Articles | Volume 74, issue 2
https://doi.org/10.5194/egqsj-74-301-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/egqsj-74-301-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sediment storage quantification in the Black Forest highlights tectonic influence on typically wide and shallow valleys
Annette Sophie Bösmeier
CORRESPONDING AUTHOR
Institute of Environmental Social Sciences and Geography, University of Freiburg, Stefan-Meier-Str. 76, 79104 Freiburg, Germany
Jan Henrik Blöthe
Institute of Environmental Social Sciences and Geography, University of Freiburg, Stefan-Meier-Str. 76, 79104 Freiburg, Germany
Related authors
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Melanie Stammler, Jan Blöthe, Diego Cusicanqui, Simon Ebert, Rainer Bell, Xavier Bodin, and Lothar Schrott
EGUsphere, https://doi.org/10.5194/egusphere-2025-4630, https://doi.org/10.5194/egusphere-2025-4630, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Dry Andean (debris-covered) glaciers and rock glaciers are essential to river runoff by contributing meltwaters in this extremely arid area. We quantify surface lowering for 19 glaciers and 3 debris-covered glaciers, and unchanged velocities for 47 rock glaciers in a ground-truthed and Pléiades satellite imagery based integrative glacier-permafrost study on catchment-scale for 2019-2025. For this period, our findings indicate glacial decline next to permafrost stability.
Charlotte E. Engelmann, Frank Preusser, Alexander Fülling, Jakob Wilk, Elisabeth Eiche, Dennis Quandt, Stefan Hergarten, and Jan H. Blöthe
E&G Quaternary Sci. J., 74, 235–262, https://doi.org/10.5194/egqsj-74-235-2025, https://doi.org/10.5194/egqsj-74-235-2025, 2025
Short summary
Short summary
It is unclear since when and how meso-scale central European river systems have been dominated by human instead of natural influences. Here, the floodplain sediments of the Kinzig River, southwestern Germany, were studied as they recorded natural and human landscape changes. Sediment deposition phases were found, the modern phase of which coincides with increased deposition and heavy metal contaminations that correlate with mining records, indicating that the river system has shifted intensely over 1000 years.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Thomas O. Hoffmann, Yannik Baulig, Stefan Vollmer, Jan H. Blöthe, Karl Auerswald, and Peter Fiener
Earth Surf. Dynam., 11, 287–303, https://doi.org/10.5194/esurf-11-287-2023, https://doi.org/10.5194/esurf-11-287-2023, 2023
Short summary
Short summary
We analyzed more than 440 000 measurements from suspended sediment monitoring to show that suspended sediment concentration (SSC) in large rivers in Germany strongly declined by 50 % between 1990 and 2010. We argue that SSC is approaching the natural base level that was reached during the mid-Holocene. There is no simple explanation for this decline, but increased sediment retention in upstream headwaters is presumably the major reason for declining SSC in the large river channels studied.
Annette Sophie Bösmeier, Iso Himmelsbach, and Stefan Seeger
Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, https://doi.org/10.5194/nhess-22-2963-2022, 2022
Short summary
Short summary
Encouraging a systematic use of flood marks for more comprehensive flood risk management, we collected a large number of marks along the Kinzig, southwestern Germany, and tested them for plausibility and temporal continuance. Despite uncertainty, the marks appeared to be an overall consistent and practical source that may also increase flood risk awareness. A wide agreement between the current flood hazard maps and the collected flood marks moreover indicated a robust local hazard assessment.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Cited articles
Akaike, H.: Information theory and an extension of the maximum likelihood principle, in: 2nd Int. Symp. Inf. Theory, edited by: Petrov, B. N. and Csaki, F., Akademiai Kiado, Budapest, 267–281, 1973.
Ardies, G. W., Dalrymple, R. W., and Zaitlin, B. A.: Controls on the Geometry of Incised Valleys in the Basal Quartz Unit (Lower Cretaceous), Western Canada Sedimentary Basin, J. Sediment. Res., 72, 602–618, https://doi.org/10.1306/032101720602, 2002.
Behnia, P. and Blais-Stevens, A.: Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor, Canada, Nat. Hazards, 90, 1407–1426, https://doi.org/10.1007/s11069-017-3104-z, 2018.
Behrmann, J. H., Hermann, O., Horstmann, M., Tanner, D. C., and Bertrand, G.: Anatomy and kinematics of oblique continental rifting revealed: A three-dimensional case study of the southeast Upper Rhine graben (Germany), AAPG Bull., 87, 1105–1121, https://doi.org/10.1306/02180300153, 2003.
Blachowski, J.: Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: case study of the Walbrzych coal mine (SW Poland), Nat. Hazards, 84, 997–1014, https://doi.org/10.1007/s11069-016-2470-2, 2016.
Blöthe, J. H. and Korup, O.: Millennial lag times in the Himalayan sediment routing system, Earth Planet. Sci. Lett., 382, 38–46, https://doi.org/10.1016/j.epsl.2013.08.044, 2013.
Bösmeier, A. S., Himmelsbach, I., and Seeger, S.: Reliability of flood marks and practical relevance for flood hazard assessment in southwestern Germany, Nat. Hazards Earth Syst. Sci., 22, 2963–2979, https://doi.org/10.5194/nhess-22-2963-2022, 2022.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brown, A. G., Lespez, L., Sear, D. A., Macaire, J.-J., Houben, P., Klimek, K., Brazier, R. E., Van Oost, K., and Pears, B.: Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services, Earth-Sci. Rev., 180, 185–205, https://doi.org/10.1016/j.earscirev.2018.02.001, 2018.
Cloetingh, S., Cornu, T., Ziegler, P., and Beekman, F.: Neotectonics and intraplate continental topography of the northern Alpine Foreland, Earth-Sci. Rev., 74, 127–196, https://doi.org/10.1016/j.earscirev.2005.06.001, 2006.
Clubb, F., Mudd, S., Schildgen, T., Beek, P. V. D., Devrani, R., and Sinclair, H.: Himalayan valley-floor widths controlled by tectonics rather than water discharge, https://doi.org/10.21203/rs.3.rs-2065309/v1, 11 October 2022.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Couronné, R., Probst, P., and Boulesteix, A.-L.: Random forest versus logistic regression: a large-scale benchmark experiment, BMC Bioinformatics, 19, 270, https://doi.org/10.1186/s12859-018-2264-5, 2018.
Csatáriné Szabó, Z., Mikita, T., Négyesi, G., Varga, O. G., Burai, P., Takács-Szilágyi, L., and Szabó, S.: Uncertainty and Overfitting in Fluvial Landform Classification Using Laser Scanned Data and Machine Learning: A Comparison of Pixel and Object-Based Approaches, Remote Sens., 12, 3652, https://doi.org/10.3390/rs12213652, 2020.
Dambeck, R.: Beiträge zur spät- und postglazialen Fluß- und Landschaftsgeschichte im nördlichen Oberrheingraben, Dissertation, Johann Wolfgang Goethe-Universität, Frankfurt am Main, 2005.
David Raj, A., Kumar, S., Sooryamol, K. R., and Kalambukatt, J. G.: Soil erodibility mapping using remote sensing and in situ soil data with random forest model in a mountainous catchment of Indian Himalayas, Environ. Monit. Assess., 196, 1032, https://doi.org/10.1007/s10661-024-13173-1, 2024.
Deleplancque, B., Cojan, I., Beucher, H., Mehl, C., and Stab, O.: Spatial and temporal patterns of the upper Pleistocene alluvial fill deposits of the upstream Seine River alluvial plain, la Bassée, France, Geomorphology, 318, 148–161, https://doi.org/10.1016/j.geomorph.2018.06.005, 2018.
DWD: Historical daily station observation for Germany, DWD (Deutscher Wetterdienst) Climate Data Center (CDC) [data set], https://opendata.dwd.de/climate_environment/CDC, last access: 3 May 2021.
Egli, D., Mosar, J., Ibele, T., and Madritsch, H.: The role of precursory structures on Tertiary deformation in the Black Forest – Hegau region, Int. J. Earth Sci., 106, 2297–2318, https://doi.org/10.1007/s00531-016-1427-8, 2017.
Ellwanger, D., Wielandt-Schuster, U., Franz, M., and Simon, T.: The Quaternary of the southwest German Alpine Foreland (Bodensee-Oberschwaben, Baden-Württemberg, Southwest Germany), E&G Quaternary Sci. J., 60, 22, https://doi.org/10.3285/eg.60.2-3.07, 2011.
Faunt, C. C., Belitz, K., and Hanson, R. T.: Development of a three-dimensional model of sedimentary texture in valley-fill deposits of Central Valley, California, USA, Hydrogeol. J., 18, 625–649, https://doi.org/10.1007/s10040-009-0539-7, 2010.
Finnegan, N. J. and Dietrich, W. E.: Episodic bedrock strath terrace formation due to meander migration and cutoff, Geology, 39, 143–146, https://doi.org/10.1130/G31716.1, 2011.
Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley bottom flatness for mapping depositional areas, Water Resour. Res., 39, 2002WR001426, https://doi.org/10.1029/2002WR001426, 2003.
Gegg, L., Griebling, F. A., Jentz, N., and Wielandt-Schuster, U.: Towards a quantitative lithostratigraphy of Pleistocene glaciofluvial deposits in the southern Upper Rhine Graben, E&G Quaternary Sci. J., 73, 239–249, https://doi.org/10.5194/egqsj-73-239-2024, 2024.
Genuer, R., Poggi, J.-M., and Tuleau-Malot, C.: Variable selection using random forests, Pattern Recognit. Lett., 31, 2225–2236, https://doi.org/10.1016/j.patrec.2010.03.014, 2010.
Gibling, M. R.: Width and Thickness of Fluvial Channel Bodies and Valley Fills in the Geological Record: A Literature Compilation and Classification, J. Sediment. Res., 76, 731–770, https://doi.org/10.2110/jsr.2006.060, 2006.
Gregorutti, B., Michel, B., and Saint-Pierre, P.: Correlation and variable importance in random forests, Stat. Comput., 27, 659–678, https://doi.org/10.1007/s11222-016-9646-1, 2017.
Grimmer, J. C., Ritter, J. R. R., Eisbacher, G. H., and Fielitz, W.: The Late Variscan control on the location and asymmetry of the Upper Rhine Graben, Int. J. Earth Sci., 106, 827–853, https://doi.org/10.1007/s00531-016-1336-x, 2017.
Herzog, A., Hellwig, J., and Stahl, K.: An investigation of anthropogenic influences on hydrologic connectivity using model stress tests, Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024, 2024.
Hinderer, M.: Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads, Geodin. Acta, 14, 231–263, https://doi.org/10.1080/09853111.2001.11432446, 2001.
Hinderer, M.: From gullies to mountain belts: A review of sediment budgets at various scales, Sediment. Geol., 280, 21–59, https://doi.org/10.1016/j.sedgeo.2012.03.009, 2012.
Hoffmann, T., Erkens, G., Gerlach, R., Klostermann, J., and Lang, A.: Trends and controls of Holocene floodplain sedimentation in the Rhine catchment, CATENA, 77, 96–106, https://doi.org/10.1016/j.catena.2008.09.002, 2009.
Hofmann, F. M., Preusser, F., Schimmelpfennig, I., Léanni, L., and Aster Team: Late Pleistocene glaciation history of the southern Black Forest, Germany: 10 Be cosmic-ray exposure dating and equilibrium line altitude reconstructions in Sankt Wilhelmer Tal, J. Quat. Sci., 37, 688–706, https://doi.org/10.1002/jqs.3407, 2022.
Holbrook, J. and Schumm, S. A.: Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings, Tectonophysics, 305, 287–306, https://doi.org/10.1016/S0040-1951(99)00011-6, 1999.
Houben, P., Nolte, S., Rittweger, H., and Wunderlich, J.: Lateglacial and Holocene environmental change indicated by floodplain deposits of the Hessian Depression (Central Germany), in: River Basin Sediment Systems – Archives of Environmental Change, edited by: Woodward, J., Maddy, D., and Macklin, M., Taylor & Francis, https://doi.org/10.1201/9781439824672.ch8, 2001.
Jaboyedoff, M. and Derron, M.-H.: A new method to estimate the infilling of alluvial sediment of glacial valleys using a sloping local base level, Geogr. Fis. Din. Quat., 47–61, 2005.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT) [data set], https://srtm.csi.cgiar.org (last access: 1 June 2024), 2008.
Jaskó, S.: Environmental study of valley fill sediments, Environ. Geol. Water Sci., 20, 213–218, https://doi.org/10.1007/BF01706164, 1992.
Keller, W. and Borkowski, A.: Thin plate spline interpolation, J. Geod., 93, 1251–1269, https://doi.org/10.1007/s00190-019-01240-2, 2019.
Kitterød, N.-O. and Leblois, É.: Estimation of sediment thickness by solving Poisson's equation with bedrock outcrops as boundary conditions, Hydrol. Res., 52, 597–619, https://doi.org/10.2166/nh.2021.102, 2021.
Kursa, M. B. and Rudnicki, W. R.: Feature Selection with the Boruta Package, J. Stat. Softw., 36, https://doi.org/10.18637/jss.v036.i11, 2010.
Laubscher, H.: Jura kinematics and the Molasse Bassin, Eclogae Geol. Helvetiae, 85, 653–675, 1992.
LGRB (Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg): Geologische Karte von Baden-Württemberg 1 : 50 000 (GeoLa), LRGB, Freiburg [data set], https://metadaten.geoportal-bw.de/geonetwork/srv/api/records/9c35d1b0-6122-11e0-80e3-0800200c9a66 (last access: 19 September 2022), 2021.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News, 2, 18–22, 2002.
Luan, J., Zhang, C., Xu, B., Xue, Y., and Ren, Y.: The predictive performances of random forest models with limited sample size and different species traits, Fish. Res., 227, 105534, https://doi.org/10.1016/j.fishres.2020.105534, 2020.
LUBW: Amtliches Digitale Wasserwirtschaftliches Gewässernetz (AWGN) by the Baden-Württemberg State Institute for the Environment, Survey and Nature Conservation (LUBW) [data set], https://www.lubw.baden-wuerttemberg.de/wasser/awgn (last access: 14 March 2023), 2022.
Maaß, A.-L., Schüttrumpf, H., and Lehmkuhl, F.: Human impact on fluvial systems in Europe with special regard to today's river restorations, Environ. Sci. Eur., 33, 119, https://doi.org/10.1186/s12302-021-00561-4, 2021.
Mäckel, R.: Spät- und postglaziale Flußaktivität und Talentwicklung im Schwarzwald und Oberrheintiefland, in: Schwarzwald und Oberrheintiefland, vol. 36, edited by: Mäckel, R. and Metz, Bernhard, Selbstverlag des Institutes für Physische Geographie der Albert-Ludwigs-Universität Freiburg, 1997.
Mäckel, R.: Naturraum und Relief, Berichte Naturforschenden Ges. Zu Freibg. Im Br., 90, 2000.
Mäckel, R. and Röhrig, A.: Flußaktivität und Talentwicklung des Mittleren und Südlichen Schwarzwaldes und Oberrheintieflandes, Ber. Z. Dt. Landeskd., 65, 287–311, 1991.
Mäckel, R. and Uhlendahl, T.: Die Oberflächenformung des Zartener Beckens im Spät- und Postglazial, Berichte Naturforschenden Ges. Zu Freibg. Im Br., 99, 2009.
Mäckel, R. and Zollinger, G.: Fluvial Morphodynamics and Valley Development in the Central and Southern Black Forest during Late Quaternary Times, in: Landforms and Landform Evolution in West Germany, vol. 15, 243–252, ISBN 978-3-923381-18-0, 1989.
Mey, J., Scherler, D., Zeilinger, G., and Strecker, M. R.: Estimating the fill thickness and bedrock topography in intermontane valleys using artificial neural networks, J. Geophys. Res. Earth Surf., 120, 1301–1320, https://doi.org/10.1002/2014JF003270, 2015.
Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., and Nauss, T.: Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation, Environ. Model. Softw., 101, 1–9, https://doi.org/10.1016/j.envsoft.2017.12.001, 2018.
Michel, S., Duverger, C., Bollinger, L., Jara, J., and Jolivet, R.: Update on the seismogenic potential of the Upper Rhine Graben southern region, Nat. Hazards Earth Syst. Sci., 24, 163–177, https://doi.org/10.5194/nhess-24-163-2024, 2024.
Mol, J., Vandenberghe, J., and Kasse, C.: River response to variations of periglacial climate in mid-latitude Europe, Geomorphology, 33, 131–148, https://doi.org/10.1016/S0169-555X(99)00126-9, 2000.
Molnar, P., Anderson, R. S., and Anderson, S. P.: Tectonics, fracturing of rock, and erosion, J. Geophys. Res. Earth Surf., 112, 2005JF000433, https://doi.org/10.1029/2005JF000433, 2007.
Nivière, B., Bruestle, A., Bertrand, G., Carretier, S., Behrmann, J., and Gourry, J.-C.: Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany), Quat. Sci. Rev., 27, 541–555, https://doi.org/10.1016/j.quascirev.2007.11.018, 2008.
O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Process., 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.
Otto, J., Schrott, L., Jaboyedoff, M., and Dikau, R.: Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland), Earth Surf. Process. Landf., 34, 1726–1742, https://doi.org/10.1002/esp.1856, 2009.
Preusser, F., Büschelberger, M., Kemna, H. A., Miocic, J., Mueller, D., and May, J.-H.: Exploring possible links between Quaternary aggradation in the Upper Rhine Graben and the glaciation history of northern Switzerland, Int. J. Earth Sci., 110, 1827–1846, https://doi.org/10.1007/s00531-021-02043-7, 2021.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria [code], https://www.r-project.org/index.html (last access: 25 June 2025), 2022.
Reddy, S. and Dávalos, L. M.: Geographical sampling bias and its implications for conservation priorities in Africa, J. Biogeogr., 30, 1719–1727, https://doi.org/10.1046/j.1365-2699.2003.00946.x, 2003.
Rentschler, T., Werban, U., Ahner, M., Behrens, T., Gries, P., Scholten, T., Teuber, S., and Schmidt, K.: 3D mapping of soil organic carbon content and soil moisture with multiple geophysical sensors and machine learning, Vadose Zone J., 19, e20062, https://doi.org/10.1002/vzj2.20062, 2020.
Röhrig, A.: Elztal und nördliches Kaiserstuhl-Vorland, in: Schwarzwald und Oberrheintiefland, vol. 36, edited by: Mäckel, R. and Metz, Bernhard, Selbstverlag des Institutes für Physische Geographie der Albert-Ludwigs-Universität Freiburg, 1997.
Schillaci, S., Braun, A., and Kropáček, J.: Terrain analysis and landform recognition, in: Geomorphological Techniques, edited by: Clarke, L. E. and Nield, J. M., London, ISBN 0-415-11939-1, 2015.
Schoch, A., Blöthe, J. H., Hoffmann, T., and Schrott, L.: Multivariate geostatistical modeling of the spatial sediment distribution in a large scale drainage basin, Upper Rhone, Switzerland, Geomorphology, 303, 375–392, https://doi.org/10.1016/j.geomorph.2017.11.026, 2018.
Schrott, L., Hufschmidt, G., Hankammer, M., Hoffmann, T., and Dikau, R.: Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany, Geomorphology, 55, 45–63, https://doi.org/10.1016/S0169-555X(03)00131-4, 2003.
Schumacher, M. E.: Upper Rhine Graben: Role of preexisting structures during rift evolution, Tectonics, 21, https://doi.org/10.1029/2001TC900022, 2002.
Schumm, S. A.: The fluvial system, Wiley, New York, 338 p., ISBN 978-0-471-01901-5, 1977.
Schwarz, M. and Henk, A.: Evolution and structure of the Upper Rhine Graben: insights from three-dimensional thermomechanical modelling, Int. J. Earth Sci., 94, 732–750, https://doi.org/10.1007/s00531-004-0451-2, 2005.
Seidel, J. and Mäckel, R.: Holocene sediment budgets in two river catchments in the Southern Upper Rhine Valley, Germany, Geomorphology, 92, 198–207, https://doi.org/10.1016/j.geomorph.2006.07.041, 2007.
Straumann, R. K. and Korup, O.: Quantifying postglacial sediment storage at the mountain-belt scale, Geology, 37, 1079–1082, https://doi.org/10.1130/G30113A.1, 2009.
Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T.: Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC Bioinformatics, 8, 25, https://doi.org/10.1186/1471-2105-8-25, 2007.
Telbisz, T., Kovács, G., Székely, B., and Szabó, J.: Topographic swath profile analysis: a generalization and sensitivity evaluation of a digital terrain analysis tool, Z. Für Geomorphol., 57, 485–513, https://doi.org/10.1127/0372-8854/2013/0110, 2013.
Thierion, C., Longuevergne, L., Habets, F., Ledoux, E., Ackerer, P., Majdalani, S., Leblois, E., Lecluse, S., Martin, E., Queguiner, S., and Viennot, P.: Assessing the water balance of the Upper Rhine Graben hydrosystem, J. Hydrol., 424–425, 68–83, https://doi.org/10.1016/j.jhydrol.2011.12.028, 2012.
Tockner, K. and Stanford, J. A.: Riverine flood plains: present state and future trends, Environ. Conserv., 29, 308–330, https://doi.org/10.1017/S037689290200022X, 2002.
Venables, W. N. and Ripley, B. D.: Modern applied statistics with S, 4th edn., Springer, New York, ISBN 978-0387954578, 2002.
Von Suchodoletz, H., Pohle, M., Khosravichenar, A., Ulrich, M., Hein, M., Tinapp, C., Schultz, J., Ballasus, H., Veit, U., Ettel, P., Werther, L., Zielhofer, C., and Werban, U.: The fluvial architecture of buried floodplain sediments of the Weiße Elster River (Germany) revealed by a novel method combination of drill cores with two-dimensional and spatially resolved geophysical measurements, Earth Surf. Process. Landf., 47, 955–976, https://doi.org/10.1002/esp.5296, 2022.
Wang, L. and Liu, H.: An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling, Int. J. Geogr. Inf. Sci., 20, 193–213, https://doi.org/10.1080/13658810500433453, 2006.
Yilmaz, I.: Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine, Environ. Earth Sci., 61, 821–836, https://doi.org/10.1007/s12665-009-0394-9, 2010.
Zavareh, M., Maggioni, V., and Zhang, X.: Assessing the Efficiency of a Random Forest Regression Model for Estimating Water Quality Indicators, Meteorol. Hydrol. Water Manag., https://doi.org/10.26491/mhwm/183734, 2024.
Ziegler, A. and König, I. R.: Mining data with random forests: current options for real-world applications, WIREs Data Min. Knowl. Discov., 4, 55–63, https://doi.org/10.1002/widm.1114, 2014.
Zollinger, G.: Quartäre Geomorphogenese und Substratentwicklung am Schwarzwald-Westrand zwischen Freiburg und Müllheim (Südbaden), Geographisches Institut der Universität Basel, Basel, 202 pp., 1990.
Zollinger, G.: Die “Siensbacher Terrasse” im Mittleren Schwarzwald – eine pedostratigraphische Untersuchung, Berichte Naturforschenden Ges. Zu Freibg. Im Br., 94, 195–205, 2004.
Zollinger, G. and Mäckel, R.: Quartäre Geomorphodynamik im Einzugsgebiet des Sulzbaches und der Möhlin, Südbaden, Berichte Naturforschenden Ges. Zu Freibg. Im Br., 81–98, 1989.
Short summary
We estimated the thickness, spatial distribution, and volumes of alluvial valley fills in the southwestern Black Forest utilizing an extensive borehole database to compile local valley cross sections and model sediment depth above bedrock. Our results reveal considerable spatial heterogeneity and underscore the importance of tectonic boundary conditions on the valley infill in addition to further geologic, hydrologic, and climatologic conditions and processes interacting with fluvial dynamics.
We estimated the thickness, spatial distribution, and volumes of alluvial valley fills in the...
Special issue