), it turns out that
the obtained classification results of a model trained and ap-
plied on the same TS are reliable. Nevertheless, the efficiency
could still be increased by creating a combined classifica-
tion model and applying it for a whole sequence, or for mi-
cromorphological features in general. Considerable effort is
required to establish a comprehensive signature library for
micromorphological features in multi-RGB imagery, taking
into account the influence of variable TS quality and record-
ing modes as limiting factors. Moreover, a preliminary inves-
tigation is essential to determine the reproducibility of multi-
RGB signatures for individual features (Sect. 4.1). Imple-
menting an OBIA function in individual classification runs
could provide the classification result with further detail, for
example to differentiate between geometrical properties of
features (Sect. 4.1). In general, since MiGIS is based on a
Python script, a reasonable next step will be the implementa-
tion as an official plugin in the QGIS repository, which would
increase accessibility.
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Appendix A: Implemented geoalgorithms in QGIS 3

Table A1. Implemented geoalgorithms in MiGIS toolbox with references.

Tool Label Function Geoalgorithm Reference

MiGIS 1 Merge (TS multi-band
raster)

Create multi-band raster: stack georeferenced thin
section images (TL, XPL, RL)

Merge GDAL & OGR contributors
(2022)

MiGIS 1 TS multi-band image clip Clip merged multi-band raster Clip raster by mask
layer

GDAL & OGR contributors
(2022)

MiGIS 2.1 Train random forest
algorithm

Train random forest algorithm with vector ROI data Train algorithm Karasiak (2016)

MiGIS 2.2 Band: ROI pixel statistics
(mean, SD)

ROI evaluation: query the multi-band raster using the
ROI data set – pixel values (mean) per ROI and σ

Zonal statistics QGIS Development Team
(2022b)

MiGIS 2.2 Unite single-band
statistics

Merge single-band zonal statistics to one CSV table Merge vector layers QGIS Development Team
(2022b)

MiGIS 2.2 Box plot band Plot single-band zonal statistics Box plot QGIS Development Team
(2022b)

MiGIS 3 TS classification Classify multi-band raster based on the training Predict model
(classification map)

Karasiak (2016)

MiGIS 3 Assess classification ac-
curacy (vector reference)

Query the generated classification map using a
reference ROI vector data set

Zonal histogram QGIS Development Team
(2022b)

MiGIS 3 Dissolve class Sum zonal histogram pixel counts per class
(classification map) and output CSV table

Dissolve QGIS Development Team
(2022b)

MiGIS 3 Spatial statistics Count pixel per class (classification map) and
calculate class areas

Raster layer unique
values report

QGIS Development Team
(2022b)

MiGIS 3 Refactor fields Convert the class field double format (raster layer
unique values report) to integer

Refactor fields QGIS Development Team
(2022b)

MiGIS 3 Join attributes by field
value

Add class label field to the spatial statistics CSV table Join attributes by
field value

QGIS Development Team
(2022b)

MiGIS 3 Bar plot Plot class area statistics Bar plot QGIS Development Team
(2022b)
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Appendix B: Classification results and accuracy for
the Rheindahlen thin sections
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Appendix C: Exemplary individual feature class
visualisation

Figure C1. Individual visualisation of classified feature classes, derived from the classification map of thin section (TS) A4.
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Code and data availability. All MiGIS toolbox Python pro-
cessing scripts for QGIS 3 – MiGIS 1 preprocess TS images,
MiGIS 2.1 train algorithm, MiGIS 2.2 ROI evaluation (optional),
MiGIS 3 classification – and templates are freely available online
on GitHub: https://github.com/Mirijamz/MiGIS (last access:
18 January 2024; https://doi.org/10.5281/zenodo.10527165, Zickel
and Gröbner, 2023). In addition to tool scripts and template files,
an accompanying toolbox manual (documentation) is available
at the above address on GitHub. MiGIS toolbox is based on
open-source resources provided by GDAL, Nicolas Karasiak,
QGIS, and the Scikit-learn developers. Accordingly, software
and underlying code are available on GitHub and Zenodo:
GDAL v3.5.1 from https://github.com/OSGeo/gdal (last access:
24 January 2024; https://doi.org/10.5281/zenodo.6801315, Rouault
et al., 2022); Dzetsaka Qgis Classification plugin v3.7 from
https://github.com/nkarasiak/dzetsaka/ (last access: 24 January
2024; https://doi.org/10.5281/zenodo.3463523, Karasiak, 2019);
QGIS v3.22 from https://github.com/qgis/QGIS (last access:
24 January 2024; https://doi.org/10.5281/zenodo.7986774,
qgis bot., 2022); and scikit-learn v1.0.1 from https:
//github.com/scikit-learn/ (last access: 24 January 2024;
https://doi.org/10.5281/zenodo.5596244, Grisel et al., 2021).
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