Articles | Volume 72, issue 1
https://doi.org/10.5194/egqsj-72-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-72-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-method study of the Middle Pleistocene loess–palaeosol sequence of Köndringen, SW Germany
Lea Schwahn
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Tabea Schulze
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Alexander Fülling
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Christian Zeeden
Rock Physics and Borehole Geophysics, Leibniz Institute for Applied Geophysics, Hanover, Germany
Frank Preusser
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Tobias Sprafke
Center of Competence for Soils, BFH-HAFL, Zollikofen, Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Related authors
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Madhurima Marik, Elena Serra, Gilles Rixhon, and Frank Preusser
E&G Quaternary Sci. J., 74, 169–192, https://doi.org/10.5194/egqsj-74-169-2025, https://doi.org/10.5194/egqsj-74-169-2025, 2025
Short summary
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
Felix Martin Hofmann and Frank Preusser
E&G Quaternary Sci. J., 74, 1–35, https://doi.org/10.5194/egqsj-74-1-2025, https://doi.org/10.5194/egqsj-74-1-2025, 2025
Short summary
Short summary
Previous reconstructions conclude that the southern Black Forest, south-west Germany, temporarily hosted four ice caps during the Late Pleistocene (129 000–11 700 years before present). This work reviews existing studies on glacial landforms north-east of its highest summit, Feldberg (1493 m above sea level), in the light of new observations. Whilst this study largely confirms previous work, we reject and newly describe several glacial landforms.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Julia Meister, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 72, 185–187, https://doi.org/10.5194/egqsj-72-185-2023, https://doi.org/10.5194/egqsj-72-185-2023, 2023
Mathias Vinnepand, Peter Fischer, Ulrich Hambach, Olaf Jöris, Carol-Ann Craig, Christian Zeeden, Barry Thornton, Thomas Tütken, Charlotte Prud'homme, Philipp Schulte, Olivier Moine, Kathryn E. Fitzsimmons, Christian Laag, Frank Lehmkuhl, Wolfgang Schirmer, and Andreas Vött
E&G Quaternary Sci. J., 72, 163–184, https://doi.org/10.5194/egqsj-72-163-2023, https://doi.org/10.5194/egqsj-72-163-2023, 2023
Short summary
Short summary
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing detailed information on Quaternary environmental and climate changes. We present an integrative approach combining sedimentological, rock magnetic, and bulk geochemical data, as well as information on Sr and Nd isotope composition. The approach adds to a comprehensive understanding of LPS formation including changes in dust composition and associated circulation patterns during Quaternary climate changes.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Christian Zeeden, Jehangeer Ahmad Mir, Mathias Vinnepand, Christian Laag, Christian Rolf, and Reyaz Ahmad Dar
E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, https://doi.org/10.5194/egqsj-70-191-2021, 2021
Short summary
Short summary
We investigate two loess–palaeosol sequences in Kashmir. Magnetic enhancement of the loess was strong during stadial phases. Besides classical magnetic enhancement, wind vigour suggests partly strong winds. Grain sizes are dominantly in the silt range and comparable to data from central Asia, which do not suggest transport over high mountain ranges as required for non-local sources in Kashmir. Therefore, we suggest that the Kashmir loess is predominantly of local origin.
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Cited articles
Abdulkarim, M., Grema, H. M., Adamu, I. H., Mueller, D., Schulz, M., Ulbrich, M., Miocic, J. M., and Preusser, F.: Effect of using different chemical dispersing agents in grain size analyses of fluvial sediments via laser diffraction spectrometry, Methods Protoc., 4, 44,
https://doi.org/10.3390/mps4030044, 2021.
Andres, W., Bos, J. A. A., Houben, P., Kalis, A. J., Nolte, S., Rittweger, H., and Wunderlich, J.: Environmental change and fluvial activity during the
Younger Dryas in central Germany, Quatern. Int., 79, 89–100,
https://doi.org/10.1016/S1040-6182(00)00125-7, 2001.
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatte, C., Lang, A.,
Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition during
the Last Glacial in European loess: a high-resolution record from Nussloch,
Germany, Quaternary Sci. Rev., 28, 2955–2973,
https://doi.org/10.1016/j.quascirev.2009.08.001, 2009.
Antoine, P., Coutard, S., Bahain, J. J., Locht, J. L., Hérisson, D., and
Goval, E.: The last 750 ka in loess–palaeosol sequences from northern
France: environmental background and dating of the western European
Palaeolithic, J. Quaternary Sci., 36, 1293–1310,
https://doi.org/10.1002/jqs.3281, 2021.
Bibus, E.: Abtragungs- und Bodenbildungsphasen im Rißlöß, E&G Quaternary Sci. J., 25, 166–182, https://doi.org/10.3285/eg.25.1.14, 1974.
Bibus, E.: Zum Quartär im mittleren Neckarraum – Reliefentwicklung,
Löß/Paläobodensequenzen, Paläoklima, Tübinger
Geowissenschaftliche Arbeiten, D8, 236 pp., ISBN 3-88121-055-5, 2002.
Boenigk, W. and Frechen, M.: Zur Geologie der Deckschichten von Kärlich/Mittelrhein, E&G Quaternary Sci. J., 48, 38–49, https://doi.org/10.3285/eg.48.1.04, 1998.
Boenigk, W. and Frechen, M.: The loess record in sections at
Koblenz–Metternich and Tönchesberg in the Middle Rhine Area, Quatern. Int., 76, 201–209, https://doi.org/10.1016/S1040-6182(00)00103-8, 2001.
Bronger, A.: Lösse, ihre Verbraunungszonen und fossilen
Böden. Ein Beitrag zur Stratigraphie des oberen
Pleistozäns in Südbaden, Schriften des
Geographischen Instituts der Universität Kiel 24/2,
Geographisches Institut der Universität Kiel, Kiel, 113 pp., 1966.
Bronger, A.: Zur Klimageschichte des Quartärs von Südbaden auf
bodengeographischer Grundlage, Petermann. Geogr. Mitt., 113,
112–124, 1969.
Bronger, A.: Zur Mikromorphogenese und zum Tonmineralbestand quartärer
Lössböden in Südbaden, Geoderma, 3, 281–320,
https://doi.org/10.1016/0016-7061(70)90011-X, 1970.
Bronger, A.: Correlation of loess-paleosol sequences in East and Central
Asia with SE Central Europe: towards a continental Quaternary
pedostratigraphy and paleoclimatic history, Quatern. Int., 106, 11–31,
https://doi.org/10.1016/S1040-6182(02)00159-3, 2003.
Buylaert, J. P., Murray, A. S., Thomsen, K. J., and Jain, M.: Testing the
potential of an elevated temperature IRSL signal from K-feldspar, Radiat.
Meas., 44, 560–565, https://doi.org/10.1016/j.radmeas.2009.02.007, 2009.
Cohen, K. M. and Gibbard, P. L.: Global chronostratigraphical correlation
table for the last 2.7 million years, version 2019 QI-500, Quatern. Int., 500, 20–31, https://doi.org/10.1016/j.quaint.2019.03.009, 2019.
Degering, D. and Degering, A.: Change is the only constant
– Time-dependent dose rates in luminescence dating, Quat. Geochronol., 58,
101074, https://doi.org/10.1016/j.quageo.2020.101074, 2020.
EEA (European Environment Agency): European Digital Elevation Model (EU-DEM), version 1.1, Copernicus Land Monitoring Service 2016, European Union, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=download
(last access: 20 July 2022), 2016.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary Glaciations
– Extent and Chronology A Closer Look, Developments in Quaternary Sciences,
15, Elsevier, 1108 pp., ISBN 978-0-444-53447-7, 2011.
Erkens, G., Dambeck, R., Volleberg, K. P., Bouman, M. T. I. J., Bos, J. A.
A., Cohen, K. M., Wallinga, J., and Hoek, W. Z.: Fluvial terrace formation
in the northern Upper Rhine Graben during the last 20 000 years as a result
of allogenic controls and autogenic evolution, Geomorphology, 103, 476–495,
https://doi.org/10.1016/j.geomorph.2008.07.021, 2009.
Faershtein, G., Porat, N., and Matmon, A.: Natural saturation of OSL and
TT-OSL signals of quartz grains from Nilotic origin, Quat. Geochronol., 49,
146–152, https://doi.org/10.1016/j.quageo.2018.04.002, 2019.
FAO (Food and Agriculture Organization of the United Nations): Guidelines
for soil description. Food and Agriculture Organization of the United
Nations, 4th edn., Roma, Italy, ISBN 92-5-105521-1, 2006.
Fischer, P., Jöris, O., Fitzsimmons, K., Vinnepand, M., Prud'homme, C.,
Schulte, P., Hatté, C., Hambach, U., Lindauer, S., Zeeden, C., Peric,
Z., Lehmkuhl, F., Wunderlich, T., Wilken, D., Schirmer, W., and Vött,
A.: Millennial-scale terrestrial ecosystem responses to Upper Pleistocene
climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-
Sequence (Middle Rhine Valley, Germany), Catena, 196, 104913,
https://doi.org/10.1016/j.catena.2020.104913, 2021.
Frechen, M.: Systematic Thermoluminescence Dating of 2 Loess Profiles from
the Middle Rhine Area (F.R.G.), Quaternary Sci. Rev., 11, 93–101,
https://doi.org/10.1016/0277-3791(92)90048-D, 1992.
Frechen, M.: Thermolumineszens-Datierungen an Lössen des Tönchesberges aus der Osteifel, E&G Quaternary Sci. J., 44, 79–93, https://doi.org/10.3285/eg.44.1.08, 1994.
Frechen, M., Brückner, H., and Radtke, U.: A comparison of different
TL-techniques on loess samples from Rheindahlen (FRG), Quaternary Sci. Rev., 11, 109–113, https://doi.org/10.1016/0277-3791(92)90050-I, 1992.
Frechen, M., Terhorst, B., and Rähle, W.: The Upper Pleistocene loess/palaeosol sequence from Schatthausen in North Baden-Württemberg, E&G Quaternary Sci. J., 56, 212–227, https://doi.org/10.3285/eg.56.3.05, 2007.
Gabriel, G., Ellwanger, D., Hoselmann, C., Weidenfeller, M.,
Wielandt-Schuster, U., and The Heidelberg Basin Project Team: The Heidelberg
Basin, Upper Rhine Graben (Germany): a unique archive of Quaternary
sediments in Central Europe, Quatern. Int., 292,43–58,
https://doi.org/10.1016/j.quaint.2012.10.044, 2013.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical Dating of single and multiple Grains of Quartz from Jinmium Rock
Shelter, Northern Australia: Part I, Experimental Design and Statistical
Models, Archaeometry, 41, 2, 339–364, 1999.
Guenther, E. W.: Sedimentpetrographische Untersuchung von Lössen-Zur
Gliederung des Eiszeitalters und zur Einordnung paläolithischer
Kulturen, Teil 1 Methodische Grundlagen mit Erläuterung an Profilen,
Böhlau Verlag Köln Graz, p. 10, 1961.
Guenther, E. W.: Zur Gliederung der Lösse des südlichen Oberrheintals, E&G Quaternary Sci. J., 37, 67–78, https://doi.org/10.3285/eg.37.1.07, 1987.
Hädrich, F.: Die Böden der Emmendinger
Vorbergzone (Südliches Oberrheingebiet), Berichte der
Naturforschenden Gesellschaft Freiburg i. Br., 56, 23–76, 1965.
Hädrich, F.: Zur Methodik der Lößdifferenzierung auf der Grundlage der Carbonatverteilung, E&G Quaternary Sci. J., 26, 95–117, https://doi.org/10.3285/eg.26.1.06, 1975.
Hädrich, F.: Paläoböden im südlichen Oberrhein Gebiet, Berichte der Naturforschenden Gesellschaft Freiburg i. Br., 70, 29–48, 1980.
Hädrich, F. and Lamparski, F.: Ein rißzeitlicher
Eiskeil im Lößaufschluß von Buggingen
(Südbaden) mit einem Beitrag zur Lößkindelgenese, Berichte der Naturforschenden Gesellschaft Freiburg i. Br., 74, 25–47, 1984.
Hädrich, F. and Stahr, K.: Die Böden
des Breisgaus und angrenzender Gebiete, Berichte der Naturforschenden
Gesellschaft Freiburg i. Br., 91., 148 pp., 2001.
Haesaerts, P., Dupuis, C., Spagna, P., Damblon, F., Balescu, S., Jadin, I.,
Lavachery, P., Pirson, S., and Bosquet, D.: Révision du cadre
chronostratigraphique des assemblages Levallois issus des nappes alluviales
du Pléistocène moyen dans le bassin de la Haine (Belgique), in: Actes
du XXVIIIe Congrès Préhistorique de France, Amiens, France, 30 May–4 June 2016, Société préhistorique de France, Paris, France, 179–199, 2019.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for
estimating organic and carbonate content in sediments: reproducibility and
comparability of results, J. Paleolimnol., 25, 101–110,
https://doi.org/10.1023/A:1008119611481, 2001.
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A.,
Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M.,
Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P., Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands, Quaternary Sci. Rev., 106, 186–205, https://doi.org/10.1016/j.quascirev.2014.05.021, 2014.
Hofmann, F. M., Rauscher, F., McCreary, W., Bischoff, J.-P., and Preusser, F.: Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany, E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, 2020.
Houben, P.: Spatio-temporally variable response of fluvial systems to Late
Pleistocene climate change: a case study from central Germany, Quaternary Sci. Rev., 22, 2125–2140, https://doi.org/10.1016/S0277-3791(03)00181-1, 2003.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspars being
measured in optical dating or in thermoluminescence dating, Ancient TL, 15,
11–13, 1997.
Jordanova, D., Laag, C., Jordanova, N., Lagroix, F., Georgieva, B.,
Ishlyamski, D., and Guyodo, Y.: A detailed magnetic record of Pleistocene
climate and distal ash dispersal during the last 800 kyrs – The Suhia
Kladenetz quarry loess-paleosol sequence near Pleven (Bulgaria), Glob.
Planet. Change, 214, 103840, https://doi.org/10.1016/j.gloplacha.2022.103840,
2022.
Junkmanns, J.: Les ensembles lithiques d'Achenheim d'apres la collection de
Paul Wernert, Bull. Soc. Préhist. Fr., 92, 26–36, 1995.
Kadereit, A., Kind, C.-J., and Wagner, G. A.: The chronological position of
the Lohne Soil in the Nussloch loess section – re-evaluation for a European
loess-marker horizon, Quaternary Sci. Rev., 59, 67–86,
https://doi.org/10.1016/j.quascirev.2012.10.026, 2013.
Kars, R. H., Reimann, T., Ankjærgaard, C., and Wallinga, J.: Bleaching
of the post-IR IRSL signal: new insights for feldspar luminescence dating,
Boreas, 43, 780–791, https://doi.org/10.1111/bor.12082, 2014.
Keßler, G. and Laiber, J.: Erläuterungen zu Blatt
7813 Emmendingen, Geologisches Landesamt Baden-Württemberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 1991.
Kleinmann, A., Müller, H., Lepper, J., and Waas, D.: Nachtigall: A
continental sediment and pollen sequence of the Saalian Complex in
NW-Germany and its relationship to the MIS-framework, Quatern. Int., 241,
97–110, https://doi.org/10.1016/j.quaint.2010.10.005, 2011.
Knipping, M.: Early and Middle Pleistocene pollen assemblages of deep core
drillings in the northern Upper Rhine Graben, Germany, Neth. J. Geosci., 87,
51–65, https://doi.org/10.1017/S0016774600024045, 2008.
Kock, S., Huggenberger, P., Preusser, F., Rentzel., P., and Wetzel, A.:
Formation and evolution of the Lower Terrace of the Rhine River in the area
of Basel, Swiss J. Geosci. 102, 307–321, https://doi.org/10.1007/s00015-009-1325-1, 2009.
Konert, M. and Vandenberghe, J.: Comparison of laser grain size analysis
with pipette and sieve analysis: a solution for the underestimation of the
clay fraction, Sedimentology, 44, 523–535, https://doi.org/10.1046/j.1365-3091.1997.d01-38.x, 1997.
Krauss, L., Kappenberg, A., Zens, J., Kehl, M., Schulte, P., Zeeden, C.,
Eckmeier, E., and Lehmkuhl, F.: Reconstruction of Late Pleistocene
paleoenvironments in southern Germany using two high-resolution
loess-paleosol records, Palaeogeogr. Palaeocl., 509, 58–76, https://doi.org/10.1016/j.palaeo.2017.11.043, 2018.
Kukla G. J.: Pleistocene land-sea correlations. 1: Europe. Earth-Sci. Rev.,
13, 307–374, https://doi.org/10.1016/0012-8252(77)90125-8, 1977.
Laag C., Hambach U., Zeeden C., Lagroix F., Guyodo Y., Veres V.,
Jovanović M., and Marković S. B.: A Detailed Paleoclimate Proxy
Record for the Middle Danube Basin Over the Last 430 kyr: A Rock Magnetic
and Colorimetric Study of the Zemun Loess-Paleosol Sequence, Front. Earth
Sci., 9, 600086, https://doi.org/10.3389/feart.2021.600086, 2021.
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., and Kels, H.:
Loess-palaeosol sequences at the northern European loess belt in Germany:
Distribution, geomorphology and stratigraphy, Quaternary Sci. Rev., 153, 11–30, https://doi.org/10.1016/j.quascirev.2016.10.008, 2016.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary,
Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J.,
Marković, S. B., Obreht, I., Sümergi, P., Veres, D., Zeeden, C.,
Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes
of Europe – Mapping, geomorphology, and zonal differentiation, Earth-Sci.
Rev., 215, 103496, https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Li, B. and Li, S.-H.: Luminescence dating of K-feldspar from sediments: A
protocol without anomalous fading correction, Quat. Geochronol, 6, 468–479,
https://doi.org/10.1016/j.quageo.2011.05.001, 2011.
Li, Y., Tsukamoto, S., Frechen, M., and Gabriel, G.: Timing of fluvial
sedimentation in the Upper Rhine Graben since the Middle Pleistocene:
constraints from quartz and feldspar luminescence dating, Boreas, 47,
256–270, https://doi.org/10.1111/bor.12266, 2018.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ18O records, Paleoceanography, 20, PA1003,
https://doi.org/10.1029/2004PA001071, 2005.
Lowick, S. E., Trauerstein, M., and Preusser, F.: Testing the application
of post IR-IRSL dating to fine grain waterlain sediments, Quat. Geochronol.,
8, 33–40, https://doi.org/10.1016/j.quageo.2011.12.003, 2012.
Marković, S. B., Stevens, T., Kukla, G. J., Hambach, U., Fitzsimmons, K.
E., Gibbard, P., Buggle, B., Zech, M., Guo, Z., Hao, Q., Wu, H., O'Hara
Dhand, K., Smalley, I. J., Újvári, G., Sümegi, P., Timar-Gabor,
A., Veres, D., Sirocko, F., Vasiljević, D. A., Jary, Z., Svensson, A.,
Jović, V., Lehmkuhl, F., Kovács, J., and Svirčev, Z.: Danube
loess stratigraphy – Towards a pan-European loess stratigraphic model,
Earth-Sci. Rev., 148, 228–258, https://doi.org/10.1016/j.earscirev.2015.06.005, 2015.
May, J.-H., Marx, S. K., Reynolds, W., Clark-Balzan, L., Jacobsen, G. E.,
and Preusser, F.: Establishing a chronological framework for a late
Quaternary seasonal swamp in the Australian “Top End”, Quat. Geochronol.,
47, 81–92, https://doi.org/10.1016/j.quageo.2018.05.010, 2018.
Mercier, J.-L. and Jeser, N.: The glacial history of the Vosges Mountains,
Developments in Quaternary Science, 2,113–118,
https://doi.org/10.1016/S1571-0866(04)80061-7, 2004.
Meszner, S., Kreutzer, S., Fuchs, M., and Faust, D.: Late Pleistocene
landscape dynamics in Saxony, Germany: Paleoenvironmental reconstruction
using loess-paleosol sequences, Quatern. Int., 296, 94–107,
https://doi.org/10.1016/j.quaint.2012.12.040, 2013.
Meyers, P. A. and Lallier-Verges, E.: Lacustrine sedimentary organic matter
records of Late Quaternary paleoclimates, J. Paleolimnol., 21, 345–372,
https://doi.org/10.1023/A:1008073732192, 1999.
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud'homme,
C., and Rousseau, D.-D.: The impact of Last Glacial climate variability in
west-European loess revealed by radiocarbon dating of fossil earthworm
granules, P. Natl. Acad. Sci. USA, 114, 6209–6214,
https://doi.org/10.1073/pnas.1614751114, 2017.
Moska, P. and Bluszcz, A.: Luminescence dating of loess profiles in Poland,
Quatern. Int., 296, 51–60, https://doi.org/10.1016/j.quaint.2012.09.004, 2013.
Necula, C., Dimofte, D., and Panaiotu, C.: Rock magnetism of a
loess-palaeosol sequence from the western Black Sea shore (Romania),
Geophys. J. Int., 202, 1733–1748, https://doi.org/10.1093/gji/ggv250, 2015.
Pécsi, M. and Richter, G.: Löss: Herkunft – Gliederung –
Landschaften, Z. Geomorphol., N.F., Supplementband 98,
Bornträger, Berlin & Stuttgart, 391 pp., ISBN 3-443-21098-8, 1996.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates
for luminescence and ESR dating: Large depths and long-term time variations,
Radiat. Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Preusser, F.: Towards a chronology of the Late Pleistocene in the northern
Alpine Foreland, Boreas, 33, 195–210,
https://doi.org/10.1111/j.1502-3885.2004.tb01141.x, 2004.
Preusser F. and Fiebig M.: European Middle Pleistocene loess
chronostratigraphy: Some considerations based on evidence from the Wels
site, Austria, Quatern. Int., 198, 37–45,
https://doi.org/10.1016/j.quaint.2008.07.006, 2009.
Preusser, F., Drescher-Schneider, R., Fiebig, M., and Schlüchter, C.:
Re-interpretation of the Meikirch pollen record, Swiss Alpine Foreland, and
implications for Middle Pleistocene chronostratigraphy, J. Quaternary Sci., 20, 607–620, https://doi.org/10.1002/jqs.930, 2005.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Preusser, F., Büschelberger, M., Kemna, H. A., Miocic, J., Mueller, D.,
and May, J.-H.: Quaternary aggradation in the Upper Rhine Graben linked to
the glaciation history of northern Switzerland, Int. J. Earth Sci., 110,
1827–1846, https://doi.org/10.1007/s00531-021-02043-7, 2021.
Qin, J., Chen, J., Li, Y., and Zhou, L.: Initial sensitivity change of
K-feldspar pIRIR signals due to uncompensated decrease in electron trapping
probability: evidence from radiofluorescence measurements, Radiat. Meas., 120, 131–136, https://doi.org/10.1016/j.radmeas.2018.06.017, 2018.
Rahimzadeh, N., Sprafke, T., Thiel, C., Terhorst, B., and Frechen, M.: A comparison of polymineral and K-feldspar post-infrared infrared stimulated luminescence ages of loess from Franconia, southern Germany, E&G Quaternary Sci. J., 70, 53–71, https://doi.org/10.5194/egqsj-70-53-2021, 2021.
Rees-Jones, J.: Optical Dating Of Young Sediments Using Fine-Grain Quartz,
Ancient TL, 13, 9–14, 1995.
Richter, D., Richter, A., and Dornich, K.: Lexsyg smart – a luminescence
detection system for dosimetry, material research and dating application,
Geochronometria, 42, 202–209, https://doi.org/10.1515/geochr-2015-0022,
2015.
Roberts, H. M., Durcan, J. A., and Duller, G. A. T.: Exploring
procedures for the rapid assessment of optically stimulated luminescence
range-finder ages, Radiat. Meas., 44, 582–587,
https://doi.org/10.1016/j.radmeas.2009.02.006, 2009.
Rodrigues, T., Alonso-García, M., Hodell, D. A., Rufino, M., Naughton,
F., Grimalt, J. O., Voelker, A. H. L., and Abrantes, F.: A 1-Ma record of
sea surface temperature and extreme cooling events in the North Atlantic: A
perspective from the Iberian Margin, Quaternary Sci. Rev., 172, 118–130,
https://doi.org/10.1016/j.quascirev.2017.07.004, 2017.
Rösner, U.: Die Mainfränkische Lößprovinz.
Sedimentologische, pedologische und morphodynamische Prozesse der
Lößbildung währenddes Pleistozäns in Mainfranken, Erlanger
Geographische Arbeiten, 301 pp., 1990.
Schmidt, E. D., Frechen, M., Murray, A. S., Tsukamoto, S., and Bittmann, F.:
Luminescence chronology of the loess record from the Tönchesberg section: A comparison of using quartz and feldspar as dosimeter to
extend the age range beyond the Eemian, Quatern. Int., 234, 10–22,
https://doi.org/10.1016/j.quaint.2010.07.012, 2011a.
Schmidt, E. D., Semmel, A., and Frechen, M.: Luminescence dating of the loess/palaeosol sequence at the gravel quarry Gaul/Weilbach, Southern Hesse (Germany), E&G Quaternary Sci. J., 60, 9, https://doi.org/10.3285/eg.60.1.08, 2011b.
Scholger, R. and Terhorst, B.: Magnetic excursions recorded in the Middle to Upper Pleistocene loess/palaeosol sequence Wels-Aschet (Austria), E&G Quaternary Sci. J., 62, 14–21, https://doi.org/10.3285/eg.62.1.02, 2013.
Schulte, P. and Lehmkuhl, F.: The difference of two laser diffraction
patterns as an indicator for post-depositional grain size reduction in
loess-paleosol sequences, Palaeogeogr. Palaeocl., 509,
126–136, https://doi.org/10.1016/j.palaeo.2017.02.022, 2018.
Schulte, P., Sprafke, T., Rodrigues, L., and Fitzsimmons, K. E.: Are fixed
grain size ratios useful proxies for loess sedimentation dynamics?
Experiences from Remizovka, Kazakhstan, Aeolian Res., 31, 131–140,
https://doi.org/10.1016/j.aeolia.2017.09.002, 2018.
Schulze, T., Schwahn, L., Fülling, A., Zeeden, C., Preusser, F., and Sprafke, T.: Investigating the loess–palaeosol sequence of Bahlingen-Schönenberg (Kaiserstuhl), southwestern Germany, using a multi-methodological approach, E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, 2022.
Semmel, A.: Studien über den Verlauf jungpleistozäner Formung in Hessen, Frankfurter geographische Hefte, 44, 1–133, 1968.
Semmel, A. and Fromm, K.: Ergebnisse paläomagnetischer Untersuchungen an quartären Sedimenten des Rhein-Main-Gebiets, E&G Quaternary Sci. J., 27, 18–25, https://doi.org/10.3285/eg.27.1.02, 1976.
Smedley, R. K., Duller, G. A. T., and Roberts, H. M.: Bleaching of the
post-IR IRSL signal from individual grains of K-feldspar: Implications for
single-grain dating, Radiat. Meas., 79, 33–42,
https://doi.org/10.1016/j.radmeas.2015.06.003, 2015.
Sprafke, T.: Löss in Niederösterreich – Archiv quartärer Klima-
und Landschaftsveränderungen, Würzburg University Press, https://doi.org/10.25972/WUP-978-3-95826-039-9, 2016.
Sprafke, T. and Obreht, I.: Loess: Rock, sediment or soil – What is missing for its definition?, Quatern. Int., 399, 198–207, https://doi.org/10.1016/j.quaint.2015.03.033, 2016.
Sprafke, T., Thiel, C., and Terhorst, B.: From micromorphology to
palaeoenvironment: The MIS 10 to MIS 5 record in Paudorf (Lower Austria),
Catena, 117, 60–72, https://doi.org/10.1016/j.catena.2013.06.024, 2014.
Sprafke, T., Schulte, P., Meyer-Heintze, S., Händel, M., Einwögerer,
T., Simon, U., Peticka, R., Schäfer, C., Lehmkuhl, F., and Terhorst, B.:
Paleoenvironments from robust loess stratigraphy using high-resolution color
and grain-size data of the last glacial Krems-Wachtberg record (NE Austria),
Quaternary Sci. Rev., 248, 106602, https://doi.org/10.1016/j.quascirev.2020.106602, 2020.
Stebich, M., Höfer, D., Mingram, J., Nowaczyk, N.,
Rohrmüller, J., Mrlina, J., and Kämpf,
H.: A contribution towards the palynostratigraphical classification of the
Middle Pleistocene in Central Europe: The pollen record of the Neualbenreuth
Maar, northeastern Bavaria (Germany), Quaternary Sci. Rev., 250, 106681,
https://doi.org/10.1016/j.quascirev.2020.106681, 2020.
Stephan, H.-J.: Climato-stratigraphic subdivision of the Pleistocene in Schleswig-Holstein, Germany and adjoining areas: status and problems, E&G Quaternary Sci. J., 63, 3–18, https://doi.org/10.3285/eg.63.1.01, 2014.
Stojakowits P., Mayr C., Ivy-Ochs S., Preusser F., Reitner J., and Spötl
C.: Environments at the MIS 3/2 transition in the northern Alps and their
foreland, Quatern. Int., 581/582, 99–113, https://doi.org/10.1016/j.quaint.2020.08.003, 2021.
Strunk, H.: Das Quartärprofil von Hagelstadt im Bayerischen Tertiärhügelland, E&G Quaternary Sci. J., 40, 85–96, https://doi.org/10.3285/eg.40.1.06, 1990.
Terhorst, B.: Korrelation von mittelpleistozänen Löss-/Paläobodensequenzen in Oberösterreich mit einer marinen Sauerstoffisotopenkurve, E&G Quaternary Sci. J., 56, 172–185, https://doi.org/10.3285/eg.56.3.03, 2007.
Terhorst, B.: A stratigraphic concept for Middle Pleistocene Quaternary sequences in Upper Austria , E&G Quaternary Sci. J., 62, 4–13, https://doi.org/10.3285/eg.62.1.01, 2013.
Terhorst, B., Frechen, M., and Reitner, J.: Chronostratigraphische
Ergebnisse aus Lößprofilen der Inn-und Traun-Hochterrassen in
Oberösterreich, Z. Geomorphol., Supplementband, 127,
213–232, 2002.
Terhorst, B., Sedov, S., Sprafke, T., Peticzka, R., Meyer-Heintze, S.,
Kühn, P., and Solleiro Rebolledo, E.: Austrian MIS 3/2 loess–palaeosol
records – Key sites along a west–east transect, Palaeogeogr.
Palaeocl., 418, 43–56, https://doi.org/10.1016/j.palaeo.2014.10.020, 2015.
Thiel, C., Buylaert, J.-P., Murray, A. S., Terhorst, B., Hofer, I.,
Tsukamoto, S., and Frechen, M.: Luminescence dating of the Stratzing loess
profile (Austria) – testing the potential of an elevated temperature
post-IR IRSL protocol, Quatern. Int., 234, 23–31,
https://doi.org/10.1016/j.quaint.2010.05.018, 2011a.
Thiel, C., Buylaert, J.-P., Murray, A. S., Terhorst, B., Tsukamoto, S., Frechen, M., and Sprafke, T.: Investigating the chronostratigraphy of prominent palaeosols in Lower Austria using post-IR IRSL dating, E&G Quaternary Sci. J., 60, 11, https://doi.org/10.3285/eg.60.1.10, 2011b.
Thiel, C., Terhorst, B., Jaburová, I., Buylaert, J. P., Murray, A. S.,
Fladerer, F. A., Damm, B., Frechen, M., and Ottner, F.: Sedimentation and
erosion processes in Middle to Late Pleistocene sequences exposed in the
brickyard of Langenlois/Lower Austria, Geomorphology, 135, 295–307,
https://doi.org/10.1016/j.geomorph.2011.02.011, 2011c.
Thiel, C., Horvaìth, E., and Frechen, M.: Revisiting the loess/palaeosol
sequence in Paks, Hungary: A post-IR IRSL based chronology for the “Young
Loess Series”, Quatern. Int., 319, 88–98,
https://doi.org/10.1016/j.quaint.2013.05.045, 2014.
Tucci, M., Krahn, K.J., Richter, D., van Kolfschoten, T., Rodríguez
Álvarez, B., Verheijen, I., Serangeli, J., Lehmann, J., Degering, D.,
Schwalb, A., and Urban, B.: Evidence for the age and timing of environmental
change associated with a Lower Palaeolithic site within the Middle
Pleistocene Reinsdorf sequence of the Schöningen coal mine, Germany,
Palaeogeogr. Palaeocl., 569, 110309, https://doi.org/10.1016/j.palaeo.2021.110309, 2021.
Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful
proxy for process identification, Earth-Sci. Rev., 121, 18–30,
https://doi.org/10.1016/j.earscirev.2013.03.001, 2013.
Van Husen, D. and Reitner, J. M.: An Outline of the Quaternary Stratigraphy of Austria, E&G Quaternary Sci. J., 60, 24, https://doi.org/10.3285/eg.60.2-3.09, 2011.
Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L.J.,
and Skjemstad, J. O.: Visible, near infrared, mid infrared or combined
diffuse reflectance spectroscopy for simultaneous assessment of various soil
properties, Geoderma, 131, 59–75, https://doi.org/10.1016/j.geoderma.2005.03.007, 2006.
Weidenfeller, M. and Knipping, M.: Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin, E&G Quaternary Sci. J., 57, 270–285, https://doi.org/10.3285/eg.57.3-4.1, 2009.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated
luminescence characteristics and their relevance in single-aliquot
regeneration dating protocols, Radiat. Meas., 41, 369–391,
https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Zander, A. and Hilgers, A.: Potential and limits of OSL, TT-OSL, IRSL and pIRIR290 dating methods applied on a Middle Pleistocene sediment record of Lake El'gygytgyn, Russia, Clim. Past, 9, 719–733, https://doi.org/10.5194/cp-9-719-2013, 2013.
Zeeden, C. and Hambach, U.: Magnetic susceptibility properties of loess from
the Willendorf archaeological site: Implications for the
syn/post-depositional interpretation of magnetic fabric, Front. Earth Sci.,
8, 599491, https://doi.org/10.3389/feart.2020.599491, 2021.
Zeeden, C., Kels, H., Hambach, U., Schulte, P., Protze, J., Eckmeier, E.,
Markovic, S. B., Klasen, N., and Lehmkuhl, F.: Three climatic cycles
recorded in a loess-palaeosol sequence at Semlac (Romania) – Implications
for dust accumulation in south-eastern Europe, Quaternary Sci. Rev., 154,
130–142, https://doi.org/10.1016/j.quascirev.2016.11.002, 2016.
Zeeden, C., Mir, J. A., Vinnepand, M., Laag, C., Rolf, C., and Dar, R. A.: Local mineral dust transported by varying wind intensities forms the main substrate for loess in Kashmir, E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, 2021.
Zens, J., Schulte, P., Klasen, N., Krauß, L., Pirson, S., Burow, C.,
Brill, D., Eckmeier, E., Kels, H., Zeeden, C., Spagna, P., and Lehmkuhl, F.:
OSL chronologies of paleoenvironmental dynamics recorded by loess-paleosol
sequences from Europe: Case studies from the Rhine-Meuse area and the Neckar
Basin, Palaeogeogr. Palaeocl, 509, 105–125,
https://doi.org/10.1016/j.palaeo.2017.07.019, 2018.
Zhang, J.: Behavior of the electron trapping probability change in IRSL
dating of K-feldspar: A dose recovery study, Quat. Geochronol., 44, 38–46,
https://doi.org/10.1016/j.quageo.2017.12.001, 2018.
Zhang, J. and Li, S.-H.: Review of the Post-IR IRSL Dating Protocols of
K-Feldspar, Methods Protoc., 3, 7, https://doi.org/10.3390/mps3010007, 2020.
Zöller, L., Stremme, H., and Wagner, G.A.: Thermolumineszenz-Datierung
an Löss-Paläoboden-Sequenzen von Nieder-, Mittel- und
Oberrhein/Bundesrepublik Deutschland, Chem. Geol., 73, 39–62,
https://doi.org/10.1016/0168-9622(88)90020-6, 1988.
Zöller, L., Fischer, M., Jary, Z., Antoine, P., and Krawczyk, M.: Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages, E&G Quaternary Sci. J., 71, 59–81, https://doi.org/10.5194/egqsj-71-59-2022, 2022.
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial...