Articles | Volume 74, issue 2
https://doi.org/10.5194/egqsj-74-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-74-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Last Glacial Maximum (LGM) glacier network of the Valsugana area (south-eastern European Alps and Prealps, NE Italy)
Lukas Rettig
Department of Geosciences, University of Padova, Padova, 35131, Italy
Sandro Rossato
National Research Council, Institute of Geosciences and Earth Resources, Padova, 35127, Italy
Sarah Kamleitner
CORRESPONDING AUTHOR
Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
Laboratory of Ion Beam Physics, ETH Zurich, Zurich, 8093, Switzerland
Paolo Mozzi
Department of Geosciences, University of Padova, Padova, 35131, Italy
Susan Ivy-Ochs
Laboratory of Ion Beam Physics, ETH Zurich, Zurich, 8093, Switzerland
Enrico Marcato
Studio Marcato, Vicenza, 36100, Italy
Marcus Christl
Laboratory of Ion Beam Physics, ETH Zurich, Zurich, 8093, Switzerland
Silvana Martin
Department of Geosciences, University of Padova, Padova, 35131, Italy
Giovanni Monegato
CORRESPONDING AUTHOR
National Research Council, Institute of Geosciences and Earth Resources, Padova, 35127, Italy
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy
Related authors
No articles found.
Niklas Kappelt, Eric Wolff, Marcus Christl, Christof Vockenhuber, Philip Gautschi, and Raimund Muscheler
Clim. Past, 21, 1585–1594, https://doi.org/10.5194/cp-21-1585-2025, https://doi.org/10.5194/cp-21-1585-2025, 2025
Short summary
Short summary
By measuring the radioactive decay of atmospherically produced 36Cl and 10Be in an ice core drilled in West Antarctica, we were able to determine the age of the deepest sample close to bedrock to be about 550 thousand years old. This means that the ice in this location, known as Skytrain Ice Rise, has survived several warm periods in the past, at least since marine isotope stage 11.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Andreas Henz, Johannes Reinthaler, Samuel U. Nussbaumer, Tancrède P. M. Leger, Sarah Kamleitner, Guillaume Jouvet, and Andreas Vieli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2353, https://doi.org/10.5194/egusphere-2025-2353, 2025
Short summary
Short summary
Glaciers are key to understanding climate change, reflecting historical variability. Using glacier models on the computer, we reconstructed European Alps glaciers during the Little Ice Age, with a total ice volume of 283 ± 42 cubic kilometres. Also, the study determines equilibrium line altitudes (ELAs) for over 4000 glaciers, showing patterns influenced by temperature, precipitation, and solar radiation. After all, we introduce a new ELA correction approach based on solar incidence.
Janet C. Richardson, Veerle Vanacker, David M. Hodgson, Marcus Christl, and Andreas Lang
Earth Surf. Dynam., 13, 315–339, https://doi.org/10.5194/esurf-13-315-2025, https://doi.org/10.5194/esurf-13-315-2025, 2025
Short summary
Short summary
Pediments are long flat surfaces that extend outwards from the foot of mountains; within South Africa they are regarded as ancient landforms that can give key insights into landscape and mantle dynamics. Cosmogenic nuclide dating has been incorporated with geological (soil formation) and geomorphological (river incision) evidence, which shows that the pediments are long-lived features beyond the ages reported by cosmogenic nuclide dating.
Anne-Marie Wefing, Annabel Payne, Marcel Scheiwiller, Christof Vockenhuber, Marcus Christl, Toste Tanhua, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1322, https://doi.org/10.5194/egusphere-2025-1322, 2025
Short summary
Short summary
Here we used the anthropogenic radionuclides I-129 and U-236 as tracers for Atlantic Water circulation in the Arctic Ocean. New data collected in 2021 allowed to assess the distribution of Atlantic Water and mixing with Pacific-origin water in the surface layer in that year. By using historical tracer data from 2011 to 2021, we looked into temporal changes of the circulation and found slightly older waters in the central Arctic Ocean in 2021 compared to 2015.
Chiara I. Paleari, Florian Mekhaldi, Tobias Erhardt, Minjie Zheng, Marcus Christl, Florian Adolphi, Maria Hörhold, and Raimund Muscheler
Clim. Past, 19, 2409–2422, https://doi.org/10.5194/cp-19-2409-2023, https://doi.org/10.5194/cp-19-2409-2023, 2023
Short summary
Short summary
In this study, we test the use of excess meltwater from continuous flow analysis from a firn core from Greenland for the measurement of 10Be for solar activity reconstructions. We show that the quality of results is similar to the measurements on clean firn, which opens the possibility to obtain continuous 10Be records without requiring large amounts of clean ice. Furthermore, we investigate the possibility of identifying solar storm signals in 10Be records from Greenland and Antarctica.
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, and Filippo Giorgi
Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, https://doi.org/10.5194/cp-19-1805-2023, 2023
Short summary
Short summary
We studied atmosphere–cryosphere interaction during the last phase of the Last Glacial Maximum in the Alpine region, using a high-resolution regional climate model. We analysed the climate south and north of the Alps, using a detailed map of the Alpine equilibrium line altitude (ELA) to study the mechanism that sustained the Alpine glaciers at 21 ka. The Genoa low and a mild Mediterranean Sea led to frequent snowfall in the southern Alps, thus preserving the glaciers and lowering the ELA.
Catharina Dieleman, Philip Deline, Susan Ivy Ochs, Patricia Hug, Jordan Aaron, Marcus Christl, and Naki Akçar
EGUsphere, https://doi.org/10.5194/egusphere-2023-1873, https://doi.org/10.5194/egusphere-2023-1873, 2023
Preprint withdrawn
Short summary
Short summary
Valleys in the Alps are shaped by glaciers, rivers, mass movements, and slope processes. An understanding of such processes is of great importance in hazard mitigation. We focused on the evolution of the Frébouge cone, which is composed of glacial, debris flow, rock avalanche, and snow avalanche deposits. Debris flows started to form the cone prior to ca. 2 ka ago. In addition, the cone was overrun by a 10 Mm3 large rock avalanche at 1.3 ± 0.1 ka and by the Frébouge glacier at 300 ± 40 a.
Giulia Sinnl, Florian Adolphi, Marcus Christl, Kees C. Welten, Thomas Woodruff, Marc Caffee, Anders Svensson, Raimund Muscheler, and Sune Olander Rasmussen
Clim. Past, 19, 1153–1175, https://doi.org/10.5194/cp-19-1153-2023, https://doi.org/10.5194/cp-19-1153-2023, 2023
Short summary
Short summary
The record of past climate is preserved by several archives from different regions, such as ice cores from Greenland or Antarctica or speleothems from caves such as the Hulu Cave in China. In this study, these archives are aligned by taking advantage of the globally synchronous production of cosmogenic radionuclides. This produces a new perspective on the global climate in the period between 20 000 and 25 000 years ago.
Robert Mulvaney, Eric W. Wolff, Mackenzie M. Grieman, Helene H. Hoffmann, Jack D. Humby, Christoph Nehrbass-Ahles, Rachael H. Rhodes, Isobel F. Rowell, Frédéric Parrenin, Loïc Schmidely, Hubertus Fischer, Thomas F. Stocker, Marcus Christl, Raimund Muscheler, Amaelle Landais, and Frédéric Prié
Clim. Past, 19, 851–864, https://doi.org/10.5194/cp-19-851-2023, https://doi.org/10.5194/cp-19-851-2023, 2023
Short summary
Short summary
We present an age scale for a new ice core drilled at Skytrain Ice Rise, an ice rise facing the Ronne Ice Shelf in Antarctica. Various measurements in the ice and air phases are used to match the ice core to other Antarctic cores that have already been dated, and a new age scale is constructed. The 651 m ice core includes ice that is confidently dated to 117 000–126 000 years ago, in the last interglacial. Older ice is found deeper down, but there are flow disturbances in the deeper ice.
Nathan Vandermaelen, Koen Beerten, François Clapuyt, Marcus Christl, and Veerle Vanacker
Geochronology, 4, 713–730, https://doi.org/10.5194/gchron-4-713-2022, https://doi.org/10.5194/gchron-4-713-2022, 2022
Short summary
Short summary
We constrained deposition phases of fluvial sediments (NE Belgium) over the last 1 Myr with analysis and modelling of rare isotopes accumulation within sediments, occurring as a function of time and inverse function of depth. They allowed the determination of three superposed deposition phases and intercalated non-deposition periods of ~ 40 kyr each. These phases correspond to 20 % of the sediment age, which highlights the importance of considering deposition phase when dating fluvial sediments.
Joanne Elkadi, Benjamin Lehmann, Georgina E. King, Olivia Steinemann, Susan Ivy-Ochs, Marcus Christl, and Frédéric Herman
Earth Surf. Dynam., 10, 909–928, https://doi.org/10.5194/esurf-10-909-2022, https://doi.org/10.5194/esurf-10-909-2022, 2022
Short summary
Short summary
Glacial and non-glacial processes have left a strong imprint on the landscape of the European Alps, but further research is needed to better understand their long-term effects. We apply a new technique combining two methods for bedrock surface dating to calculate post-glacier erosion rates next to a Swiss glacier. Interestingly, the results suggest non-glacial erosion rates are higher than previously thought, but glacial erosion remains the most influential on landscape evolution.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Jamey Stutz, Andrew Mackintosh, Kevin Norton, Ross Whitmore, Carlo Baroni, Stewart S. R. Jamieson, Richard S. Jones, Greg Balco, Maria Cristina Salvatore, Stefano Casale, Jae Il Lee, Yeong Bae Seong, Robert McKay, Lauren J. Vargo, Daniel Lowry, Perry Spector, Marcus Christl, Susan Ivy Ochs, Luigia Di Nicola, Maria Iarossi, Finlay Stuart, and Tom Woodruff
The Cryosphere, 15, 5447–5471, https://doi.org/10.5194/tc-15-5447-2021, https://doi.org/10.5194/tc-15-5447-2021, 2021
Short summary
Short summary
Understanding the long-term behaviour of ice sheets is essential to projecting future changes due to climate change. In this study, we use rocks deposited along the margin of the David Glacier, one of the largest glacier systems in the world, to reveal a rapid thinning event initiated over 7000 years ago and endured for ~ 2000 years. Using physical models, we show that subglacial topography and ocean heat are important drivers for change along this sector of the Antarctic Ice Sheet.
Dominik Amschwand, Susan Ivy-Ochs, Marcel Frehner, Olivia Steinemann, Marcus Christl, and Christof Vockenhuber
The Cryosphere, 15, 2057–2081, https://doi.org/10.5194/tc-15-2057-2021, https://doi.org/10.5194/tc-15-2057-2021, 2021
Short summary
Short summary
We reconstruct the Holocene history of the Bleis Marscha rock glacier (eastern Swiss Alps) by determining the surface residence time of boulders via their exposure to cosmic rays. We find that this stack of lobes formed in three phases over the last ~9000 years, controlled by the regional climate. This work adds to our understanding of how these permafrost landforms reacted in the past to climate oscillations and helps to put the current behavior of rock glaciers in a long-term perspective.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
Cited articles
Akçar, N., Ivy-Ochs, S., Kubik, P. W., and Schlüchter, C.: Post-depositional impacts on `Findlinge' (erratic boulders) and their implications for surface-exposure dating, Swiss J. Geosci., 104, 445–453, https://doi.org/10.1007/s00015-011-0088-7, 2011.
André, M. F.: Rates of postglacial rock weathering on glacially scoured outcrops (Abisko–Riksgränsen area, 68?n), Geogr. Ann. Phys. Geogr., 84, 139–150, https://doi.org/10.1111/j.0435-3676.2002.00168.x, 2002.
Antonelli, R., Barbieri, G., Dal Pra, A., De Zanche, V., Grandesso, P., Mietto, P., Sedea, R., and Zanferrari, A.: Carta Geologica del Veneto – una storia di cinquecento milioni di anni, 1 carta geol., SELCA, Firenze, 32 pp., 1990.
Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2007.
Avanzini, M., Bargossi, G. M., Borsato, A., and Selli, L.: Note Illustrative della Carta Geologica d'Italia alla scala 1: 50.000, foglio 060-Trento, ISPRA-Servizio Geologico d'Italia, Trento, 2010.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008.
Balco, G., Briner, J., Finkel, R. C., Rayburn, J. A., Ridge, J. C., and Schaefer, J. M.: Regional beryllium-10 production rate calibration for late-glacial northeastern North America, Quat. Geochronol., 4, 93–107, https://doi.org/10.1016/j.quageo.2008.09.001, 2009.
Baratto, A., Ferrarese, F., Meneghel, M., and Sauro, U.: La ricostruzione della glaciazione Wurmiana nel Gruppo del Monte Grappa (Prealpi Venete), in: Risposta dei processi geomorfologici alle variazioni ambientali, edited by: Biancotti, A. and Motta, M., Brigati G., Genova, 67–77, 2003.
Barbieri, G. and Grandesso, P.: Note illustrative della Carta Geologica d'Italia alla scala 1: 50.000, foglio 082-Asiago, APAT, S.EL.CA., Firenze, 135, 2007.
Benn, D. I. and Hulton, N. R. J.: An ExcelTM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps, Comput. Geosci., 36, 605–610, https://doi.org/10.1016/j.cageo.2009.09.016, 2010.
Bini, A., Buoncristiani, J. F., Couterrand, S., Ellwanger, D., Felber, M., Florineth, D., Graf, H. R., Keller, O., Kelly, M., Schlüchter, C., and Schöneich, P.: Die Schweiz während des letzteiszeitlichen Maximums (LGM), Bundesamt für Landestopographie swisstopo, Wabern, 2009.
Bondesan, A., Calderoni, G., and Mozzi, P.: L'assetto geomorfologico della pianura veneta centro-orientale: stato delle conoscenze e nuovi dati, in: Scritti in ricordo di Giovanna Brunetta, edited by: Varotto, M. and Zunica, M., Università degli Studi di Padova, Dipartimento di Geografia, Padova, 19–38, 2002.
Braakhekke, J., Ivy-Ochs, S., Monegato, G., Gianotti, F., Martin, S., Casale, S. and Christl, M.: Timing and flow pattern of the Orta glacier (European Alps) during the last glacial maximum. Boreas, 49, 315–332, https://doi.org/10.1111/bor.12427, 2020.
Burke, R. M. and Birkeland, P. W.: Reevaluation of multiparameter relative dating techniques and their application to glacial sequences along the eastern Sierra Nevada, California, Quaternary Res., 2, 21–51, 1979.
Carraro, F. and Sauro, U.: Il Glacialismo “locale” Wurmiano del Massiccio del Grappa (Provincie di Treviso e di Vicenza), Geogr. Fis. Din. Quat., 2, 6–16, 1979.
Carton, A., Bondesan, A., Fontana, A., Meneghel, M., Miola, A., Mozzi, P., Primon, S., and Surian, N.: Geomorphological evolution and sediment transfer in the Piave River system (northeastern Italy) since the Last Glacial Maximum, Géomorphologie, 15, 155–174, https://doi.org/10.4000/geomorphologie.7639, 2009.
Castiglioni, B.: L'Italia nell'età quaternaria, Atlante Fisicoeconomico d'Italia, Consociazione Turistica Italiana, Milano, Italy, 1940.
Chaline, J. and Jerz, H.: Arbeitsergebnisse der Subkommission für Europäische Quartärstratigraphie. Stratotypen des Würm-Glazials, Eiszeitalter und Gegenwart, 35, 185–206, 1984.
Chandler, B. M., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, Í.Ö., Benn, D. I., Clark, C. D., Darvill, C .M., Evans, D. J., Ewertowski, M. W., Loibl, D., Margold, M., Otto, J.-C., Roberts, D. H., Stokes, C. R., Storrar, R. D., and Stroeven, A. P.: Glacial geomorphological mapping: A review of approaches and frameworks for best practice, Earth-Sci. Rev., 185, 806–846, https://doi.org/10.1016/j.earscirev.2018.07.015, 2018.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The last glacial maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Claude, A., Ivy-Ochs, S., Kober, F., Antognini, M., Salcher, B., and Kubik, P. W.: The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution, Swiss J. Geosci., 107, 273–291, https://doi.org/10.1007/s00015-014-0170-z, 2014.
Coleman, C. G., Carr, S. J., and Parker, A. G.: Modelling topoclimatic controls on palaeoglaciers: implications for inferring palaeoclimate from geomorphic evidence, Quaternary Sci. Rev., 28, 249–259, https://doi.org/10.1016/j.quascirev.2008.10.016, 2009.
Colman, S. and Pierce, K.: Glacial Sequence Near McCall, Idaho: Weathering Rinds, Soil Development, Morphology, and Other Relative-Age Criteria, Quaternary Res., 25, 25–42, https://doi.org/10.1016/0033-5894(86)90041-4, 1986.
Coutterand, S., Schoeneich, P., and Nicoud, G.: Le lobe glaciaire lyonnais au maximum würmien: glacier du Rhône ou/et glaciers savoyard? Neige et glace de montagne, reconstitution, dynamique, pratiques, Collection EDYTEM, Cahiers de Gèographie, 8, 11–22, 2009.
Cucato, M.: Rilevamento della media Val d'Astico (Provincia di Vicenza): saggio per l'applicazione della normativa sulla cartografia geologica del Quaternario continentale, Bollettino Servizio Geologico D'Italia, 115, 99–130, 2001.
Cucato, M.: La successione continentale Pliocenico(?) - quaternaria, in: Note Illustrative della Carta geologica d'Italia alla scala 1:50000, edited by: Barbieri, G. and Grandesso, P., Foglio 082 ”Asiago”, APAT – Dip. Difesa del Suolo – Servizio Geologico d'Italia – Regione del Veneto, S.EL.CA. s.r.l., Firenze, 60–94, 2007.
Del Gobbo, C., Colucci, R. R., Monegato, G., Žebre, M., and Giorgi, F.: Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps, Clim. Past, 19, 1805–1823, https://doi.org/10.5194/cp-19-1805-2023, 2023.
Ehlers, J. and Gibbard, P. L.: Quaternary Glaciations Extent and Chronology, Part I: Europe, Elsevier, Amsterdam, https://doi.org/10.1002/jqs.1050, 2004.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary Glaciations – Extent and Chronology, A Closer Look, Elsevier Science, London, ISBN 9780444534477, 2011.
Evans, D. and Benn, D.: A Practical Guide to the Study of Glacial Sediments, Quaternary Research Association, ISBN 0-340-75959-3, 2021.
Felber, M., Veronese, L., Cocco, S., Frei, W., Nardin, M., Oppizzi, P., Santuliana, E., and Violanti, D.: Indagini sismiche e geognostiche nelle valli del Trentino meridionale (Val d'Adige, Valsugana, Valle del Sarca, Valle del Chiese), St. Trent. Sc. Nat., Acta Geol., 75, 3–52, 1998.
Furbish, D. J. and Andrews, J. T.: The use of hypsometry to indicate long-term stability and response of valley glaciers to changes in mass transfer, J. Glaciol., 30, 199–211, https://doi.org/10.3189/S0022143000005931, 1984.
Galadini, F., Poli, M. E., and Zanferrari, A.: Seismogenic sources potentially responsible for earthquakes with M≥6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy), Geophys. J. Int., 161, 739–762, https://doi.org/10.1111/j.1365-246X.2005.02571.x, 2005.
Gosse, J. C. and Phillips, F. M.: Terrestrial in situ cosmogenic nuclides: theory and applications, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Hofmann, F. M., Steiner, M., Hergarten, S., ASTER Team, and Preusser, F.: Limitations of precipitation reconstructions using equilibrium-line altitudes exemplified for former glaciers in the Southern Black Forest, Central Europe., Quaternary Res., 117, 135–159, https://doi.org/10.1017/qua.2023.53, 2024.
Hughes, P. and Woodward J.: Quaternary glaciation in the Mediterranean mountains: a new synthesis, Geological Society, London, Special Publications, 433, https://doi.org/10.1144/sp433.14, 2016.
Ivy-Ochs, S.: The Dating of Rock Surfaces Using in Situ Produced 10Be, 26Al and 36Cl, with Examples from Antarctica and the Swiss Alps, ETH Zürich, PhD dissertation, 210 pp., https://doi.org/10.3929/ethz-a-001772745, 1996.
Ivy-Ochs, S. and Kober, F.: Surface exposure dating with cosmogenic nuclides, E&G Quaternary Sci. J., 57, 179–209, https://doi.org/10.3285/eg.57.1-2.7, 2008.
Ivy-Ochs, S., Lucchesi, S., Baggio, P., Fioraso, G., Gianotti, F., Monegato, G., Graf, A. A., Akçar, N., Christl, M., Carraro, F., Forno, M. G., and Schlüchter, C.: New geomorphological and chronological constraints for glacial deposits in the Rivoli-Avigliana end-moraine system and the lower Susa Valley (Western Alps, NW Italy), J. Quaternary Sci., 33, 550–562, https://doi.org/10.1002/jqs.3034, 2018.
Ivy-Ochs, S., Monegato, G., and Reitner, J. M.: The Alps: glacial landforms from the last glacial maximum, in: European Glacial Landscapes: Maximum Extent of Glaciations, edited by: Palacios, D., Hughes, P. D., García-Ruiz, J. M., and Andrés, N., Elsevier, Amsterdam, 449–460, https://doi.org/10.1016/B978-0-12-823498-3.00030-3, 2022.
Jäckli, H., Hantke, R., Imhof, E., and Leuzinger, H.: Die Schweiz zur letzten Eiszeit = La Suisse durant la dernière période glaciaire = La Svizzera durante l'ultima glaciazione, Atlas der Schweiz 6, Eidg. Landestopographie, Wabern, 1973.
Jouvet, G., Cohen, D., Russo, E., Buza, J., Raible, C. C., Haeberli, W., Kamleitner, S., Ivy-Ochs, S., Imhof, M. A., Becker, J. K., Landgraf, A., and Fischer U. H.: Coupled climate-glacier modelling of the last glaciation in the Alps, J. Glaciol., 69, 1956–1970, https://doi.org/10.1017/jog.2023.74, 2023.
Kamleitner, S., Ivy-Ochs, S., Monegato, G., Gianotti, F., Akçar, N., Vockenhuber, C., Christl, M., and Synal, H. A.: The Ticino-Toce glacier system (Swiss-Italian Alps) in the framework of the alpine last glacial maximum, Quaternary Sci. Rev., 279, 107400, https://doi.org/10.1016/j.quascirev.2022.107400, 2022.
Kamleitner, S., Ivy-Ochs, S., Manatschal, L., Akçar, N., Christl, M., Vockenhuber, C., Hajdas, I., and Synal, H. A.: Last Glacial Maximum glacier fluctuations on the northern Alpine foreland: geomorphological and chronological reconstructions from the Rhine and Reuss glacier systems, Geomorphology, 423, 108548, https://doi.org/10.1016/j.geomorph.2022.108548, 2023.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of in-situ produced cosmogenic nuclides, Geochem. Cosmochim. Ac., 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Kronig, O., Ivy-Ochs, S., Hajdas, I., Christl, M., Wirsig, C., and Schlüchter, C.: Holocene evolution of the Triftje- and the Oberseegletscher (Swiss Alps) constrained with 10Be exposure and radiocarbon dating, Swiss J. Geosci., 111, 117–131, https://doi.org/10.1007/s00015-017-0288-x, 2018.
Kuhlemann, J., Rohling, E. J., Krumrei, I., Kubik, P., Ivy-Ochs, S., and Kucera, M.: Regional synthesis of mediterranean atmospheric circulation during the last glacial maximum, Science, 321, 1338–1340, https://doi.org/10.1126/science.1157638, 2008.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Leger, T. P. M., Jouvet, G., Kamleitner, S. Mey, J., Herman, F., Finley, B. D., Ivy-Ochs, S., Vieli A., Hnez, A., and Nussbaumer, S. U.: A data-consistent model of the last glaciation in the Alps achieved with physics-driven AI, Nat. Commun., 16, 848, https://doi.org/10.1038/s41467-025-56168-3, 2025.
Li, Y.: PalaeoIce: An automated method to reconstruct palaeoglaciers using geomorphic evidence and digital elevation models, Geomorphology, 421, 108523, https://doi.org/10.1016/j.geomorph.2022.108523, 2023.
Lichtenecker, N.: Die gegenwârtige und die eiszeitliche Schneegrenze in den Ostalpen, in: Verhandlungen der III Internationalen Quartär -Konferenz, edited by: Gôtzinger, G., Vienna, September 1936, 141–147, INQUA, Vienna, Austria, 1938.
Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation, J. Geophys. Res., 121, 2130–2145, https://doi.org/10.1002/2015JD024444, 2016.
Lukas, S.: Morphostratigraphic principles in glacier reconstruction-a perspective from the British Younger Dryas, Prog. Phys. Geogr., 30, 719–736, https://doi.org/10.1177/0309133306071955, 2016.
Maxeiner, S., Synal, H. A., Christl, M., Suter, M., Müller, A., and Vockenhuber, C.: Proof-of-principle of a compact 300 kV multi-isotope AMS facility, Nucl. Instrum. Meth. B, 439, 84–89, https://doi.org/10.1016/j.nimb.2018.11.028, 2019.
Monegato, G.: Local glaciers in the Julian Prealps (NE Italy) during the Last Glacial Maximum, Alpine and Mediterranean Quaternary, 25, 5–14, 2012.
Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., and Wick, L.: Evidence of a two-fold glacial advance during the last glacial maximum in the Tagliamento end moraine system (eastern Alps), Quaternary Res., 68, 284–302, https://doi.org/10.1016/j.yqres.2007.07.002, 2007.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The Alpine LGM in the boreal ice-sheets game, Sci. Rep., 7, 2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Nye, J. F.: A method of calculating the thicknesses of the ice-sheets, Nature, 169, 529–530, https://doi.org/10.1038/169529a0, 1952.
Nye, J. F.: The flow of a Glacier in a channel of rectangular, elliptic or parabolic cross-section, J. Glaciol., 5, 661–690, https://doi.org/10.3189/S0022143000018670, 1965.
Ohmura, A. and Boettcher, M.: Climate on the equilibrium line altitudes of glaciers: theoretical background behind Ahlmann's P/T diagram, J. Glaciol., 64, 489–505, https://doi.org/10.1017/jog.2018.41, 2018.
Oien, R. P., Rea, B. R., Spagnolo, M., Barr, I. D., and Bingham, R. G.: Testing the area-altitude balance ratio (AABR) and accumulation-area ratio (AAR) methods of calculating glacier equilibrium-line altitudes, J. Glaciol., 68, 357–368, https://doi.org/10.1017/jog.2021.100, 2022.
Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., and Ribolini, A.: A GIS tool for automatic calculation of glacier equilibrium-line altitudes, Comput. Geosci., 82, 55–62, https://doi.org/10.1016/j.cageo.2015.05.005, 2015.
Pellitero, R., Rea, B. R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C. R., Hughes, P., Ribolini, A., Lukas, S., and Renssen, H.: GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers, Comput. Geosci., 94, 77–85, https://doi.org/10.1016/j.cageo.2016.06.008, 2016.
Penck, A.: Die Vergletscherung der Deutschen Alpen, ihre Ursachen, periodische Wiederkehr und ihr Einfluss auf die Bodengestaltung, Johann Ambrosius Barth, Leipzig, 483 pp., 1882.
Penck, A. and Brückner, E.: Die Alpen im Eiszeitalter, Tauchnitz, Leipzig, 1901–1909.
Pezzotta, A., Mariani, G. S., Marini, M., Cremaschi, M., and Zerboni, A.: Last Glacial Maximum glaciolacustrine deposits from the Adige Moraine Amphitheatre (Rivoli Veronese, Northern Italy): distribution, sedimentary facies, and significance, Alpine and Mediterranean Quaternary, 37, 29–51, https://doi.org/10.26382/AMQ.2024.02, 2024.
Pini, R., Furlanetto, G., Vallé, F., Badino, F., Wick, L., Anselmetti, F .S., Bertuletti, P., Fusi, N., Morlock, M. A., Delmonte, B., Harrison, S. P., Maggi, V., and Ravazzi, C.: Linking North Atlantic and Alpine Last Glacial Maximum climates via a high-resolution pollen-based subarctic forest steppe record, Quaternary Sci. Rev., 294, 107759, https://doi.org/10.1016/j.quascirev.2022.107759, 2022.
Poli, M. E., Patricelli, G., Monegato, G., and Zanferrari, A.: Structural inheritances, fault segmentation and seismogenic potential at the front of the eastern Southern Alps (central Carnic Prealps, NE Italy), Tectonophysics, 883, 230390, https://doi.org/10.1016/j.tecto.2024.230390, 2024.
Rea, B. R.: Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacier-climate reconstructions, Quaternary Sci. Rev., 28, 237–248, https://doi.org/10.1016/j.quascirev.2008.10.011, 2009.
Rettig, L., Monegato, G., Mozzi, P., Žebre, M., Casetta, L., Fernetti, M., and Colucci, R. R.: The Pleistocene evolution and reconstruction of LGM and late glacial paleoglaciers of the Silisia Valley and Mount Raut (Carnic Prealps, NE Italy), Alpine and Mediterranean Quaternary, 34, 277–290, https://doi.org/10.26382/AMQ.2021.17, 2021.
Rettig, L., Monegato, G., Spagnolo, M., Hajdas, I., and Mozzi, P.: The Equilibrium Line Altitude of isolated glaciers during the Last Glacial Maximum – New insights from the geomorphological record of the Monte Cavallo Group (south-eastern European Alps), Catena, 229, 107187, https://doi.org/10.1016/j.catena.2023.107187, 2023.
Roattino, T., Crouzet, C., Vassallo, R., Buoncristiani, J.-F., Carcaillet, J., Gribenski, N., and Valla, P. G.: Paleogeographical reconstruction of the western French Alps foreland during the last glacial maximum using cosmogenic exposure dating, Quaternary Res., 111, 68–83, https://doi.org/10.1017/qua.2022.25, 2023.
Rodés, Á.: Cosmogenic Exposure Age Averages, github.com/angelrodes/CEAA, Zenodo, https://doi.org/10.5281/zenodo.4024909, 2020.
Roghi, G., Monegato, G., Zambotti, P., De Mozzi, M., Rinaldo, M., Trentini, T., Montresor, L., Modesti, A., Gosio, F., Bartoli, O., Piccin, G., Favaro, S., and Martin S.: Sedimentary evolution of Valsugana area in the geologic record of 61 “Borgo Valsugana” Sheet, SGI Meeting: The Geoscience paradigm: Resources, Risks and future perspectives, Potenza, 19–21 September 2023, 2023.
Rossato, S. and Mozzi, P.: Inferring LGM sedimentary and climatic changes in the southern Eastern Alps foreland through the analysis of a 14C ages database (Brenta megafan, Italy), Quaternary Sci. Rev., 148, 115–127, https://doi.org/10.1016/j.quascirev.2016.07.013, 2016.
Rossato, S., Monegato, G., Mozzi, P., Cucato, M., Gaudioso, B., and Miola, A.: Late Quaternary glaciations and connections to the piedmont plain in the prealpine environment: the middle and lower Astico Valley (NE Italy), Quaternary Int., 288, 8–24, https://doi.org/10.1016/j.quaint.2012.03.005, 2013.
Rossato, S., Carraro, A., Monegato, G., Mozzi, P., and Tateo, F.: Glacial dynamics in pre-Alpine narrow valleys during the Last Glacial Maximum inferred by lowland fluvial records (northeast Italy), Earth Surf. Dynam., 6, 809–828, https://doi.org/10.5194/esurf-6-809-2018, 2018.
Russo, E., Buzan, J., Lienert, S., Jouvet, G., Velasquez Alvarez, P., Davis, B., Ludwig, P., Joos, F., and Raible, C. C.: High-resolution LGM climate of Europe and the Alpine region using the regional climate model WRF, Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, 2024.
Ruszkiczay-Rüdiger, Z., Temovski, M., Kern, Z., Madarász, B., Milevski, I., Lachner, J., and Steier, P.: Late Pleistocene glacial advances, equilibrium-line altitude changes and paleoclimate in the Jakupica Mts (North Macedonia), Catena, 216, 106383, https://doi.org/10.1016/j.catena.2022.106383, 2022.
Samartin, S., Heiri, O., Kaltenrieder, P., Kuehl, N., and Tinner, W.: Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy, Quaternary Sci. Rev., 143, 107–119, https://doi.org/10.1016/j.quascirev.2016.04.005, 2016.
Schilling, D. H. and Hollin, J. T.: Numerical reconstructions of valley glaciers and small ice caps, in: The Last Great Ice Sheets, edited by: Denton, G. H. and Hughes, T. J., Wiley, New York, 207–220, 1981.
Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., and Preusser, F.: Modelling last glacial cycle ice dynamics in the Alps, The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, 2018.
Smith, M. J., Rose, J., and Booth, S.: Geomorphological mapping of glacial landforms from remotely sensed data: an evaluation of the principal data sources and an assessment of their quality, Geomorphology, 76, 148–165, https://doi.org/10.1016/j.geomorph.2005.11.001, 2006.
Spötl, C., Koltai, G., Jarosch, A. H., and Cheng, H.: Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps, Nat. Commun., 12, 1839, https://doi.org/10.1038/s41467-021-22090-7, 2021.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res.-Sol. Ea., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Tarquini, S., Isola, I., Favalli, M., Mazzzarini, F., Bisson, M., Pareschi, M.T., and Boschi, E.: TINITALY/01: a new Triangular Irregular Network of Italy, Ann. Geophys., 50, 407–425, https://doi.org/10.4401/ag-4424, 2007.
Tarquini, S., Isola, I., Favalli, M., Battistini, A., and Dotta, G.: TINITALY, a digital elevation model of Italy with a 10 meters cell size (Version 1.1), Istituto Nazionale di Geofisica e Vulcanologia (INGV), https://doi.org/10.13127/tinitaly/1.1, 2023.
Tomkins, M. D., Dortch, J. M., Hughes, P. D., Huck, J. J., Pallàs, R., Rodés, Á., Allard, J. L., Stimson, A. G., Bourlès, D., Rinterknecht, V., Jomelli, V., Rodríguez-Rodríguez, L., Copons, R., Barr, I. D., Darvill, C. M., and Bishop, T: Moraine crest or slope: An analysis of the effects of boulder position on cosmogenic exposure age, Earth Planet. Sc. Lett., 570, 117092, https://doi.org/10.1016/j.epsl.2021.117092, 2021.
van Husen, D.: Die Ostalpen in den Eiszeiten, Veröffentlichungen der Geologischen Bundesanst, 2, 1–24, 1987.
Valt, M., Cianfarra, P., and Valt., M.: Neve e clima sulle Alpi Italiane, Neve e Valanghe, 96, 1–15, 2022.
Velasquez, P., Messmer, M., and Raible, C. C.: The role of ice-sheet topography in the Alpine hydro-climate at glacial times, Clim. Past, 18, 1579–1600, https://doi.org/10.5194/cp-18-1579-2022, 2022.
Venzo, S.: I depositi quaternari e del neogene superiore nella bassa valle del Piave da Quero al Montello e del Paleopiave nella valle del Soligo (Treviso), Memorie degli Istituti di Geologia e Mineralogia dell'Università di Padova, 30, 1–64, 1977.
Višnjević, V., Herman, F., and Prasicek, G.: Climatic patterns over the European Alps during the LGM derived from inversion of the paleo-ice extent, Earth Planet. Sc. Lett., 538, 116185, https://doi.org/10.1016/j.epsl.2020.116185, 2020.
Wirsig, C., Zasadni, J., Christl, M., Akçar, N., and Ivy-Ochs, S.: Dating the onset of LGM ice surface lowering in the High Alps, Quaternary Sci. Rev., 143, 37–50, https://doi.org/10.1016/j.quascirev.2016.05.001, 2016.
Short summary
The work shows detailed reconstructions of the glaciers in the Valsugana area (south-eastern Alps) during the Last Glacial Maximum (LGM) and is supported by robust evidence and new exposure datings. These are the first ages for the internal sector of the south-eastern Alps. Local glaciers not connected with the major ice network were used for the calculation of their equilibrium line altitude. This let us estimate LGM palaeoprecipitation and compare it to Alpine palaeoclimatological models.
The work shows detailed reconstructions of the glaciers in the Valsugana area (south-eastern...