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Climate records for the Last Glacial Maximum (LGM) in Southern Africa are scarce, and the glacia-
tion of the highest summits has been controversially discussed. Geomorphological features on south-
facing slopes at six sites in the high Drakensberg Escarpment of Eastern Lesotho were postulated
as moraines indicating marginally short-lived and site-specific glaciation during the LGM. However,
previous discussions on precipitation amounts limiting or inhibiting glaciers are challenged by more
recent studies suggesting increased humidity and water availability during the LGM. One postulated
moraine site at the Tsatsa-La-Mangaung mountain range near Sani Pass was revisited to address the
contradictory results. Drone-based remote sensing and field surveys suggest a different formation pro-
cess of the moraine-like slightly bent landform considering lithological variance and dike system oc-
currence, which is connected not to glacial but to gravitational and erosional processes. The formation
of landforms interpreted as moraines in the high-altitude regions of Lesotho and their paleoclimatic
implications for the LGM require reevaluation.

al., 2009). The general picture of a globally cold and dry

LGM (e.g., Dubey, 2023) was derived from temperatures

Quaternary glacial cycles are an extensively investigated re-
search topic for a deeper understanding of potential future
global climate changes. The Last Glacial Maximum (LGM)
is a well-defined period (cf. Tierney et al., 2020: 23-19 ka;
Clark et al., 2009: 26—19 ka; Hughes and Gibbard, 2015, pro-
vide a wider review) and serves as a valuable benchmark for
evaluating Earth’s climate sensitivity, as it reflects a quasi-
equilibrium climate state with significant changes in forcing
and response (Tierney et al., 2020; Zhu and Poulsen, 2021).
Because of its global significance, the LGM has received
particular attention from climate researchers (e.g., Clark et

on the continents ca. 6 °C lower compared to the modern
global mean (Schneider von Deimling et al., 2006; Seltzer
et al., 2021); growing continental ice sheets, which resulted
in a falling sea level; and colder air masses, which absorbed
less moisture. It has become evident, however, that the cli-
mate during the LGM differed not only between the hemi-
spheres but also in the same hemisphere (Chabangborn et
al., 2013; Du et al., 2024; Ludwig and Hochman, 2022).
Based on the example of the southern Kalahari, a global
climate model suggests a drier-than-contemporary climate
(Kim et al., 2007). Proxy data, however, show that more
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moisture was available during the LGM. Rivers were peren-
nial, but nowadays they are ephemeral or completely dry.
Lakes, some of them large-scale (e.g., Makgadikgadi Basin
with ca. 37000km?), were at highstands, while nowadays
they represent pans which may seasonally partly be filled to
shallow depths (Riedel et al., 2014; Geppert et al., 2021). The
LGM temperature in the northwestern Kalahari was similar
to modern temperatures (Wiese et al., 2020). The need for
more proxy-based climate models is evident (Braconnot et
al., 2012; Yan et al., 2016).

One of the main issues in climate research leads to
the question of potable water availability. The highland of
Lesotho represents the water tower of Southern Africa (Wun-
derle et al., 2016), and its long-term behavior is thus of major
interest. On the other hand, the mountains in the Drakensberg
range are the highest in Southern Africa (in this case defined
as the area south of the Tropic of Capricorn), and evidence
and the extent of late Quaternary glacial landforms, i.e., of
LGM age, have been discussed controversially (Boelhouw-
ers and Meiklejohn, 2002; Butzer, 1984; Hall, 2004, 2010;
Knight, 2012; Lewis and Iligner, 2001; Mark and Osmas-
ton, 2008; Marker, 1991; Mills and Grab, 2005; Mills et al.,
2009a, b, 2012). As there are no lake sediments, peat bogs, or
speleothems in the highland of Lesotho, which could be used
for LGM climate reconstruction (Fitchett et al., 2017; per-
sonal observations by the authors), employing glacial land-
forms for climate reconstruction offers the opportunity to
gain insights into the LGM climate of the highlands. The
formation of glaciers, on the one hand, requires sufficiently
low annual temperatures and, on the other hand, adequate
precipitation, which should predominantly fall in winter. We
consider it essential to give background information on the
contemporary Southern African climate as well as the proxy-
based reconstruction of the LGM climate to properly discuss
the question of whether glaciers could have formed in the
Lesotho highlands.

The Southern African climate is influenced by tropical
and midlatitude circulation systems and both Southeastern
Atlantic and Southwestern Indian Ocean, leading to diverse
climatic settings (Fig. 1) (Chase and Meadows, 2007; Ky-
lander et al., 2021). In general, Southern Africa comprises
five main rainfall zones according to Geppert et al. (2022),
based on their spatial and temporal rainfall distribution and
moisture sources. Major contemporary climate features were
discussed in detail by Gasse et al. (2008) and Geppert et
al. (2022). The annual precipitation and temperature patterns
in Southern Africa are furthermore significantly controlled
by topographic factors.

In respect to late Quaternary glacials, shifts of oceanic
and atmospheric components with different effects on the
changes in temperature and precipitation intensity and pat-
terns over Southern Africa are hypothesized (e.g., Chase and
Meadows, 2007; Fitchett et al., 2017; Kohfeld et al., 2013;
Rojas, 2013; Sime et al., 2013). However, only a few LGM
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climate records are available to validate these assumptions
(see Table 1; Fig. 1).

Although Southern African climate zones are quite di-
verse, LGM temperatures are generally considered to have
been lower than temperatures today. Studies generally in-
dicate a mean annual temperature drop of approximately
6 °C compared to present conditions (e.g., Engelbrecht et
al., 2019; Heaton et al., 1986; Holmgren et al., 2003; Scott,
1982). However, the estimated mean annual temperature
drop ranges from exceeding 10°C in the high-altitude re-
gions of the Drakensberg Escarpment (Boelhouwers and
Meiklejohn, 2002; Lewis and Iligner, 2001; Partridge et al.,
1997) to being around 2°C in other areas (Holmgren et
al., 1995; Stute and Talma, 1997; Lee-Thorp and Talma,
2000; Truc et al., 2013), whereas Scott et al. (2012) sug-
gested a slight warming between 20—-19 ka at Pakhuis Pass
(Table 1), bringing temperatures closer to present-day lev-
els. Furthermore, precipitation or moisture availability varies
across sites, being either lower than, higher than, or similar
to present-day levels (Table 1, Fig. 1). This wide value range
for temperature and moisture availability reconstruction does
not turn out satisfactorily. But the major bias in calculating
mean annual temperature and moisture availability may be
explained by the different archive types, site locations, and
analytical methods as highlighted in Table 1.

Archeological studies of two rock shelters in the lowland
of Lesotho (1790 and 1860 ma.s.l.) have demonstrated hu-
man occupation during the LGM and that fish was part of
livelihoods (Pargeter et al., 2017; Pazan, 2022).

In a phylogeographic study, Sands et al. (2022) demon-
strated that some of Lesotho’s river systems were active dur-
ing the LGM. Engelbrecht et al. (2019) scaled global LGM
simulations down to Southern Africa and suggested that the
temperatures were 4-6 °C lower along the eastern escarp-
ment and that Lesotho received precipitation all year round.

Against this background, the high summits of Lesotho in
proximity to the eastern escarpment received particular atten-
tion, and six sites with glacial landforms were suggested for
this area (Mills and Grab, 2005; Mills et al., 2009a, b, 2012;
Fig. 2). Given its extensive discussion in prior studies (Mills
and Grab, 2005; Hall, 2010; Hall and Meiklejohn, 2011), we
directed our attention towards the Tsatsa-La-Mangaung site
among the proposed locations. We considered the moraine
interpretation by Mills and Grab (2005) for the ridges at the
Tsatsa-La-Mangaung mountain range near Sani Top (Fig. 2a)
disputable for the following reasons: (1) the contour lines
of Mills and Grab (2005, their Fig. 2) show no indications
or morphological correspondence to either a glacier or ni-
vation. (2) Both remote sensing data and Fig. 2 by Mills
and Grab (2005) reveal a fault line at the site (see also the
Geological Map of Lesotho (Lesotho Government, 1982)).
Yet, this aspect was not considered in the process of gen-
esis of the landscape feature. (3) The association between
moraine material and the pre-Holocene-dated soil organic

https://doi.org/10.5194/egqsj-74-219-2025



V. S. Bayer et al.: Quaternary glaciations in Southern Africa? 221

Table 1. Selection of Southern African paleoclimate records (see Fig. 1) and their generalized interpretation of LGM versus modern climate.

T = temperature; M = moisture; + and — = higher and lower; ? = differing climate reconstructions and/or fluctuating conditions at the site.

No.  Archive type Archive type LGM climate  Key reference(s)

Winter Rainfall Zone

1 Spitzkloof Rockshelter Archeological deposit M+ Dewar et al. (2023)

2 Elands Bay Cave Archeological deposit, M+/-? Cartwright and Parkington (1997); Cowling

tufa deposit et al. (1999); Khumalo (2021);

Meadows and Baxter (1999)

3 Pakhuis Pass Hyrax middens T—, M+/-? Scott and Vogel (2000); Scott and Woodborne
(2007a, b); Scott et al. (2012)

4 Western Cape Mountains ~ Geomorphological features T— Boelhouwers and Meiklejohn (2002)

Year-Round Rainfall Zone

5 Pella site Hyrax middens M+/-? Lim et al. (2016)

6 Cango Caves Speleothems combined with ~ T— Talma and Vogel (1992)

groundwater (see no. 9)

7 Boomplaas Cave Archeological deposit T—, M+/—?  Faith et al. (2019); Khumalo (2021);
Pargeter et al. (2018); Sealy et al. (2016);
Thackeray (1987); Thackeray and Fitchett (2016)

8 Nelson Bay Cave Archeological deposit T—, M— Avery (1982); Faith et al. (2019)

9 Uitenhage Groundwater T— Heaton et al. (1986); Talma et al. (1984)

Summer Rainfall Zone West

10 Brandberg Hyrax middens T—, M+ Scott et al. (2004)

11 Homeb silts Sediment deposits M+/-? Heine and Heine (2002); Vogel (1989)

12 Zizou Hyrax middens M+ Chase et al. (2023)

13 Stampriet Groundwater T— Lee-Thorp and Talma (2000);
Stute and Talma (1997)

14 Witpan Pan deposit M+ Genderjahn et al. (2017); Telfer et al. (2009)

Summer Rainfall Zone Middle

15 Southwest Kalahari Dunes M+ Chase and Brewer (2009); Hiirkamp et al. (2011);
Lancaster (1979); Stone and Thomas (2008);
Telfer and Thomas (2007)

16 Wonderwerk Cave Stalagmites, dung deposit T—, M+ Brook et al. (2010)

17 Ghaap Escarpment Tufa deposit M+ Brook et al. (2010); Butzer (1984)

18 Alexandersfontein Lake sediments M+ Butzer (1984)

19  Lobatse Cave Speleothems T—,M+/—=?  Holmgren et al. (1995)

Summer Rainfall Zone East

20 Mount Enterprise Geomorphological features T— Boelhouwers and Meiklejohn (2002); Lewis
and Illgner (2001); Mills et al. (2017)

21 Sehonghong Rock Shelter  Archeological deposit T— Loftus et al. (2015); Pargeter et al. (2017)

22 Lesotho highlands Geomorphological features T—, M+/-? Mills and Grab (2005); Mills et al. (2009a, b);
Mills et al. (2012); Hall (2004)

23 Elim Swamp deposit T—, M+/-? Scott (1989b); Scott et al. (2012)

24 Pretoria Saltpan Lake sediments M- Partridge et al. (1997)

25 ‘Wonderkrater Spring deposit, peat deposit ~ T—, M+/—?  Scott (1982, 1989a); Scott et al. (2012);
Truc et al. (2013)

26 Cold Air Cave Groundwater, stalagmite T—, M— Holmgren et al. (2003)

27 Voordrag Sediment deposit, paleosoils T—, M+/—? Botha et al. (1992); Clarke et al. (2003)

28 Mfabeni peatlands Peat deposit T—, M+/-? Baker et al. (2014, 2017); Finch and Hill

(2008); Miller et al. (2019)
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Figure 1. Modern climate setting with selected Southern African sites of LGM climate records (1-28 in Table 1). SRZw = Summer Rainfall
Zone West; SRZm = Summer Rainfall Zone Middle; SRZe = Summer Rainfall Zone East; WRZ = Winter Rainfall Zone; YRZ = Year-
Round Rainfall Zone; SET = Southeast Trades; SAA = South Atlantic Anticyclone; SIA = South Indian Anticyclone; the positions of the
climate systems vary seasonally (rainfall zones after Geppert et al., 2022; SRTM elevation data from U.S. Geological Survey, 2014; oceanic

layer from ESRI et al., 2014).

matter described in the trenches presents an unclear relation-
ship, marked by petrographic variability.

We revisited this site to evaluate the moraine interpretation
by Mills and Grab (2005). The “moraines” in the Tsatsa-La-
Mangaung mountain range have been employed for glacier-
based climate reconstruction (Mills et al., 2012). Every
glacier-based climate reconstruction should be grounded on
securely identified moraines. This is the only landform which
has been studied by others in some detail, and the location is
in a nowadays hydro-climatologically favorable area, which
we assume was the case too during the LGM and thus was fa-
vorable for a potential glaciation. Furthermore, due to unfa-
vorable weather and hydrological conditions during our ex-
pedition, we could not reach any of the other sites suggested
to be moraine-like deposits, which are located far from any
roads or passable tracks. Each location requires its own ex-
pedition.

2 Regional setting

The study site is located in Eastern Lesotho (Fig. 2a),
within the Upper Triassic to Lower Jurassic Drakens-
berg plagioclase-rich flood basalt (Haskins and Bell, 1995;
Schmitz and Rooyani, 1987). Dolerite dikes are common
(Haskins and Bell, 1995). The site lies in proximity to the

E&G Quaternary Sci. J., 74, 219-233, 2025

Sani Top mountain range, outlining the elevated terrain at
the head of Sani Pass above the Great Escarpment (Fig. 2b).
In this area, elevation ranges from ca. 2800 to 3482 ma.s.l.,
which is the summit of Thabana-Ntlenyana, the highest
mountain of Southern Africa. Valleys are asymmetrically
shaped, with south-facing slopes being steeper and shorter
than the north-facing slopes (Boelhouwers, 2003; personal
observations by the authors).

The moraine-like landform under investigation is located
at29°33/29.37” S, 29°17'43.50” E, on a south-facing slope of
the Tsatsa-La-Mangaung mountain range, ca. 3 km north of
the Sani Pass border and 2 km west of the Great Escarpment.

The study site lies within the Summer Rainfall Zone East
(SRZe in Geppert et al., 2022). While northern winds are
common all year round, the prevailing summer wind comes
from the east, transporting moisture from the Indian Ocean
(Geppert et al., 2022). In winter, the wind blows predomi-
nantly from the west (Sene et al., 1998). Rainfall is mainly
due to large-scale line thunderstorms and orographically in-
duced storms (Tyson et al., 1976).

The WorldClim data set estimates mean annual precipi-
tation values of ~ 1015 mm around Sani Top (Fick and Hij-
mans, 2017), with 75 % falling from November to March and
less than 10 % falling in winter, from May to August, mainly
as snow (Nel and Sumner, 2008; Sene et al., 1998). Inter-

https://doi.org/10.5194/egqsj-74-219-2025
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Figure 2. Geographic setting (elevation data from U.S. Geological
Survey, 2014). (Top left) Location of focal area in Eastern Lesotho.
(Bottom left) Triangles show locations with landforms related to
glacial processes by Mills and Grab (2005), Mills et al. (2009a, b),
and Mills et al. (2012). The grey triangle indicates a site in Mills et
al. (2012) based on remote sensing only. (A) Tsatsa-La-Mangaung
(revisited by us and representing our study site). (B) Sekhokong
Range. (C) Leqooa Valley; equidistance = 20 m; positive, ridge-
like landforms in black.; SRTM elevation data from U.S. Geological
Survey (2014).

annual variability in snowfall is high (Wunderle et al., 2016).
South-facing slopes above 3250 m a.s.l. receive a maximum
amount of snow, which can last several weeks to months
(Hanvey and Marker, 1992; Mulder and Grab, 2009; NASA,
2023).

The study area features one of the highest precipitation
levels in Southern Africa and the lowest annual temperatures
(Fick and Hijmans, 2017; Meque et al., 2022). Temperatures
range from a monthly mean of —0.6 °C in July to 8.7 °C in
January (Fick and Hijmans, 2017). Temperatures drop below
zero regularly, and up to 200 d of ground frost per year is as-
sumed in the study region (Sene et al., 1998). Considering
the intense insolation under the mostly cloudless winter sky,
diurnal melt—freeze cycles result (Hanvey and Marker, 1992).
Rock surface temperatures during winter show a mean of
7.2 °C at a north-facing slope and of —5 °C at a south-facing
slope near Sani Top, at 3060 m a.s.l. (Grab, 2007a). Air tem-
peratures on south-facing slopes may decline to —13.5°C in
July (Grab, 2007a). Grab (2007a, b) emphasized a consid-
erable “frost cracking window”. In this context, Boelhouw-
ers and Sumner (2003) reported high block concentrations
on south-facing slopes above 3000 m a.s.l. Periglacial pro-
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Figure 3. Geomorphological map of moraine-like landform at
Tsatsa-La-Mangaung.

cesses appear to be limited to the few summit areas above
3400 m a.s.l. (Grab et al., 2021).

The regional regolith cover is generally thin, and soils are
poorly developed on slopes. However, alpine vegetation of
grass and heath communities is fairly well developed (Mills
and Grab, 2005; Grab, 2010; Fig. 3).

3 Material and methods

Our field survey at the Tsatsa-La-Mangaung was conducted
during March 2022. The field campaign included topograph-
ical surveying, geomorphological mapping, and sedimento-
logical prospection. Photo documentation of the study site,
accompanied by georeferenced markers, was used to record
features and phenomena relevant to substrate and process de-
termination. Furthermore, a DJI Mavic 2 Pro Quadrocopter
carrying a Hasselblad L1D-20c camera was employed to ob-
tain high-resolution aerial imagery of the landform and sur-
rounding slopes. Therefore, several different viewing angles
were captured. Additionally, geological maps and remote
sensing data were examined to assess the presence of dikes.
Drone-derived data were processed using the software Ag-
iSoft Metashape Professional (2023). The workflow included
the alignment of 37 georeferenced drone photos and placing
and verifying markers with nearly 20 000 tie points. A high-
resolution dense-cloud and depth map with mild filtering was
built. This dense cloud served as the fundamental input data
for the construction of a 3D mesh, a crucial component for
texture reference. Following this, the digital elevation model
(DEM) was computed from the high-resolution dense cloud,
and the texture was integrated. Additionally, contours and
high-resolution cross sections were derived from the DEM,
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further enhancing the analysis and visualization capabilities.
Google Earth Pro (2022) was employed for verification pur-
poses and for searching further co-occurrences of moraine-
like landforms and dikes.

The temporary snow line in the highland of Lesotho was
documented by snow cover maps of MODIS on NASA’s
Terra satellite (NASA, 2018, 2023) and, specifically for the
study site, on the ground by photo camera in late July 2022.

4 Results

The ridge stretches from NNE to SSW, perpendicular to the
contour lines, following the gradient (Fig. 3). This feature
formed at the junction of two slopes with a mean angle of
~20-22° (~36 %—40 %) facing SSE and SW, respectively
(Figs. 4a, 6). Both slopes feature basaltic bedrock outcrops,
which, mainly in the upper part, follow a bank-like struc-
ture (Figs. 3, 4b—c, 6). These outcrops can also be observed
in satellite data above the other postulated moraine sites at
the Sekhokong Range (Fig. 2d) and Leqooa Valley (Fig. 2¢)
(Google Earth Pro, 2022). At Tsatsa-La-Mangaung, block-
like weathering has primarily occurred in the upper parts of
the slopes (Fig. 5g). Outcrops are more massive, whereas
the blocks have mainly diameters ranging from around 0.15
to approximately 2 m, covering both slopes. Weathering of
these blocks has added ample numbers of coarse granular
clasts to the regolith. A thin soil layer has allowed the growth
of grass and heath communities (Fig. 4¢).

The studied landform is about 330 m long, descending
from ca. 3120 to 3000 ma.s.l. (Fig. 3). The upper section
(3090-3120ma.s.1.) is bent and positioned on the SE-facing
slope (Fig. 4a—d). Further down in the middle part (3000—
3090 m a.s.l.), the landform becomes rather straight (Fig. 4a,
¢). At lower elevations (3050-3000 m a.s.1.), it is situated on
the SW-facing slope (Figs. 3, 4a, 6). The width of the land-
form ranges from 12 to 47 m, with a general increase from
the upper to the lower section (Figs. 4a, 6). Towards the slope
base, the shape of the landform is noticeably more expanded
(Figs. 3, 4a, 6, ). A small-scale furrow was identified in the
upper and middle parts, widening downslope and delineat-
ing a seam within the landform (Fig. 3). The upper portion
of the landform has a slope angle of ca. 23° (42 %, 3050-
3120ma.s.l.), while the lower part of the ridge features a
slope angle of ca. 17° (30 %, 3000-3050 m a.s.1.) (Fig. 6f).

The base of the landform is a basaltic bedrock rib built up
from several bedrock outcrops (Figs. 3, 4b, 5j). In a larger
context, it is part of the bank-like-structured outcrops run-
ning mainly along the contour lines of the slopes (Figs. 3,
4a, 6). In relation to the landform, the bedrock rib is obvious
because of bedrock outcrops in the middle and lower parts
(Figs. 3, 4b, 5j, h). In the lower section, for example, a mas-
sive rock wall of ca. 2m height and 15 m length is exposed
(Figs. 4b, 5j), stretching between 3020 and 3030 m a.s.1. and
facing from northeast (NE) to southwest (SW) and there-
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fore nearly parallel to the contour lines (Figs. 3, 4b, 6).
Furthermore, the positive landform consists of blocks and
clasts, with sizes similar to the surrounding slopes but in
a greater number (Figs. 4c—e, 5h). It encompasses both in
situ-weathered material from the bedrock rib and material
accumulation from the adjacent slopes, featuring a portion
that has also experienced in situ weathering at the location
of deposition. The skeletal structure, formed by these larger
rocks and blocks, is partially filled in the cavities with loose
sediment material containing smaller clasts as well as ag-
gregations of regolith and soil cover (Fig. 4d). There is no
noticeable difference in soil properties and vegetation cover
at the adjacent slopes. Only the vegetation occurring in the
deeper parts of the furrow in the middle part of the landform
(Fig. 3) is akin to the denser vegetation found in the depres-
sions along the slopes and within the dike. Whereas the bend
in the upper part of the landform primarily represents an ac-
cumulation of slope material, blocks on and along the rib in
the middle and lower part are the product of in situ-weathered
outcrops (Fig. 5h, k).

The adjacent slopes are mainly straight to slightly con-
vex, with some small local depressions (Fig. 6). The upper-
most part (ca. 3150-3205 m a.s.l.; mean slope 20.5° (36 %))
of the SW-facing slope exhibits the most significant depres-
sion (ca. 0.01km?) in the study area. It points towards the
bent upper section of the moraine-like landform along the
steepest gradient (Figs. 4a, 6). Using the high-resolution
DEM, mostly shallow, partly channel-like depressions can
be identified on both slopes, not above but beside the land-
form (Figs. 3, 6). In addition, a narrow, channel-like depres-
sion runs parallel to the landform’s western side (Figs. 3,
4a, 6), becoming more pronounced with declining elevation
(Fig. 5c—d). These linear, narrow, channel-like depressions
act as drainage pathways after rainfall (observed in March
2022; see Fig. 3). A depression corresponding to a glacier
or nival niche could not be identified on either of the slopes,
given the presence of massive outcrops (Figs. 3, 4a—c, 5g,
6) and given that it would further be evident in the high-
resolution DEM (Fig. 6) as a noticeable depression.

A linear dike from and to neighboring mountain ranges,
visible in low-angle field observation and satellite data, fea-
tures specific vegetation and a channeled erosional structure
(Figs. 4a, 5i). On the surrounding mountain ranges to the
NNE, it is visible as a channeled depression (Fig. 5a). In
the SSW direction, the dike is detectable by the vegetation
differing (Fig. 51). The geology in this area is marked in gen-
eral by basalt and dike intrusions of different spatial extents,
spanning local to regional structures with varying orienta-
tions. The dike can also be found at the postulated moraine
site Sekhokong (Fig. 2d). At the Tsatsa-La-Mangaung site,
the dike trends from NNE to SSW, running perpendicular
to the contour lines and along the depth line at the junc-
tion of the slopes (Figs. 3, 4a, 6). It joins the moraine-like
landform at the landform’s transition from bent to straight
(ca. 3090 ma.s.1.) (Figs. 3, 4a, c, d, 6). The dike runs parallel
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Figure 4. (a) High-resolution drone image showing the moraine-like ridge at Tsatsa-La-Mangaung. (b) Ground photo of ridge. (c¢) Lateral
view of the middle and upper ridge. (d) Upper part of the ridge. (e) Lateral view of the middle and lower part of the ridge. Arrows in the

upper-right corner of each panel indicate orientation to the north.

to the landform, accentuating its eastern flank, until it cuts
the landform’s lower section at ca. 3055 ma.s.l. (Figs. 3, 4a,
b, 6). At lower elevations, the dike channel, which reaches
its maximum width, is situated on the western flank of the
landform (Figs. 3, 4a, e, 6e). The lower section of the land-
form is located on the SW-facing slope and is more radiating,
with a width of up to nearly 50 m (Figs. 3, 4a, 6). The chan-
neled structure of the dike indicates that it consists of rock
that is more easily weatherable than the adjacent bedrock.
In the uphill position, the dike channels are up to 5m deep

https://doi.org/10.5194/egqsj-74-219-2025

(Fig. 6b) and capture surface water flow (field observation,
March 2022; see Fig. 3), including snowmelt (Fig. 7b). The
relative deep incision at a short distance to the watershed sug-
gests either relatively low erosional resistance of the dike or
active faulting. Furthermore, the watershed ridge is formed
as a smooth saddle (cf. Fig. 4a) without indicating active
faulting. Also, the valley head shows a continuous transition
from extensive denudation to fluvial erosion. Together with
the relatively high number of smaller-sized clasts within the
channel (Fig. 5f), we can carefully assume that the incision
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Figure 5. (f) The dike channel is deepest along the upper part of the ridge. (g) Block-like weathering on the upper slope. (h) Western flank of
the middle to upper section of the ridge. (i) The dike extending to at least neighboring valleys and mountain ranges. (j) Massive stone wall,
which is part of the bedrock rib of the ridge. (k) In situ weathering of large blocks within the ridge (see legend for symbols and scales).

is more likely related to more easily weatherable rock types
of the dike than the hypothesis of active tectonic processes.
Furthermore, the soil layer and vegetation display enhanced
density. In the high-resolution cross-sections C—E depicted
in Fig. 6, it is evident that the landform rises less than 3 m
above the surrounding slope level.

5 Discussion and conclusions

We did not find any indication that the moraine-like landform
in the Tsatsa-La-Mangaung mountain range was formed by
a glacier (see, e.g., Hall, 2010; Hall and Meiklejohn, 2011;

E&G Quaternary Sci. J., 74, 219-233, 2025

Mills and Grab, 2005; Mills et al., 2012). We interpret the
identified bedrock rib as a barrier where material from the
upper slope could accumulate. The accumulated blocks and
clasts are mainly found in the upper section of the landform,
which has created the bent extension of the bedrock rib. We
could identify the corresponding supply area of ca. 0.01 km?
(Fig. 6), with the steepest gradient trending towards the cen-
tral accumulation zone. This co-occurrence is in phase due
to the lack of evidence of a downslope landform that could
represent a terminal moraine. Other supply areas (Figs. 4a,
6) are much smaller and directed towards the lower parts of
the landform, explaining why less slope material has been
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Figure 6. Left: high-resolution digital elevation model (DEM) with texture and contour lines derived by drone imagery, showing the study
site. (A) Cross section through the major depression above the landform. (B-E) Cross sections at different positions of the dike and the
landform. (F) Longitudinal profile through the landform (see legend for symbols).

Figure 7. (a) Temporary snow line in the highlands of Lesotho on 6 August 2018 (NASA, 2018). (b) Snow cover on Tsatsa-La-Mangaung
(photo from 29 July 2022). The flag indicates the position of the moraine-like landform; the arrow points at the snow-filled dike channel.

deposited there; however, they contribute to the downslope
broadening of the landform. Part of the blocks represent in
situ weathering of the bedrock rib or deposited rocks and
blocks (Fig. 5k). The primary source area of the blocks
and clasts which have accumulated at the upper section of
the bedrock rib represents the only larger depression on the
two adjacent slopes (Fig. 6). Therefore, the glacier locations
sketched by Hall (2010) and Hall and Meiklejohn (2011) for
the SW-facing slope and by Mills et al. (2012) for the SSE-
facing slope show no geomorphological match (Fig. 4a), ex-
cept for the bent block and clast accumulation at the upper

https://doi.org/10.5194/egqsj-74-219-2025

section of the landform, which is clearly not of glacial ori-
gin. Small glaciation and a short lifespan of glaciers were
presented by Mills and Grab (2005) as arguments for not
causing substantial erosion and depositional remnants, which
were already discussed in Hall (2010) and Knight (2012).
Nevertheless, a glacier that lays down a moraine would grind
at least the area. But there is no evidence of glacial abrasion;
in contrast, there is strongly weathered micro-relief, which
would not have withstood glacial processes. Furthermore, we
found sharp bank-like bedrock outcrops (Figs. 3, 4a—c, 6) and
convex forms over the vast extent of both slopes (Fig. 6, also
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mentioned in Hall, 2010). These findings are consistent with
the uniform contour lines, which show no significant depres-
sions, presented in Fig. 2 by Mills and Grab (2005). In sum-
mary, we could not identify signs of glacial erosion or a nival
niche deep and large enough in which a glacier could have
developed.

The three trenches described by Mills and Grab (2005)
(Fig. 4a) align with our findings. However, they primarily
consist of diamictic material in the form of larger rocks and
blocks, which is indicative of rockfall, obviously to be ex-
pected by the uphill slope and rock wall stairs. The subse-
quent infilling with colluvial fine material and weathering
processes, along with post-sedimentological accumulation of
fine soil particles due to soil development, contribute to the
formation of the observed soil profiles. Nevertheless, we can-
not contextualize these profiles with evidence of glacial de-
posits. The original dating of soil organic matter by Mills
and Grab (2005) from depths between 1.35 and 1.5 m in the
trenches indicates that these local pits developed during the
pre-Holocene period, covering a period of nearly 7ka. This
supports the hypothesis of a sequential accumulation of the
landform, resulting from several successive events.

Mills and Grab (2005) provided a review and a discussion
of potential underlying processes, which made them con-
clude that a glacial moraine represents the most likely in-
terpretation of the landform. We agree with their sedimento-
logical analysis that particle properties are not exactly typi-
cal of debris flows, but we suggest small-scale debris flows
likely occurred. This is against the background that we mea-
sured a slope angle of 23° above the landform, which is
steep enough to initiate debris flow (Iverson et al., 1997),
while Mills and Grab (2005) wrote that the angle has to
exceed 27°. In this context, it is noteworthy that the high-
lands of Lesotho are tectonically active (Cherry, 1996). Mills
and Grab (2005) admitted that the little-sorted, dominantly
angulated clasts found at the landform are characteristic of
pronival ramparts (Hall and Meiklejohn, 1997), but following
their own conclusion that no debris flow could have occurred,
they excluded the possibility that the moraine-like structure
was solely formed by erosional gravitational processes. In-
stead, they interpreted debris-flow-like sediment components
as supraglacially derived (Mills and Grab, 2005). We doubt
the validity of the idea of supraglacial transport because a
potential glacier would have formed just below the culmina-
tion (cf. Fig. 4a in Mills et al., 2012, and Fig. 4a in this pa-
per), and thus there would have been only a small source area
of clasts. Furthermore, we find the assumption of Mills and
Grab (2005) that coarser debris can flow onto a glacier but
not along an ice-free slope questionable. Benn and Ballan-
tyne (1994) suggested that differentiation between moraine
material and frost-weathered scree by the aggregated class
roundness index cannot be evidenced. The latter suggestion
is in line with our interpretation.

Frost weathering is considered to be pronounced at the
study site, with its terrain above ca. 2900 m a.s.l. termed sub-
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periglacial (sensu Karte, 1983) by Marker (1992). This clas-
sification includes extended seasonal diurnal freeze—thaw cy-
cles. In Fig. 7b the snow line runs almost exactly along
the 2900 m contour line. During cold spells the snow cover
can be sustained at elevation a few hundred meters lower
(Fig. 7a). The accumulation of snow at the study site is en-
hanced in the depressions including the dike channel (arrow
in Fig. 7b). The availability of meltwater is thus higher and
the frost cracking more intense.

Furthermore, a linear dike structure is evident at the
Tsatsa-La-Mangaung site, extending to both sides and reach-
ing the Sekhokong site in the SSE direction (Fig. 2d; Lesotho
Government, 1982). At the Tsatsa-La-Mangaung site, a
channel-like depression combined with the dike channel
shaped and accentuated the landform by erosion (Figs. 4a,
6). After the landform deposition, the narrow, channel-like
depression developed parallel to its western flank, as precip-
itation and meltwater began to preferentially drain down be-
side the landform (observed after rainfall in March 2022; see
Fig. 3). Alongside the dike channel, which also collects sur-
face water (observed in March 2022; see Fig. 3), the form
is accentuated on both sides through enhanced weathering
processes and fluvial erosion. This is particularly evident
in the cross sections in Fig. 6¢c—e. The dike channel there-
fore contributes to the landform’s development and shape,
deepening the eastern flank in the upper part of the land-
form by erosion and increasing its slope gradient (Fig. 6c).
The resulting asymmetrical slope is therefore no indication
for a latero-push or dump moraine as suggested by Mills
and Grab (2005). In summary, the sedimentological param-
eters presented by Mills and Grab (2005) are not mandatory
for glacial deposits (cf., e.g., Bennett et al., 1999). They as-
sume appropriate erosional features, but no morphological
evidence for glacier erosion could be presented for this site.
Finally, the discussed sedimentological properties are not de-
signed to prove glacial accumulation on such small scales
(cf., e.g., Benn and Ballantyne, 1994, among others).

Five other sites in Eastern Lesotho have been considered
to show glacial landforms (Mills and Grab, 2005; Mills et
al., 2009a, b, 2012; Fig. 2). They have, in common with our
study site, an altitude above 3000 m, and the four ground-
investigated sites show assumed moraines, which are also
oriented perpendicular to the contour lines following the
gradient of south-facing slopes (Fig. 2d—e). The Sekhokong
(Fig. 2d) and Leqooa Valley (Fig. 2e) sites furthermore also
show an absence of irregularities in contour lines above
the formations, as illustrated in the morphological maps by
Mills and Grab (2005) and Mills et al. (2009a) in their
Figs. 4 and 3, respectively. Google Earth Pro (2022) imagery
further confirms the presence of substantial bedrock out-
crops above the landscape features at these additional sites.
High-resolution digital elevation models are crucial for accu-
rately analyzing and interpreting the described landforms at
the investigated locations. Furthermore, for the Sekhokong
site (Fig. 2d), it is essential to incorporate the influence of
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dike structures outlined in the Geological Map of Lesotho
(Lesotho Government, 1982) on the formation of the land-
scape features. Whether these landforms can be explained
by processes other than glacial processes will remain unan-
swered until these sites are re-investigated. Moreover, the in-
terior of the highland is understudied, and a detailed land-
scape analysis is needed to discuss whether LGM tempera-
tures were low enough for glaciers to form.
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