Articles | Volume 70, issue 1
https://doi.org/10.5194/egqsj-70-53-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-70-53-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparison of polymineral and K-feldspar post-infrared infrared stimulated luminescence ages of loess from Franconia, southern Germany
Neda Rahimzadeh
CORRESPONDING AUTHOR
S3 Geochronology, Leibniz Institute for Applied Geophysics, Hannover, 30655, Germany
Tobias Sprafke
Institute of Geography, University of Bern, Bern, 3012, Switzerland
Christine Thiel
Federal Seismological Survey, Federal Institute for Geosciences and
Natural Resources, Hannover, 30655, Germany
Birgit Terhorst
Institute of Geography and Geology, Julius-Maximilians University of Würzburg, Würzburg, 97074, Germany
Manfred Frechen
S3 Geochronology, Leibniz Institute for Applied Geophysics, Hannover, 30655, Germany
Related authors
No articles found.
Tobias Sprafke, Robert Peticzka, Christine Thiel, and Birgit Terhorst
DEUQUA Spec. Pub., 5, 41–54, https://doi.org/10.5194/deuquasp-5-41-2024, https://doi.org/10.5194/deuquasp-5-41-2024, 2024
Christine Thiel, Michael Kenzler, Hans-Jürgen Stephan, Manfred Frechen, Brigitte Urban, and Melanie Sierralta
E&G Quaternary Sci. J., 72, 57–72, https://doi.org/10.5194/egqsj-72-57-2023, https://doi.org/10.5194/egqsj-72-57-2023, 2023
Short summary
Short summary
Geological glacial features such as moraines can be used to construct the environment of former times. While sands may indicate colder phases, soils and peat preserved witness warm phases. Using various dating techniques, the ages of such features can be obtained. This is important in order to get an understanding of the climate of the past, in this study on the extent of the ice marginal position in Schleswig-Holstein.
Tobias Sprafke
E&G Quaternary Sci. J., 70, 221–224, https://doi.org/10.5194/egqsj-70-221-2021, https://doi.org/10.5194/egqsj-70-221-2021, 2021
Short summary
Short summary
This work is an invited retrospective to the seminal paper of Fink (1956). Fink combined field evidence from geology, geomorphology, and soil science to provide a holistic framework of Quaternary stratigraphy and paleoenvironmental evolution in the Austrian Alpine foreland. This paper is an outstanding example of the relevance of interdisciplinary perspectives to understand landscape evolution. With a few exceptions in detail, the findings of Fink remain largely valid until today.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Related subject area
Geochronology
Older than expected: fluvial aggradation of the Rhine's main terrace at Kärlich dated around 1.5 Ma by electron spin resonance
Geometry, chronology and dynamics of the last Pleistocene glaciation of the Black Forest
Chronological and sedimentological investigations of the Late Pleistocene succession in Osterbylund (Schleswig-Holstein, Germany)
Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages
Luminescence dating of eolian and fluvial archives in the middle and lower Danube catchment and the paleoenvironmental implications
10Be-based exploration of the timing of deglaciation in two selected areas of southern Norway
New chronological constraints on the timing of Late Pleistocene glacier advances in northern Switzerland
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Christine Thiel, Michael Kenzler, Hans-Jürgen Stephan, Manfred Frechen, Brigitte Urban, and Melanie Sierralta
E&G Quaternary Sci. J., 72, 57–72, https://doi.org/10.5194/egqsj-72-57-2023, https://doi.org/10.5194/egqsj-72-57-2023, 2023
Short summary
Short summary
Geological glacial features such as moraines can be used to construct the environment of former times. While sands may indicate colder phases, soils and peat preserved witness warm phases. Using various dating techniques, the ages of such features can be obtained. This is important in order to get an understanding of the climate of the past, in this study on the extent of the ice marginal position in Schleswig-Holstein.
Ludwig Zöller, Manfred Fischer, Zdzisław Jary, Pierre Antoine, and Marcin Krawczyk
E&G Quaternary Sci. J., 71, 59–81, https://doi.org/10.5194/egqsj-71-59-2022, https://doi.org/10.5194/egqsj-71-59-2022, 2022
Short summary
Short summary
Comparing quartz optically stimulated luminescence (OSL) and fine-grain post-infrared infrared stimulated luminescence (pIRIR) ages, agreement was largely found, e.g. the bracketing of the L1SS1 pedocomplex to ca. 30–40 ka. Nevertheless some age differences between the Bayreuth (OSL) and the Gliwice (pIRIR) data invite further discussion. Exact dating using various protocols and grain sizes remains challenging, in particular for a periglacial environment with strong heterogeneity of material.
Janina Johanna Bösken
E&G Quaternary Sci. J., 69, 89–92, https://doi.org/10.5194/egqsj-69-89-2020, https://doi.org/10.5194/egqsj-69-89-2020, 2020
Short summary
Short summary
The presented doctoral dissertation uses luminescence dating techniques to reconstruct the past environmental and climatic conditions in the middle and lower Danube basin during the period of Homo sapiens' emergence in Europe. The methodological approach focused on optically stimulated luminescence dating of loess deposits, but for some the sections the geochronological methods were combined with physical, biological and geochemical proxy data to reconstruct the paleoenvironmental conditions.
Philipp Marr, Stefan Winkler, Steven A. Binnie, and Jörg Löffler
E&G Quaternary Sci. J., 68, 165–176, https://doi.org/10.5194/egqsj-68-165-2019, https://doi.org/10.5194/egqsj-68-165-2019, 2019
Short summary
Short summary
This paper is about deglaciation history in two areas of southern Norway. By dating rock surfaces we can estimate a minimum ice sheet thickness of 1476 m a.s.l. and a timing of deglaciation around 13 000 years ago in the western study area. In the eastern study area the deglaciation history is complex as the bedrock age most likely has inheritance from earlier ice-free periods. Comparing both study areas demonstrates the complex dynamics of the deglaciation in different areas in southern Norway.
Dorian Gaar, Hans Rudolf Graf, and Frank Preusser
E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, https://doi.org/10.5194/egqsj-68-53-2019, 2019
Short summary
Short summary
Deposits related to the last advance of Reuss Glacier are dated using a luminescence methodology. An age of 25 ka for sediment directly overlying the lodgement till corresponds with existing age constraints for the last maximal position of glaciers. Luminescence dating further implies an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The data are discussed regarding potential changes in the source of precipitation during the Late Pleistocene.
Cited articles
Aitken, M. J.: Thermoluminescence Dating, Academic Press, London, 1985.
Aitken, M. J.: An introduction to optical dating, Oxford University Press,
Oxford, 1998.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for
feldspar IRSL using SAR, Radiat. Meas., 37, 487–492, https://doi.org/10.1016/S1350-4487(03)00018-0, 2003.
Brunnacker, K.: Regionale Bodendifferenzierungen während der
Würmeiszeit, Eiszeitalter and Gegenwart, 7, 43–48, 1965.
Buylaert, J. P., Vandenberghe, D., Murray, A. S., Huot, S., De Corte, F., and Van den haute, P.: Luminescence dating of old (>70 ka) Chinese
loess: a comparison of single-aliquot OSL and IRSL techniques, Quat.
Geochronol., 5, 9–14, https://doi.org/10.1016/j.quageo.2006.05.028, 2007.
Buylaert, J. P., Murray, A. S., Thomsen, K. J., and Jain, M.: Testing the potential of an elevated temperature IRSL signal from K-feldspar, Radiat. Meas., 44, 560–565, https://doi.org/10.1016/j.radmeas.2009.02.007, 2009.
Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and Sohbati, R.: A robust feldspar luminescence dating method for Middle and Late
Pleistocene sediments, Boreas, 41, 435–451, https://doi.org/10.1111/j.1502-3885.2012.00248.x, 2012.
Buylaert, J. P., Yeo, E. Y., Thiel, C., Yi, S., Stevens, T., Thompson, W.,
Frechen, M., Murray, A. S., and Lu, H.: A detailed post-IR IRSL chronology for the last interglacial soil at the Jinbian loess site (northern China), Quat. Geochronol., 30, 194–199, https://doi.org/10.1016/j.quageo.2015.02.022, 2015.
Colarossi, D., Duller, G. A. T., Roberts, H. M., Tooth, S., and Lyons, R.:
Comparison of paired quartz and feldspar post-IR IRSL dose distributions in
poorly bleached fluvial sediments from South Africa, Quat. Geochronol., 30,
233–238, https://doi.org/10.1016/j.quageo.2015.02.015, 2015.
Constantin, D., Jain, M., Murray, A. S., Buylaert, J. P., and Timar-Gabor, A.: Quartz luminescence response to a mixed alpha-beta field: investigations on Romanian loess, Radiat. Meas., 81, 110–115, https://doi.org/10.1016/j.radmeas.2015.01.001, 2015.
Cunningham, A. S. and Wallinga, J.: Selection of integration time intervals for quartz OSL decay curves, Quat. Geochronol., 5, 657–666, https://doi.org/10.1016/j.quageo.2010.08.004, 2010.
Duller, G. A. T.: Infrared bleaching of the thermoluminescence of four
feldspars, J. Phys. D Appl. Phys., 28, 1244–1258, https://doi.org/10.1088/0022-3727/28/6/030, 1995.
Duller, G. A. T.: Behavioral studies of stimulated luminescence from
feldspars, Radiat. Meas., 27, 663–694, https://doi.org/10.1016/S1350-4487(97)00216-3, 1997.
Duller, G. A. T.: Distinguishing quartz and feldspar in single grain
luminescence measurements, Radiat. Meas., 37, 161–165, https://doi.org/10.1016/S1350-4487(02)00170-1, 2003.
FAO: Guidelines for soil description. Food and Agriculture Organization of
the United Nations, 4th edn., Roma, Italy, 2006.
Feathers, J. K., Casson, M. A., Schmidt, A. H., and Chithambo, M. L.: Application of pulsed OSL to polymineral fine-grained samples, Radiat. Meas., 47, 201–209, https://doi.org/10.1016/j.radmeas.2012.01.003, 2012.
Frechen M. and Schirmer, W.: Luminescence chronology of the Schwalbenberg ll loess in the middle Rhine valley, E&G – Quaternary Science Journal, 60, 78–89, https://doi.org/10.23689/fidgeo-965, 2011.
Frechen, M., Schweitzer, U., and Zander, A.: Improvements in sample preparation for the fine grain technique, Ancient TL, 14, 15–17, 1996.
Frechen, M., van Vliet-Lanoë, B., and Van Den Haute, P.: The Upper
Pleistocene loess record at Harmignies/Belgium – high resolution terrestrial
archive of climate forcing, Palaeogeogr. Palaeocl., 173, 175–195, https://doi.org/10.1016/S0031-0182(01)00319-4, 2001.
Frechen, M., Oches, E. A., and Kohfeld, K. E.: Loess in Europe–mass accumulation rates during the Last Glacial Period, Loess and the Dust Indicators and Records of Terrestrial and Marine Palaeoenvironments (DIRTMAP) database, Quaternary Sci. Rev., 22, 1835–1857, https://doi.org/10.1016/S0277-3791(03)00183-5, 2003.
Frouin, M., Guérin, G., Lahaye, C., Mercier, N., Huot, S., Aldeias, V.,
Bruxelles, L., Chiotti, L., Dibble, H. L., Goldberg, P., Madelaine, S.,
McPherron, S. J. P., Sandgathe, D., Steele, T. E., and Turq, A.: New luminescence dating results based on polymineral fine grains from the Middle and Upper Palaeolithic site of La Ferrassie (Dordogne, SW France), Quat. Geochronol., 39, 131–141, https://doi.org/10.1016/j.quageo.2017.02.009, 2017.
Fu, X., Li, B., and Li, S. H.: Testing a multi-step post-IR IRSL dating method using polymineral fine grains from Chinese loess, Quat. Geochronol., 10, 8–15, https://doi.org/10.1016/j.quageo.2011.12.004, 2012.
Fuchs, M., Rousseau, D.-D., Antoine, P., Hatté, C., Gauthier, C.,
Marković, S., and Zoeller, L.: Chronology of the last climatic cycle (upper Pleistocene) of the Surduk loess sequence, Vojvodina, Serbia, Boreas, 37, 66–73, https://doi.org/10.1111/j.1502-3885.2007.00012.x, 2008.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors:
update, Ancient TL, 29, 5–8, 2011.
Guérin, G., Frouin, M., Talamo, S., Aldeias, V., Chiotti, L., Dibble,
H., Goldberg, P., Hublin, J. J., Jain, M., Lahaye, C., Madelaine, S.,
Maureille, B., McPherron, S., Mercier, N., Murray, A. S., Sandgathe, D.,
Steele, T. E., Thomsen, K., and Turq, A.: A multi-method luminescence dating of the paleolithic sequence of La Ferrassie based on new excavations adjacent
to the La Ferrassie 1 and 2 skeletons, J. Archaeol. Sci., 58, 147–166, https://doi.org/10.1016/j.jas.2015.01.019, 2015.
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H.,
Altermann, M., and Jäger, K. D.: Loess in Europe-its spatial distribution
based on a European loess map, scale , Quaternary Sci. Rev., 26,
1301–1312, https://doi.org/10.1016/j.quascirev.2007.02.003, 2007.
Huntley, D. J. and Baril, M. R.: The K content of the K-feldspar being measured in optical dating or in thermoluminescence dating, Ancient TL, 15, 11–13, 1997.
Huntley, D. J. and Hancock, R. G. V.: The Rb contents of K-feldspar grains being measured in optical dating, Ancient TL, 19, 43–46, 2001.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Can. J. Earth Sci., 38, 1093–1106, https://doi.org/10.1139/e01-013, 2001.
Huntley, D. J., Baril, M. R., and Haidar, S.: Tunnelling in plagioclase feldspars, J. Phys. D Appl. Phys., 40, 900–906, https://doi.org/10.1088/0022-3727/40/3/031, 2007.
Huot, S. and Lamothe, M.: The implication of sodium-rich plagioclase minerals
contaminating K-rich feldspars aliquots in luminescence dating, Quat.
Geochronol., 10, 334–339, https://doi.org/10.1016/j.quageo.2012.03.003, 2012.
Kars, R. H., Wallinga, J., and Cohen, K. M.: A new approach towards anomalous
fading correction for feldspar IRSL dating – tests on samples in field
saturation, Radiat. Meas., 43, 786–790, https://doi.org/10.1016/j.radmeas.2008.01.021, 2008.
Kreutzer, S., Schmidt, C., DeWitt, R., and Fuchs, M.: The a-value of polymineral fine grain samples measured with the post-IR IRSL protocol, Radiat. Meas., 69, 18–29, https://doi.org/10.1016/j.radmeas.2014.04.027, 2014.
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., and Kels, H.: Loess-paleosol sequences at the northern European loess belt in Germany: distribution, geomorphology and stratigraphy, Quaternary Sci. Rev., 153, 11–30, https://doi.org/10.1016/j.quascirev.2016.10.008, 2016.
Lehmkuhl, F., Pötter, S., Pauligk, A., and Bösken, J.: Loess and other Quaternary sediments in Germany, J. Maps, 14, 330–340, https://doi.org/10.1080/17445647.2018.1473817, 2018.
Li, B. and Li, S. H.: Thermal stability of infrared stimulated luminescence of sedimentary K-feldspar, Radiat. Meas., 46, 29–36, https://doi.org/10.1016/j.radmeas.2010.10.002, 2011.
Li, B. and Li, S. H.: Luminescence dating of Chinese loess beyond 130 ka
using the non-fading signal from K-feldspar, Quat. Geochronol., 10, 24–31, https://doi.org/10.1016/j.quageo.2011.12.005, 2012.
Li, Y., Tsukamoto, S., Shang, Z., Tamura, T., Wang, H., and Frechen, M.:
Constraining the transgression history in the Bohai Coast China since the
Middle Pleistocene by luminescence dating, Mar. Geol., 416, 105980, https://doi.org/10.1016/j.margeo.2019.105980, 2019.
Mejdahl, V.: Thermoluminescence dating: beta-dose attenuation in quartz grains, Archaeometry, 21, 61–72, https://doi.org/10.1111/j.1475-4754.1979.tb00241.x, 1979.
Moine, O., Antonie, P., Hatté, C., Landais, A., Mathieu, J., Prud'homme,
C., and Rousseau, D.-D.: The impact of Last Glacial climate variability in
west-European loess revealed by radiocarbon dating of fossil earthworm
granules, P. Natl. Acad. Sci. USA, 114, 6209–6214, https://doi.org/10.1073/pnas.1614751114, 2017.
Möller, P. and Murray, A. S.: Drumlinised glaciofluvial and glaciolacustrine sediments on the Småland peneplain, South Sweden- new information on the growth and decay history of the Fennoscandian Ice Sheets during MIS 3, Quaternary Sci. Rev., 122, 1–29, https://doi.org/10.1016/j.quascirev.2015.04.025, 2015.
Moska, P., Adamiec, G., Jary, Z., Bluszcz, A., Poręba, G., Piotrowska,
N., Krawczyk, M., and Skurzyński, J.: Luminescence chronostratigraphy for
the loess deposits in Złota, Poland, Geochronometria, 45, 44–55, https://doi.org/10.1515/geochr-2015-0073, 2018.
Murray, A. S. and Olley, J. M.: Precision and accuracy in the optically
stimulated luminescence dating of sedimentary quartz: a status review,
Geochronometria, 21, 1–16, 2002.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas., 32, 57–73, https://doi.org/10.1016/S1350-4487(99)00253-X, 2000.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose protocol: potential for improvements in reliability, Radiat. Meas., 37, 377–381, https://doi.org/10.1016/S1350-4487(03)00053-2, 2003.
Murray, A. S., Buylaert, J. P., Thomsen, K. J., and Jain, M.: The effect of
preheating on the IRSL signal from feldspar, Radiat. Meas., 44, 554–559, https://doi.org/10.1016/j.radmeas.2009.02.004, 2009.
Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J. P., and Jain, M.:
Identifying well-bleached quartz using the different bleaching rates of
quartz and feldspar luminescence signals, Radiat. Meas., 47, 688–695, https://doi.org/10.1016/j.radmeas.2012.05.006, 2012.
Novothny, A., Frechen, M., Horváth, E., Wacha, L., and Rolf, C.:
Investigating the penultimate and last glacial cycles of the Süttö
loess section (Hungary) using luminescence dating, high-resolution grain
size, and magnetic susceptibility data, Quatern. Int., 234, 75–85, https://doi.org/10.1016/j.quaint.2010.08.002, 2011.
Poolton, N. R. J., Ozanyan, K. B., Wallinga, J., Murray, A. S., and
Bøtter-Jensen, L.: Electrons in feldspar II: a consideration of the
influence of conduction band-tail states on luminescence processes, Phys.
Chem. Miner., 29, 217–225, https://doi.org/10.1007/s00269-001-0218-2, 2002.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates for
luminescence and ESR dating: large depths and long term variations, Radiat.
Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Prescott, J. R. and Stephan, L. G.: The contribution of cosmic radiation to the environmental dose for thermoluminescent dating – latitude, altitude and
depth dependences, PACT, 6, 17–25, 1982.
Rees-Jones, J.: Optical dating of young sediments using fine-grain quartz,
Ancient TL, 13, 9–14, 1995.
Roberts, H. M.: The development and application of luminescence dating to
loess deposits: a perspective on the past, present and future, Boreas, 37,
483–507, https://doi.org/10.1111/j.1502-3885.2008.00057.x, 2008.
Rösner, U.: Die Mainfränkische Lößprovinz, Mitteilungen der Fränkischen Geographischen Gesellschaft Erlangen, Bd. 37, 290 pp., 1990.
Sauer, D., Kadereit, A., Kühn, P., Kösel, M., Miller, C. E.,
Shinonaga, T., Kreutzer, S., Herrmann, L., Fleck, W., Starkovich, B. M., and
Stahr, K.: The loess-palaeosol sequence of Datthausen, SW Germany:
characteristics, chronology, and implications for the use of the Lohne Soil
as a marker soil, Catena, 146, 10–29, https://doi.org/10.1016/j.catena.2016.06.024, 2016.
Schmidt, E. D., Machalett, B., Marković, S. B., Tsukamoto, S., and Frechen, M.: Luminescence chronolgy of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia), Quat. Geochronol., 5, 137–142, https://doi.org/10.1016/j.quageo.2009.09.006, 2010.
Schmidt, E. D., Frechen, M., Murray, A. S., Tsukamoto, S., and Bittmann, F.:
Luminescence chronology of the loess record from the Tönchesberg
section: A comparison of using quartz and feldspar as dosimeter to extend
the age range beyond the Eemian, Quatern. Int., 234, 10–22, https://doi.org/10.1016/j.quaint.2010.07.012, 2011.
Schönhals, E., Rohdenburg, H., and Semmel, A.: Ergebnisse neuerer
Untersuchungen zur Würmlöß-Gliederung in Hessen, E&G – Quaternary Science Journal, 15, 199–206, https://doi.org/10.23689/fidgeo-1507, 1964.
Semmel, A.: Studien über den Verlauf jungpleistozäner Formung in
Hessen, Frankfurter Geographische Hefte, Hefte 45, 133 pp., 1968.
Semmel, A. and Stäblein, G.: Zur Entwicklung quartärer Hohlformen in
Franken, Eiszeitalter u. Gegenwart, 22, 23–34, https://doi.org/10.23689/fidgeo-1443, 1971.
Skowronek, A.: Paläoböden und Lösse in Mainfranken vor ihrem
landschaftsgeschichtlichen Hintergrund, Würzburger Geographische
Arbeiten, 57, 89–107, 1982.
Sohbati, R., Murray, A. S., Jain, M., Thomsen, K., Hong, S., Yi, K., and Choi, J.: Na-rich feldspar as a luminescence dosimeter in infrared stimulated
luminescence (IRSL) dating, Radiat. Meas., 51–52, 67–82, https://doi.org/10.1016/j.radmeas.2012.12.011, 2013.
Spooner, N. A.: The anomalous fading of infrared-stimulated luminescence from
feldspars, Radiat. Meas., 23, 625–632, https://doi.org/10.1016/1350-4487(94)90111-2, 1994.
Sprafke, T.: Löss in Niederösterreich – Archiv quartärer Klima- und Landschaftsveränderungen, Würzburg University Press, Würzburg, E-book version, 272 pp., available at: https://opus.bibliothek.uni-wuerzburg.de/files/12778/978-3-95826-039-9_Sprafke_Tobias_OPUS_12778.pdf (last access: 29 January 2021), 2016.
Steup, R. and Fuchs, M.: The loess sequence at Münzenberg
(Wetterau/Germany): A reinterpretation based on new luminescence dating
results, Z. Geomorphol., 61, 101–120, https://doi.org/10.1127/zfg_suppl/2016/0408, 2017.
Stevens, T., Buylaert, J. P., Thiel, C., Újvári, G., Yi, S., Murray,
A. S., Frechen, M., and Lu, H.: Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site, Nat. Commun., 9, 983, https://doi.org/10.1038/s41467-018-03329-2, 2018.
Terhorst, B., Sedov, S., Sprafke, T., Peticzka, R., Meyer-Heintze, S.,
Kühn, P., and Solleiro Rebolledo, E.: Austrian MIS 3/2 loess-palaeosol
records – key sites along a west-east transect, Palaeogeogr. Palaeocl., 418, 43–56, https://doi.org/10.1016/j.palaeo.2014.10.020, 2015.
Thiel, C., Buylaert, J. P., Murray, A. S., Terhorst, B., Hofer, I., Tsukamoto, S., and Frechen, M.: Luminescence dating of the Stratzing loess profile (Austria) – testing the potential of an elevated temperature post-IR IRSL protocol, Quatern. Int., 234, 23–31, https://doi.org/10.1016/j.quaint.2010.05.018, 2011a.
Thiel, C., Buylaert, J.-P., Murray, A. S., Terhorst, B., Tsukamoto, S., Frechen, M., and Sprafke, T.: Investigating the chronostratigraphy of prominent palaeosols in Lower Austria using post-IR IRSL dating, E&G Quaternary Sci. J., 60, 11, https://doi.org/10.3285/eg.60.1.10, 2011b.
Thiel, C., Tsukamoto, S., Kayoko, T., Buylaert, J. P., Murray, A. S., Tanaka,
K., and Shirai, M.: Testing the application of quartz and feldspar luminescence dating to MIS 5 Japanese marine deposits, Quat. Geochronol., 29, 16–29, https://doi.org/10.1016/j.quageo.2015.05.008, 2015.
Thomsen, K. J., Bøtter-Jensen, L., Denby, P. M., Moska, P., and Murray, A. S.: Developments in luminescence measurement techniques, Radiat. Meas., 41,
768–773, https://doi.org/10.1016/j.radmeas.2006.06.010, 2006.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.: Laboratory
fading rates of various luminescence signals from feldspar-rich sediment
extracts, Radiat. Meas., 43, 1474–1486, https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Timar-Gabor, A. and Wintle, A. G.: On natural and laboratory generated dose
response curves for quartz of different grain sizes from Romanian loess,
Quat. Geochronol., 18, 34–40, https://doi.org/10.1016/j.quageo.2013.08.001, 2013.
Timar-Gabor, A., Vandenberghe, D. A. G., Vasiliniuc, S., Panaiotu, C. E.,
Panaiotu, C. G., Dimofte, D., and Cosma, C.: Optical dating of Romania loess: a comparison between sand-sized and silt-sized quartz, Quatern. Int., 240, 62–70, https://doi.org/10.1016/j.quaint.2010.10.007, 2011.
Timar-Gabor, A., Constantin, D., Marković, S. B., and Jain, M.: Extending the area of investigation of fine versus coarse quartz optical ages from the
Lower Danube to the Carpathian Basin, Quatern. Int., 388, 168–176, https://doi.org/10.1016/j.quaint.2014.09.065, 2015.
Timar-Gabor, A., Buylaert, J.-P., Guralnik, B., Trandafir-Antohi, O.,
Constantin, D., Anechitei-Deacu, V., Jain, M., Murray, A. S., Porat, N., Hao,
Q., and Wintle, A. G.: On the importance of grain size in luminescence dating
using quartz, Radiat. Meas., 106, 464–471, https://doi.org/10.1016/j.radmeas.2017.01.009, 2017.
Tsukamoto, S., Jain, M., Murray, A. S., Thiel, C., Schmidt, E., Wacha, L.,
Dohrmann, R., and Frechen, M.: A comparative study of the luminescence
characteristics of polymineral fine grains and coarse-grained K- and Na-rich
feldspars, Radiat. Meas., 47, 903–908, https://doi.org/10.1016/j.radmeas.2012.02.017, 2012.
Tsukamoto, S., Kondo, R., Lauer, T., and Jain, M.: Pulsed IRSL: A stable and
fast bleaching luminescence signal from feldspar for dating Quaternary
sediments, Quat. Geochronol., 41, 26–36, https://doi.org/10.1016/j.quageo.2017.05.004, 2017.
Vasiliniuc, Ş., Vandenberghe, D. A. G., Timar-Gabor, A., Panaiotu, C.,
Cosma, C., and Van Den haute, P.: Testing the potential of elevated temperature post-IR-IRSL signals for dating Romanian loess, Quat. Geochronol., 10, 75–80, https://doi.org/10.1016/j.quageo.2012.02.014, 2012.
Vasiliniuc, Ş., Vandenberghe, D. A. G., Timar-Gabor, A., Cosma, C., and Van Den haute, P.: Combined IRSL and POST-IR OSL dating of Romanian loess using single aliquots of polymineral fine grains, Quatern. Int., 293, 15–22, https://doi.org/10.1016/j.quaint.2012.01.002, 2013.
Wacha, L. and Frechen, M.: The geochronology of the “Gorjanović loess
section” in Vukovar, Croatia, Quatern. Int., 240, 87–99, https://doi.org/10.1016/j.quaint.2011.04.010, 2011.
Wacha, L., Mikulčić Pavlaković, S., Novothny, Á.,
Crnjaković, M., and Frechen, M.: Luminescence dating of upper Pleistocene
loess from the island of Susak in Croatia, Quatern. Int., 34, 50–61, https://doi.org/10.1016/j.quaint.2009.12.017, 2011.
Wang, X. L., Wintle, A. G., and Adamiec, G.: Post-IR IRSL production in perthitic feldspar, Radiat. Meas., 64, 1–8, https://doi.org/10.1016/j.radmeas.2014.03.006, 2014.
Wintle, A. G.: Luminescence dating: laboratory procedures and protocols,
Radiat. Meas., 27, 769–817, https://doi.org/10.1016/S1350-4487(97)00220-5, 1997.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated
luminescence characteristics and their relevance in single-aliquot
regeneration dating protocols, Radiat. Meas., 41, 369–391, https://doi.org/10.1016/j.radmeas.2005.11.001, 2006.
Yi, S., Buylaert, J. P., Murray, A. S., Thiel, C., Zeng, L., and Lu, H.: High
resolution OSL and post-IR IRSL dating of the last interglacial-glacial
cycle at the Sanbahuo loess site (northeastern China), Quat. Geochronol.,
30, 200–206, https://doi.org/10.1016/j.quageo.2015.02.013, 2015.
Yi, S., Buylaert, J. P., Murray, A. S., Lu, H., Thiel, C., and Zeng, L.: A
detailed post-IR IRSL dating study of the Niuyangzigou loess site in
northeastern China, Boreas, 45, 644–657, https://doi.org/10.1111/bor.12185, 2016.
Zens, J., Schulte, P., Klasen, N., Krauß, L., Pirson, S., Burow, C.,
Brill, D., Eckmeier, E., Kels, H., Zeeden, C., Spagna, P., and Lehmkuhl, F.: OSL chronologies of paleoenvironmental dynamics recorded by loess-paleosol
sequences from Europe: case studies from the Rhine-Meuse area and the Neckar
Basin, Palaeogeogr. Palaeocl., 509, 105–125, https://doi.org/10.1016/j.palaeo.2017.07.019, 2018.
Zhang, J. and Li, S. H.: Constructions of standarised growth curves (SGCs) for IRSL signals from K-feldspar, plagioclase and polymineral fractions, Quat. Geochronol., 49, 8–15, https://doi.org/10.1016/j.quageo.2018.05.015, 2019.