Articles | Volume 74, issue 2
https://doi.org/10.5194/egqsj-74-169-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-74-169-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Luminescence dating of alluvial sediments from the Quaternary fan–terrace sequence of the lower Bruche valley, Upper Rhine Graben, France
Madhurima Marik
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Elena Serra
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Gilles Rixhon
University of Strasbourg, UMR LIVE 7362-CNRS-UNISTRA-ENGEES, 67083 Strasbourg, France
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Related authors
No articles found.
Gilles Rixhon, Julia Meister, and Ingmar Unkel
E&G Quaternary Sci. J., 74, 147–149, https://doi.org/10.5194/egqsj-74-147-2025, https://doi.org/10.5194/egqsj-74-147-2025, 2025
Short summary
Short summary
This article is the preface of the special issue "Quaternary research in times of change – inspired by INQUA Roma 2023". It is a result of the XXI INQUA Congress held in Rome in July 2023. It briefly presents the nine contributions published in this volume.
Hélène Tissoux, Magali Rizza, Claire Aupart, Gilles Rixhon, Pierre G. Valla, Manon Boulay, Philippe Lach, and Pierre Voinchet
EGUsphere, https://doi.org/10.5194/egusphere-2025-182, https://doi.org/10.5194/egusphere-2025-182, 2025
Short summary
Short summary
This study, using ESR, OSL, and LA-ICPMS trace element analyses, reveals significant relationships between quartz OSL/ESR sensitivities and bedrock characteristics. Trace element compositions appear to influence the OSL and ESR-Ti sensitivities, the last being weak in quartz extracted from metamorphic or deformed rocks. Pressure may take a part in OSL/ESR-Ti sensitivities variability while ESR Al intensities could be linked to initial fluid composition and crystallization conditions
Felix Martin Hofmann and Frank Preusser
E&G Quaternary Sci. J., 74, 1–35, https://doi.org/10.5194/egqsj-74-1-2025, https://doi.org/10.5194/egqsj-74-1-2025, 2025
Short summary
Short summary
Previous reconstructions conclude that the southern Black Forest, south-west Germany, temporarily hosted four ice caps during the Late Pleistocene (129 000–11 700 years before present). This work reviews existing studies on glacial landforms north-east of its highest summit, Feldberg (1493 m above sea level), in the light of new observations. Whilst this study largely confirms previous work, we reject and newly describe several glacial landforms.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Elena Serra, Pierre G. Valla, Romain Delunel, Natacha Gribenski, Marcus Christl, and Naki Akçar
Earth Surf. Dynam., 10, 493–512, https://doi.org/10.5194/esurf-10-493-2022, https://doi.org/10.5194/esurf-10-493-2022, 2022
Short summary
Short summary
Alpine landscapes are transformed by several erosion processes. 10Be concentrations measured in river sediments at the outlet of a basin represent a powerful tool to quantify how fast the catchment erodes. We measured erosion rates within the Dora Baltea catchments (western Italian Alps). Our results show that erosion is governed by topography, bedrock resistance and glacial imprint. The Mont Blanc massif has the highest erosion and therefore dominates the sediment flux of the Dora Baltea river.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Cited articles
Abdulkarim, M., Chapkanski, S., Ertlen, D., Mahmood, H., Obioha, E., Preusser, F., Rambeau, C., Salomon, F., Schiemann, M., and Schmitt, L.: Morpho-sedimentary characteristics of Holocene paleochannels in the Upper Rhine alluvial plain, France, E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, 2022.
Abdulkarim, M., Schmitt, L., Fülling, A., Rambeau, C., Ertlen, D., Mueller, D., Chapkanski, S., and Preusser, F.: Late glacial to Holocene fluvial dynamics in the Upper Rhine alluvial plain, France, Quat. Res., 121, 109–131, https://doi.org/10.1017/qua.2024.22, 2024.
Antoine, P., Lautridou, J. P., and Laurent, M.: Long-term fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climatic variations and sea-level changes, Geomorphology, 33, 183–207, https://doi.org/10.1016/S0169-555X(99)00122-1, 2000.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for feldspar IRSL using SAR, Radiat. Meas., 37, 487–492, https://doi.org/10.1016/S1350-4487(03)00018-0, 2003.
Bailey, R. M., Smith, B. W., and Rhodes, E. J.: Partial bleaching and the decay form characteristics of quartz OSL, Radiat. Meas., 27, 123–136, https://doi.org/10.1016/S1350-4487(96)00157-6, 1997.
Baulig, H.: Questions de morphologie vosgienne et rhénane (Premier article), in: Annales de géographie, Armand Colin, Vol. 31, 132–154, https://doi.org/10.3406/geo.1922.10257, 1922.
Bösken, J. J. and Schmidt, C.: Direct and indirect luminescence dating of tephra: A review, J. Quat. Sci., 35, 39–53, https://doi.org/10.1002/jqs.3160, 2020.
Bøtter-Jensen, L., Thomsen, K. J., and Jain, M.: Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry, Radiat. Meas., 45, 253–257, https://doi.org/10.1016/j.radmeas.2009.11.030, 2010.
Bridgland, D. R. and Westaway, R.: Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon, Geomorphology, 98, 285–315, https://doi.org/10.1016/j.geomorph.2006.12.032, 2008.
Buraczynski, J. and Butrym, J.: La datation des loess du profil d'Achenheim (Alsace) à l'aide de la méthode de thermoluminescence, Quaternaire, 21, 201–209, https://doi.org/10.3406/quate.1984.1514, 1984.
Buylaert, J. P., Murray, A. S., Thomsen, K. J., and Jain, M.: Testing the potential of an elevated temperature IRSL signal from K-feldspar, Radiat. Meas., 44, 560–565, https://doi.org/10.1016/j.radmeas.2009.02.007, 2009.
Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R.: A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments, Boreas, 41, 435–451, https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012.
Carbiener, R.: Le grand Ried d'Alsace. Ecologie d'un paysage, Bulletin de la Société Industrielle de Mulhouse, 734, 15–44, 1969.
Castela, P. and Tricart, J.: Une coupe typique du cône de déjections nivo-périglaciaire de la Bruche: La carrière Zimmer à Lingolsheim, Sciences Géologiques, bulletins et mémoires, 11, 3–14, https://doi.org/10.3406/sgeol.1958.1178, 1958.
Chamberlain, E. L. and Wallinga, J.: Seeking enlightenment of fluvial sediment pathways by optically stimulated luminescence signal bleaching of river sediments and deltaic deposits, Earth Surf. Dynam., 7, 723–736, https://doi.org/10.5194/esurf-7-723-2019, 2019.
Cheng, H., Zhang, H., Spötl, C., Baker, J., Sinha, A., Li, H., and Edwards, R. L.: Timing and structure of the Younger Dryas event and its underlying climate dynamics, P. Natl. A. Sci., 117, 23408–23417, https://doi.org/10.1073/pnas.2007869117, 2020.
Choi, J. H., Murray, A. S., Cheong, C. S., and Hong, S. C.: The dependence of dose recovery experiments on the bleaching of natural quartz OSL using different light sources, Radiat. Meas., 44, 600–605, https://doi.org/10.1016/j.radmeas.2009.02.018, 2009.
Colarossi, D., Duller, G. A., and Roberts, H. M.: Exploring the behaviour of luminescence signals from feldspars: implications for the single aliquot regenerative dose protocol, Radiat. Meas., 109, 35–44, https://doi.org/10.1016/j.radmeas.2017.07.005, 2018.
Cunningham, A. C., Wallinga, J., Hobo, N., Versendaal, A. J., Makaske, B., and Middelkoop, H.: Re-evaluating luminescence burial doses and bleaching of fluvial deposits using Bayesian computational statistics, Earth Surf. Dynam., 3, 55–65, https://doi.org/10.5194/esurf-3-55-2015, 2015.
Degering, D. and Degering, A.: Change is the only constant – Time-dependent dose rates in luminescence dating, Quat. Geochronol., 58, 101074, https://doi.org/10.1016/j.quageo.2020.101074, 2020.
Duller, G. A. T.: Distinguishing quartz and feldspar in single grain luminescence measurements, Radiat. Meas., 37, 161–165, https://doi.org/10.1016/S1350-4487(02)00170-1, 2003.
Duller, G. A. T.: Luminescence Dating: Guidelines on using luminescence dating in archaeology, English Heritage Trust, 45, http://hdl.handle.net/2160/39553 (last access: 24 February 2025), 2008.
Elkadi, J., King, G. E., Lehmann, B., and Herman, F.: Reducing variability in OSL rock surface dating profiles, Quat. Geochronol., 64, 101169, https://doi.org/10.1016/j.quageo.2021.101169, 2021.
Erkens, G., Dambeck, R., Volleberg, K. P., Bouman, M. T. I. J., Bos, J. A. A., Cohen, K. M., Wallinga, J., and Hoek, W. Z.: Fluvial terrace formation in the northern Upper Rhine Graben during the last 20000 years as a result of allogenic controls and autogenic evolution, Geomorphology, 103, 476–495, https://doi.org/10.1016/j.geomorph.2008.07.021, 2009.
Euzen, C., Chabaux, F., Rixhon, G., Preusser, F., Eyrolle, F., Chardon, V., Zander, A. M., Badariotti, D., and Schmitt, L.: Multi-method geochronological approach to reconstruct post-1800 floodplain sedimentation in the upper Rhine plain, France, Quat. Geochronol., 83, 101561, https://doi.org/10.1016/j.quageo.2024.101561, 2024.
Fiebig, M. and Preusser, F.: Investigating the amount of zeroing in modern sediments of River Danube, Austria, Quat. Geochronol., 2, 143–149, https://doi.org/10.1016/j.quageo.2006.09.001, 2007.
Flageollet, J. C.: Sur Les Traces Des Glaciers Vosgiens, CNRS éditions, Paris, 212, ISBN 2-271-05960-7, 2002.
Fu, X. and Li, S. H.: A modified multi-elevated-temperature post-IR IRSL protocol for dating Holocene sediments using K-feldspar, Quat. Geochronol., 17, 44–54, https://doi.org/10.1016/j.quageo.2013.02.004, 2013.
Fuchs, M. C., Gloaguen, R., Krbetschek, M., and Szulc, A.: Rates of river incision across the main tectonic units of the Pamir identified using optically stimulated luminescence dating of fluvial terraces, Geomorphology, 216, 79–92, https://doi.org/10.1016/j.geomorph.2014.03.027, 2014.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models, Archaeometry, 41, 339–364, https://doi.org/10.1111/j.1475-4754.1999.tb00987.x,1999.
Gegg, L., Jacob, L., Moine, O., Nelson, E., Penkman, K. E., Schwahn, F., Stojakowits P., White. D., Wielandt-Schuster U., and Preusser, F.: Climatic and tectonic controls on deposition in the Heidelberg Basin, Upper Rhine Graben, Germany, Quat. Sci. Rev., 345, 109018, https://doi.org/10.1016/j.quascirev.2024.109018, 2024.
Gegg, L., Moine, O., Stojakowits, P., and Preusser, F.: Sediment dynamics, neotectonic activity and palaeoenvironments recorded in the Quaternary infill of the central Upper Rhine Graben, Quat. Sci. Adv., 18, 100284, https://doi.org/10.1016/j.qsa.2025.100284, 2025.
Godfrey-Smith, D. I., Huntley, D. J., and Chen, W. H.: Optical dating studies of quartz and feldspar sediment extracts, Quat. Sci. Rev., 7, 373–380, https://doi.org/10.1016/0277-3791(88)90032-7, 1988.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors: update, Ancient Tl, 29, 5–8, https://doi.org/10.26034/la.atl.2011.443, 2011.
Guérin, G., Christophe, C., Philippe, A., Murray, A. S., Thomsen, K. J., Tribolo, C., Urbanova, P., Jain, M., Guibert, P., Mercier, N., Kreutzer, S., and Lahaye, C.: Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model, Quat. Geochronol., 41, 163–173, https://doi.org/10.1016/j.quageo.2017.04.002, 2017.
Guo, Y. J., Zhang, J. F., Qiu, W. L., Hu, G., Zhuang, M. G., and Zhou, L. P.: Luminescence dating of the Yellow River terraces in the Hukou area, China, Quat. Geochronol., 10, 129–135, https://doi.org/10.1016/j.quageo.2012.03.002, 2012.
Houben, P.: Spatio-temporally variable response of fluvial systems to Late Pleistocene climate change: a case study from central Germany, Quat. Sci. Rev., 22, 2125–2140, https://doi.org/10.1016/S0277-3791(03)00181-1, 2003.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating, Ancient TL, 15, 11–13, https://doi.org/10.26034/la.atl.1997.271, 1997.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Can. J. Earth Sci., 38, 1093–1106, https://doi.org/10.1139/e01-013, 2001.
Ishii, Y.: Luminescence dating reveals a rapid response to climate change of fluvial terrace formation along the Ani River, northeastern Japan, during the last glacial period, Quat. Geochronol., 70, 101307, https://doi.org/10.1016/j.quageo.2022.101307, 2022.
Ishii, Y. and Ito, K.: Luminescence dating of sand matrices within gravelly fluvial deposits: Assessing the plausibility of beta dose rate calculation, Quat. Sci. Adv., 13, 100160, https://doi.org/10.1016/j.qsa.2023.100160, 2024.
Jautzy, T., Herrault, P.-A., Chardon, V., Schmitt, L., and Rixhon, G.: Measuring river planform changes from remotely sensed data – a Monte Carlo approach to assessing the impact of spatially variable error, Earth Surf. Dynam., 8, 471–484, https://doi.org/10.5194/esurf-8-471-2020, 2020.
Jautzy, T., Schmitt, L., and Rixhon, G.: Historical geomorphological adjustments of an Upper Rhine sub-tributary over the two last centuries (Bruche River, France), Géomorphologie: relief, processus, environnement, 28, 53–72, https://doi.org/10.4000/geomorphologie.16661, 2022.
Jautzy, T., Rixhon, G., Braucher, R., Delunel, R., Valla, P. G., Schmitt, L., and Team, A.: Cosmogenic (un-)steadiness revealed by paired-nuclide catchment-wide denudation rates in the formerly half-glaciated Vosges Mountains (NE France), Earth Planet. Sc. Lett., 625, 118490, https://doi.org/10.1016/j.epsl.2023.118490, 2024.
Jenkins, G. T. H., Duller, G. A. T., Roberts, H. M., Chiverrell, R. C., and Glasser, N. F.: A new approach for luminescence dating glaciofluvial deposits – High precision optical dating of cobbles, Quat. Sci. Rev., 192, 263–273, https://doi.org/10.1016/j.quascirev.2018.05.036, 2018.
Kars, R. H., Wallinga, J., and Cohen, K. M.: A new approach towards anomalous fading correction for feldspar IRSL dating – Tests on samples in field saturation, Radiat. Meas., 43, 786–790, https://doi.org/10.1016/j.radmeas.2008.01.021, 2008.
Kenworthy, M. K., Rittenour, T. M., Pierce, J. L., Sutfin, N. A., and Sharp, W. D.: Luminescence dating without sand lenses: An application of OSL to coarse-grained alluvial fan deposits of the Lost River Range, Idaho, USA, Quat. Geochronol., 23, 9–25, https://doi.org/10.1016/j.quageo.2014.03.004, 2014.
King, G. E. and Burow, C.: Calc_Huntley2006: Apply the Huntley (2006) model, Function version 0.4.1, Luminescence: Comprehensive Luminescence Dating Data Analysis, edited by: Kreutzer, S., Burow, C., Dietz, M., Fuchs, MC, Schmidt, C., Fischer, M., and Friedrich, J., R package version 0.9.0.109, https://CRAN.R-project.org/package=Luminescence (last access: 14 January 2025), 2019.
King, G. E., Burow, C., Roberts, H. M., and Pearce, N. J.: Age determination using feldspar: evaluating fading-correction model performance, Radiat. Meas., 119, 58–73, https://doi.org/10.1016/j.radmeas.2018.07.013, 2018.
Kock, S., Huggenberger, P., Preusser, F., Rentzel, P., and Wetzel, A.: Formation and evolution of the Lower Terrace of the Rhine River in the area of Basel, Swiss J. Geosci., 102, 307–321, https://doi.org/10.1007/s00015-009-1325-1, 2009.
Kolb, T., Fuchs, M., and Zöller, L.: Deciphering fluvial landscape evolution by luminescence dating of river terrace formation: A case study from Northern Bavaria, Germany, Zeitschrift Für Geomorphologie, Supplementary Issue, 60, 29-48, https://doi.org/10.1127/zfg_suppl/2015/S-00193, 2016.
Kreutzer, S.: calc_FadingCorr: apply a fading correction according to Huntley and Lamothe (2001) for a given g-value and a given tc. Function version 0.4. 2, edited by: Kreutzer, S., Burow, C., Dietze, M., Fuchs, M. C., Schmidt, C., Fischer, M., and Friedrich, J.: Luminescence: Comprehensive Luminescence Dating Data Analysis, R package version 0.9, 8-9000, https://CRAN.R-project.org/package=Luminescence (last access: 10 February 2025), 2020.
Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., Fischer, M., and Fuchs, M.: Introducing an R package for luminescence dating analysis, Ancient TL, 30, 1–8, https://doi.org/10.26034/la.atl.2012.457, 2012.
Lautridou, J. P., Sommé, J., Heim, J., Puisségur, J. J., and Rousseau, D. D.: La stratigraphie des loess et formations fluviatiles d'Achenheim (Alsace): Nouvelles données bioclimatiques et corrélations avec les séquences pléistocènes de la France du Nord-Ouest, Quaternaire, 22, 125–132, https://doi.org/10.3406/quate.1985.1536, 1985.
Li, B. and Li, S. H.: Investigations of the dose-dependent anomalous fading rate of feldspar from sediments, J. Phys. D: Appl. Phys., 41, 225502, https://doi.org/10.1088/0022-3727/41/22/225502, 2008.
Li, B. and Li, S. H.: Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction, Quat. Geochronol., 6, 468–479, https://doi.org/10.1016/j.quageo.2011.05.001, 2011.
Li, B. and Li, S. H.: Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar, Quat. Geochronol., 10, 24–31, https://doi.org/10.1016/j.quageo.2011.12.005, 2012.
Li, B., Jacobs, Z., Roberts, R., and Li, S. H.: Review and assessment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence, Geochronometria, 41, 178–201, https://doi.org/10.2478/s13386-013-0160-3, 2014.
Macklin, M. G., Benito, G., Gregory, K. J., Johnstone, E., Lewin, J., Michczyñska, D. J., Soja, R. Starkel, L., and Thorndycraft, V. R.: Past hydrological events reflected in the Holocene fluvial record of Europe, Catena, 66, 145–154, https://doi.org/10.1016/j.catena.2005.07.015, 2006.
Mahadev, R., Singh, A. K., and Jaiswal, M. K.: Application of luminescence age models to heterogeneously bleached quartz grains from flood deposits in Tamilnadu, southern India: Reconstruction of past flooding, Quatern. Int., 513, 95–106, https://doi.org/10.1016/j.quaint.2019.02.037, 2019.
Maire, G.: La Basse-Bruche: cône de piedmont et dynamique actuelle, PhD Thesis, Université de Strasbourg, Faculté de géographie et d'aménagement, 138 pp., https://doi.org/10.3406/sgeol.1967.1320, 1966.
Maire, G.: Aspects de l'évolution quaternaire de la vallée inférieure de la Bruche, Sciences Géologiques, Bulletins et Mémoires, 20, 175–184, https://doi.org/10.3406/sgeol.1967.1320, 1967.
Marik, M., Serra, E., Gegg, L., Wölki, D., and Preusser, F.: Combined different luminescence dating approaches on fluvial gravel deposits from the southern upper Rhine graben, Quat. Geochronol., 82, 101536, https://doi.org/10.1016/j.quageo.2024.101536, 2024.
Millot, G., Camez, T., and Wernert, P.: Evolution des Minéraux argileux dans les Loess et les Lehms d'Achenheim (Alsace), Sciences Géologiques, Bulletins et Mémoires, 10, 17–19, https://doi.org/10.3406/sgeol.1957.1163, 1957.
Mueller, D., Preusser, F., Buechi, M. W., Gegg, L., and Deplazes, G.: Luminescence properties and dating of glacial to periglacial sediments from northern Switzerland, Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, 2020.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32, 57–73, https://doi.org/10.1016/S1350-4487(99)00253-X, 2000.
Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J. P., and Jain, M.: Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals, Radiat. Meas., 47, 688–695, https://doi.org/10.1016/j.radmeas.2012.05.006, 2012.
Nivière, B., Bruestle, A., Bertrand, G., Carretier, S., Behrmann, J., and Gourry, J. C.: Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany), Quat. Sci. Rev., 27, 541–555, https://doi.org/10.1016/j.quascirev.2007.11.018, 2008.
Notebaert, B. and Verstraeten, G.: Sensitivity of West and Central European river systems to environmental changes during the Holocene: A review, Earth-Sci. Rev., 103, 163–182, https://doi.org/10.1016/j.earscirev.2010.09.009, 2010.
Olley, J. M., Caitcheon, G. G., and Roberts, R. G.: The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence, Radiat. Meas., 30, 207–217, https://doi.org/10.1016/S1350-4487(99)00040-2, 1999.
Pagel, M.: The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Vosges, France, Mineral. Mag., 46, 149–161, https://doi.org/10.1180/minmag.1982.046.339.01, 1982.
Peral, M., Marchegiano, M., Verheyden, S., Goderis, S., Van Helden, T., Vanhaecke, F., Van Acker, T., Jia, X., Cheng, H, Fiebig, J., Fourcade, T., Snoeck, C., and Claeys, P.: A new insight of the MIS 3 Dansgaard-Oeschger climate oscillations in western Europe from the study of a Belgium isotopically equilibrated speleothem, Quat. Sci. Rev., 329, 108564, https://doi.org/10.1016/j.quascirev.2024.108564, 2024.
Polymeris, G. S., Giannoulatou, V., Paraskevopoulos, K. M., Pagonis, V., and Kitis, G.: Anomalous fading in thermoluminescence signal of ten different K-feldspar samples and correlation to structural state characteristics, Radiat. Meas., 155, 106789, https://doi.org/10.1016/j.radmeas.2022.106789, 2022.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations, Radiat. Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Preusser, F. and Degering, D.: Luminescence dating of the Niederweningen mammoth site, Switzerland, Quat. Int., 164, 106–112, https://doi.org/10.1016/j.quaint.2006.12.002, 2007.
Preusser, F., Blei, A., Graf, H., and Schlüchter, C.: Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: Methodological aspects and stratigraphical conclusions, Boreas, 36, 130–142, https://doi.org/10.1111/j.1502-3885.2007.tb01187.x, 2007.
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J. Q. G.: Luminescence dating: basics, methods and applications, E&G Quaternary Sci. J., 57, 95–149, https://doi.org/10.3285/eg.57.1-2.5, 2008.
Preusser, F., May, J. H., Eschbach, D., Trauerstein, M., and Schmitt, L.: Infrared stimulated luminescence dating of 19th century fluvial deposits from the upper Rhine River, Geochronometria, 43, 131–142, https://doi.org/10.1515/geochr-2015-0045, 2016.
Preusser, F., Büschelberger, M., Kemna, H. A., Miocic, J., Mueller, D., and May, J. H.: Exploring possible links between Quaternary aggradation in the Upper Rhine Graben and the glaciation history of northern Switzerland, Int. J. Earth Sci., 110, 1827–1846, https://doi.org/10.1007/s00531-021-02043-7, 2021.
Preusser, F., Degering, D., Fülling, A., and Miocic, J.: Complex Dose Rate Calculations in Luminescence Dating of Lacustrine and Palustrine Sediments from Niederweningen, Northern Switzerland, Geochronometria, 50, 28–49, https://doi.org/10.2478/geochr-2023-0003, 2023.
Reimann, T., Thomsen, K. J., Jain, M., Murray, A. S., and Frechen, M.: Single-grain dating of young sediments using the pIRIR signal from feldspar, Quat. Geochronol., 11, 28–41, https://doi.org/10.1016/j.quageo.2012.04.016, 2012.
Richter, D., Woda, C., and Dornich, K.: A new quartz for γ-transfer calibration of radiation sources, Geochronometria, 47, 23–34, https://doi.org/10.2478/geochr-2020-0020, 2020.
Riedesel, S., Bell, A. M. T., Duller, G. A. T., Finch, A. A., Jain, M., King, G. E., Pearce, N. J., and Roberts, H. M.: Exploring sources of variation in thermoluminescence emissions and anomalous fading in alkali feldspars, Radiat. Meas., 141, 106541, https://doi.org/10.1016/j.radmeas.2021.106541, 2021.
Riedesel, S., Guérin, G., Thomsen, K. J., Sontag-González, M., Blessing, M., Botha, G. A., Hellers, M., Möller, G., Peffeköver, A., Sommer, C., Zander, A., and Will, M.: A direct comparison of single-grain and multi-grain aliquot luminescence dating of feldspars from colluvial deposits in KwaZulu-Natal, South Africa, Geochronology, 7, 59–81, https://doi.org/10.5194/gchron-7-59-2025, 2025.
Rittenour, T. M.: Luminescence dating of fluvial deposits: Applications to geomorphic, palaeoseismic and archaeological research, Boreas, 37, 613–635, https://doi.org/10.1111/j.1502-3885.2008.00056.x, 2008.
Rixhon, G., Braucher, R., Bourles, D., Siame, L., Bovy, B., and Demoulin, A.: Quaternary river incision in NE Ardennes (Belgium) – Insights from 10Be 26Al dating of river terraces, Quat. Geochronol., 6, 273–284, https://doi.org/10.1016/j.quageo.2010.11.001, 2011.
Serra, E., Mueller, D., Gegg, L., Firla, G., Piccoli, F., Hergarten, S., Margirier, A., and Preusser, F.: Combined single grain and cobble luminescence dating of poorly bleached glaciofluvial deposits from the Swiss Alpine foreland, Quat. Geochronol., 87, 101650, https://doi.org/10.1016/j.quageo.2025.101650, 2025.
Smedley, R. K., Buylaert, J. P., and Újvári, G.: Comparing the accuracy and precision of luminescence ages for partially-bleached sediments using single grains of K-feldspar and quartz, Quat. Geochronol., 53, 101007, https://doi.org/10.1016/j.quageo.2019.101007, 2019.
Spooner, N. A.: The anomalous fading of infrared-stimulated luminescence from feldspars, Radiat. Meas., 23, 625–632, https://doi.org/10.1016/1350-4487(94)90111-2, 1994.
Starnberger, R., Rodnight, H., and Spötl, C.: Luminescence dating of fine-grain lacustrine sediments from the Late Pleistocene Unterangerberg site (Tyrol, Austria), Austrian J. Earth Sc., 106, 4–15, https://doi.org/10.26034/la.atl.2013.476, 2013.
Théobald, N.: Les alluvions anciennes au sud de la Bruche et aux environs d'Obernai (Bas-Rhin), Sciences Géologiques, Bulletins et Mémoires, 8, 83–104, https://doi.org/10.3406/sgeol.1955.1148, 1955.
Thiel, C., Buylaert, J. P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., and Frechen, M.: Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol, Quat. Int., 234, 23–31, https://doi.org/10.1016/j.quaint.2010.05.018, 2011.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas., 43, 1474–1486, https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Tsukamoto, S. and Duller, G. A. T.: Anomalous fading of various luminescence signals from terrestrial basaltic samples as Martian analogues, Radiat. Meas., 43, 721–725, https://doi.org/10.1016/j.radmeas.2007.10.025, 2008.
Wallinga, J.: Optically stimulated luminescence dating of fluvial deposits: A review, Boreas, 31, 303–322, https://doi.org/10.1111/j.1502-3885.2002.tb01076.x, 2002.
Wintle, A. G.: Anomalous fading of thermo-luminescence in mineral samples, Nature, 245, 143–144, https://doi.org/10.1038/245143a0, 1973.
Wuscher, P.: Loess, alluvions et dépôts de pente du Fossé rhénan en Alsace de l'Eemien à l'Anthropocène: Approche pédosédimentaire, géomorphologie et chronostratigraphie, PhD thesis, Université de Strasbourg, 599, https://theses.hal.science/tel-03986431 (last access: 20 January 2025), 2021.
Wuscher, P.: Loess, alluvions et dépôts de pente du Fossé rhénan en Alsace de l'Eemien à l'Anthropocène: Approche pédosédimentaire, géomorphologie et chronostratigraphie. Résumé de thèse, Quaternaire, 34, 135–138, https://doi.org/10.4000/quaternaire.17113, 2023.
Zhang, J. F., Qiu, W. L., Hu, G., and Zhou, L. P.: Determining the age of terrace formation using luminescence dating – A Case of the Yellow River terraces in the Baode area, China, Methods and Protocols, 3, 17, https://doi.org/10.3390/mps3010017, 2020.
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
This study examines the evolution of the lower Bruche River valley in north-eastern France...