Articles | Volume 71, issue 1
https://doi.org/10.5194/egqsj-71-83-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-71-83-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
18O analyses of bulk lipids as novel paleoclimate tool in loess research – a pilot study
Jakob Labahn
CORRESPONDING AUTHOR
Heisenberg Chair of Physical Geography with Focus on Paleoenvironmental
Research, Technische Universität Dresden, Helmholtzstraße 10, 01069
Dresden, Germany
Lucas Bittner
Heisenberg Chair of Physical Geography with Focus on Paleoenvironmental
Research, Technische Universität Dresden, Helmholtzstraße 10, 01069
Dresden, Germany
Philip Hirschmann
Heisenberg Chair of Physical Geography with Focus on Paleoenvironmental
Research, Technische Universität Dresden, Helmholtzstraße 10, 01069
Dresden, Germany
Christopher-Bastian Roettig
Heisenberg Chair of Physical Geography with Focus on Paleoenvironmental
Research, Technische Universität Dresden, Helmholtzstraße 10, 01069
Dresden, Germany
Diana Burghardt
Institute of Groundwater Management, Department of Hydro Sciences,
Technische Universität Dresden, Bergstraße 66, 01069 Dresden,
Germany
Bruno Glaser
Soil Biogeochemistry, Institute of Agronomy and Nutritional Sciences,
Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120
Halle (Saale), Germany
Slobodan B. Marković
Chair of Physical Geography, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia
Michael Zech
CORRESPONDING AUTHOR
Heisenberg Chair of Physical Geography with Focus on Paleoenvironmental
Research, Technische Universität Dresden, Helmholtzstraße 10, 01069
Dresden, Germany
Related authors
No articles found.
Lucas Bittner
E&G Quaternary Sci. J., 73, 135–137, https://doi.org/10.5194/egqsj-73-135-2024, https://doi.org/10.5194/egqsj-73-135-2024, 2024
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Marcel Lerch, Julia Unkelbach, Florian Schneider, Michael Zech, and Michael Klinge
E&G Quaternary Sci. J., 71, 91–110, https://doi.org/10.5194/egqsj-71-91-2022, https://doi.org/10.5194/egqsj-71-91-2022, 2022
Short summary
Short summary
Charcoals and leaf waxes from vegetation accumulate in the soil and provide information about past vegetation because they are mostly resistant against physical and biological degradation. Analyzing and comparing ratios of both element types helped us to improve the evidence for vegetation reconstruction. We found that the accumulation processes and preservation of these elements depend on different environmental conditions at forest- and steppe-dominated sites in the Mongolian forest–steppe.
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Johannes Hepp, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Mario Tuthorn, Bruno Glaser, Dieter Juchelka, Willibald Stichler, Roland Zech, and Michael Zech
Biogeosciences, 18, 5363–5380, https://doi.org/10.5194/bg-18-5363-2021, https://doi.org/10.5194/bg-18-5363-2021, 2021
Short summary
Short summary
Deriving more quantitative climate information like relative air humidity is one of the key challenges in paleostudies. Often only qualitative reconstructions can be done when single-biomarker-isotope data are derived from a climate archive. However, the coupling of hemicellulose-derived sugar with leaf-wax-derived n-alkane isotope results has the potential to overcome this limitation and allow a quantitative relative air humidity reconstruction.
Michael Zech, Marcel Lerch, Marcel Bliedtner, Tobias Bromm, Fabian Seemann, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Jean Nicolas Haas, Dieter Schäfer, and Clemens Geitner
E&G Quaternary Sci. J., 70, 171–186, https://doi.org/10.5194/egqsj-70-171-2021, https://doi.org/10.5194/egqsj-70-171-2021, 2021
Christopher Lüthgens, Daniela Sauer, and Michael Zech
E&G Quaternary Sci. J., 69, 261–262, https://doi.org/10.5194/egqsj-69-261-2021, https://doi.org/10.5194/egqsj-69-261-2021, 2021
Christopher-Bastian Roettig
E&G Quaternary Sci. J., 69, 161–163, https://doi.org/10.5194/egqsj-69-161-2020, https://doi.org/10.5194/egqsj-69-161-2020, 2020
Johannes Hepp, Imke Kathrin Schäfer, Verena Lanny, Jörg Franke, Marcel Bliedtner, Kazimierz Rozanski, Bruno Glaser, Michael Zech, Timothy Ian Eglinton, and Roland Zech
Biogeosciences, 17, 741–756, https://doi.org/10.5194/bg-17-741-2020, https://doi.org/10.5194/bg-17-741-2020, 2020
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Johannes Hepp, Bruno Glaser, Dieter Juchelka, Christoph Mayr, Kazimierz Rozanski, Imke Kathrin Schäfer, Willibald Stichler, Mario Tuthorn, Roland Zech, and Michael Zech
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-427, https://doi.org/10.5194/bg-2019-427, 2019
Manuscript not accepted for further review
Bruk Lemma, Betelhem Mekonnen, Bruno Glaser, Wolfgang Zech, Sileshi Nemomissa, Tamrat Bekele, Lucas Bittner, and Michael Zech
E&G Quaternary Sci. J., 68, 189–200, https://doi.org/10.5194/egqsj-68-189-2019, https://doi.org/10.5194/egqsj-68-189-2019, 2019
Short summary
Short summary
Chemotaxonomic identification of keystone plant species in the Bale Mountains are possible using lignin phenols. However, Erica could not be differentiated chemotaxonomically from all other investigated plants using n-alkanes. Unambiguous characteristic patterns of lignin phenols reflected in the plant samples were not sustained in the organic layers and mineral topsoils. This is due to degradation and organic matter inputs by roots. Therefore, the past extent of Erica is still speculative.
Betelhem Mekonnen, Wolfgang Zech, Bruno Glaser, Bruk Lemma, Tobias Bromm, Sileshi Nemomissa, Tamrat Bekele, and Michael Zech
E&G Quaternary Sci. J., 68, 177–188, https://doi.org/10.5194/egqsj-68-177-2019, https://doi.org/10.5194/egqsj-68-177-2019, 2019
Short summary
Short summary
The study evaluates the ability of stable isotopes (δ13C and δ15N) and sugar biomarkers to distinguish Erica from the dominant vegetation of the Bale Mountains in order to reconstruct the past extent of Erica on the Sanetti Plateau. No significant differences in stable isotopes are found between the dominant plant species. Although Erica is characterized by quite high (G+M)/(A+X) ratios, it cannot be unambiguously distinguished from other plants due to degradation and soil microbial effects.
Johannes Hepp, Lorenz Wüthrich, Tobias Bromm, Marcel Bliedtner, Imke Kathrin Schäfer, Bruno Glaser, Kazimierz Rozanski, Frank Sirocko, Roland Zech, and Michael Zech
Clim. Past, 15, 713–733, https://doi.org/10.5194/cp-15-713-2019, https://doi.org/10.5194/cp-15-713-2019, 2019
Julian Struck, Christopher B. Roettig, Dominik Faust, and Roland Zech
E&G Quaternary Sci. J., 66, 109–114, https://doi.org/10.5194/egqsj-66-109-2018, https://doi.org/10.5194/egqsj-66-109-2018, 2018
Marcel Lerch, Marcel Bliedtner, Christopher-Bastian Roettig, Jan-Uwe Schmidt, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Arno Kleber, and Michael Zech
E&G Quaternary Sci. J., 66, 103–108, https://doi.org/10.5194/egqsj-66-103-2018, https://doi.org/10.5194/egqsj-66-103-2018, 2018
Imke K. Schäfer, Verena Lanny, Jörg Franke, Timothy I. Eglinton, Michael Zech, Barbora Vysloužilová, and Roland Zech
SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, https://doi.org/10.5194/soil-2-551-2016, 2016
Short summary
Short summary
For this study we systematically investigated the molecular pattern of leaf waxes in litter and topsoils along a European transect to assess their potential for palaeoenvironmental reconstruction. Our results show that leaf wax patterns depend on the type of vegetation. The vegetation signal is not only found in the litter; it can also be preserved to some degree in the topsoil.
M. Tuthorn, R. Zech, M. Ruppenthal, Y. Oelmann, A. Kahmen, H. F. del Valle, T. Eglinton, K. Rozanski, and M. Zech
Biogeosciences, 12, 3913–3924, https://doi.org/10.5194/bg-12-3913-2015, https://doi.org/10.5194/bg-12-3913-2015, 2015
Short summary
Short summary
Stable water isotopes (18O/16O and 2H/1H) are invaluable proxies for paleoclimate research. Here we use a coupled 18O/16O and 2H/1H biomarker approach based on plant-derived sugars and n-alkanes. Applying this innovative approach to a topsoil transect allows for (i) calculating the deuterium-excess of leaf water as a proxy for relative humidity and (ii) calculating the plant source water isotopic composition (~precipitation). The approach is validated by the presented climate transect results.
M. Zech, R. Zech, K. Rozanski, A. Hemp, G. Gleixner, and W. Zech
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-7823-2014, https://doi.org/10.5194/bgd-11-7823-2014, 2014
Preprint withdrawn
Related subject area
Methodological advances
MiGIS: micromorphological soil and sediment thin section analysis using an open-source GIS and machine learning approach
A new Google Earth Engine tool for spaceborne detection of buried palaeogeographical features – examples from the Nile Delta (Egypt)
Comparison of bulk and sequential sampling methodologies on mammoth tooth enamel and their implications in paleoenvironmental reconstructions
Mirijam Zickel, Marie Gröbner, Astrid Röpke, and Martin Kehl
E&G Quaternary Sci. J., 73, 69–93, https://doi.org/10.5194/egqsj-73-69-2024, https://doi.org/10.5194/egqsj-73-69-2024, 2024
Short summary
Short summary
With our open-source toolbox, MiGIS for QGIS 3, we intend to advance digital micromorphological analysis. This approach focuses on the classification of micromorphological constituents based on their distinct colour values (multi-RGB signatures), acquired using flatbed scanning of thin sections in different modes (transmitted, cross-polarised, and reflected light). The resulting thin section maps enable feature quantification, visualisation of spatial patterns, and reproducibility.
Tobias Ullmann, Eric Möller, Roland Baumhauer, Eva Lange-Athinodorou, and Julia Meister
E&G Quaternary Sci. J., 71, 243–247, https://doi.org/10.5194/egqsj-71-243-2022, https://doi.org/10.5194/egqsj-71-243-2022, 2022
Short summary
Short summary
In this contribution we highlight as an example the application of a freely available tool for the Google Earth Engine. The software allows cloud-free satellite images to be processed. We show processing examples for the Nile Delta (Egypt) and how the remote sensing images are used to find hints of buried landforms, such as former river branches of the Nile.
Zuorui Liu, Amy Prendergast, Russell Drysdale, and Jan-Hendrik May
E&G Quaternary Sci. J., 71, 227–241, https://doi.org/10.5194/egqsj-71-227-2022, https://doi.org/10.5194/egqsj-71-227-2022, 2022
Short summary
Short summary
Past studies used two sampling strategies, the "bulk" and "sequential" drilling methods, for stable isotopic analysis of mammoth tooth enamel and paleoenvironmental reconstruction. This study applied both methods to the same enamel ridges of multiple mammoth teeth and compared their respective δ18O values. Offsets were detected between the bulk and average sequential δ18O values. The potential reasons for the offsets and their impacts on cross-method data comparison were discussed.
Cited articles
Bittner, L., Gil-Romera, G., Grady, D., Lamb, H., Lorenz, E., Weiner, M.,
Meyer, H., Bromm, T., Glaser, B., and Zech, M.: The Holocene
lake-evaporation history of the afro-alpine Lake Garba Guracha in the Bale
Mountains, Ethiopia, based on δ18O records of sugar biomarker
and diatoms, Quaternary Res., 105, 23–36, https://doi.org/10.1017/qua.2021.26, 2021.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Farquhar, G. D. and Lloyd, J.: 5 – Carbon and Oxygen Isotope Effects in the
Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere,
in: Stable Isotopes and Plant Carbon-water Relations, edited by: Ehleringer,
J. R., Hall, A. E., and Farquhar, G. D., Academic Press, San Diego, 47–70,
https://doi.org/10.1016/B978-0-08-091801-3.50011-8, 1993.
Ferrio, J. P., Pou, A., Florez-Sarasa, I., Gessler, A., Kodama, N., Flexas,
J., and Ribas-Carbo, M.: The Péclet effect on leaf water enrichment
correlates with leaf hydraulic conductance and mesophyll conductance for
CO2, Plant, Cell Environ., 35, 611–625,
https://doi.org/10.1111/j.1365-3040.2011.02440.x, 2012.
Häggi, C., Eglinton, T. I., Zech, W., Sosin, P., and Zech, R.: A 250 ka
leaf-wax δD record from a loess section in Darai Kalon, Southern
Tajikistan, Quaternary Sci. Rev., 208, 118–128,
https://doi.org/10.1016/j.quascirev.2019.01.019, 2019.
Lachniet, M. S.: Climatic and environmental controls on speleothem
oxygen-isotope values, Quaternary Sci. Rev., 28, 412–432,
https://doi.org/10.1016/j.quascirev.2008.10.021, 2009.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary,
Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J.,
Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C.,
Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes
of Europe – Mapping, geomorphology, and zonal differentiation,
Earth-Sci. Rev., 215, 103496,
https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Lemma, B., Bittner, L., Glaser, B., Kebede, S., Nemomissa, S., Zech, W., and
Zech, M.: δ2Hn−alkane and δ18Osugar
biomarker proxies from leaves and topsoils of the Bale Mountains, Ethiopia,
and implications for paleoclimate reconstructions, Biogeochem., 153,
https://doi.org/10.1007/s10533-021-00773-z, 2021.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records, Paleoceanography, 20,
https://doi.org/10.1029/2004PA001071, 2005.
Marković, S., Stevens, T., Kukla, G., Hambach, U., Fitzsimmons, K.,
Gibbard, P., Buggle, B., Zech, M., Guo, Z., Hao, Q., Wu, H., O'Hara-Dhand,
K., Smalley, I., Újvári, G., Sümegi, P., Timar-Gabor, A., Veres,
D., Sirocko, F., Vasiljevic, D., Vidojko, J., Zdzislaw, J., Anderss, S.,
Lehmkuhl, F., Kovács, J., and Svirčev, Z.: Danube loess stratigraphy
– Towards a pan-European loess stratigraphic model, Earth-Sci. Rev.,
148, 228–258, https://doi.org/10.1016/j.earscirev.2015.06.005, 2015.
Maxwell, T. M., Silva, L. C. R., and Horwath, W. R.: Predictable Oxygen
Isotope Exchange Between Plant Lipids and Environmental Water: Implications
for Ecosystem Water Balance Reconstruction, J. Geophys. Res.-Biogeosc., 123, 2941–2954,
https://doi.org/10.1029/2018JG004553, 2018.
NGRIP members: High-resolution record of Northern Hemisphere climate
extending into the last interglacial period, Nature, 431, 147–151,
https://doi.org/10.1038/nature02805, 2004.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Prud'homme, C., Lécuyer, C., Antoine, P., Moine, O., Hatté, C.,
Fourel, F., Martineau, F., and Rousseau, D.-D.: Palaeotemperature
reconstruction during the Last Glacial from δ18O of earthworm
calcite granules from Nussloch loess sequence, Germany, Earth Planet.
Sci. Lett., 442, 13–20, https://doi.org/10.1016/j.epsl.2016.02.045,
2016.
Pustovoytov, K. and Terhorst, B.: An isotopic study of a late Quaternary
loess-paleosol sequence in SW Germany, Revista mexicana de ciencias
geológicas, ISSN 1026-8774, Vol. 21, No. 1, 2004 (Ejemplar dedicado
a: VI International Symposium and Field Workshop on Paleopedology), 21, 88–93 pp., 2004.
Roden, J. S., Lin, G., and Ehleringer, J. R.: A mechanistic model for
interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose,
Geochim. Cosmochim. Acta, 64, 21–35,
https://doi.org/10.1016/S0016-7037(99)00195-7, 2000.
Schäfer, I., Bliedtner, M., Wolf, D., Faust, D., and Zech, R.: Evidence
for humid conditions during the last glacial from leaf wax patterns in the
loess–paleosol sequence El Paraíso, Central Spain, Quaternary
Int., 407, 64–73, https://doi.org/10.1016/j.quaint.2016.01.061, 2016.
Schmidt, H. L., Werner, R. A., and Rossmann, A.: 18O pattern and
biosynthesis of natural plant products, Phytochemistry, 58, 9–32,
https://doi.org/10.1016/s0031-9422(01)00017-6, 2001.
Silva, L. C. R., Pedroso, G., Doane, T. A., Mukome, F. N. D., and Horwath,
W. R.: Beyond the cellulose: Oxygen isotope composition of plant lipids as a
proxy for terrestrial water balance, Geochem. Perspect.
Lett., 33–42, https://doi.org/10.7185/geochemlet.1504, 2015.
Sirocko, F., Knapp, H., Dreher, F., Foerster, M., Albert, J., Brunck, H.,
Veres, D., Dietrich, S., Zech, M., Hambach, U., Röhner, M., Rudert, S.,
Schwibus, K., Adams, C., and Sigl, P.: The ELSA-Vegetation-Stack:
Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar
sediments of the last 60,000 years, Global Planet. Change, 148,
108–135, https://doi.org/10.1016/j.gloplacha.2016.03.005, 2016.
Spötl, C., Mangini, A., and Richards, D. A.: Chronology and
paleoenvironment of Marine Isotope Stage 3 from two high-elevation
speleothems, Austrian Alps, Quaternary Sci. Rev., 25, 1127–1136,
https://doi.org/10.1016/j.quascirev.2005.10.006, 2006.
Stevens, T., Marković, S. B., Zech, M., Hambach, U., and Sümegi, P.:
Dust deposition and climate in the Carpathian Basin over an independently
dated last glacial–interglacial cycle, Quaternary Sci. Rev., 30,
662–681, https://doi.org/10.1016/j.quascirev.2010.12.011, 2011.
Zech, M., Tuthorn, M., Detsch, F., Rozanski, K., Zech, R., Zöller, L.,
Zech, W., and Glaser, B.: A 220ka terrestrial δ18O and
deuterium excess biomarker record from an eolian permafrost paleosol
sequence, NE-Siberia, Complete, 220–230,
https://doi.org/10.1016/j.chemgeo.2013.10.023, 2013.
Zech, M., Mayr, C., Tuthorn, M., Leiber-Sauheitl, K., and Glaser, B.: Oxygen
isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers
in plants, soils and sediments as paleoclimate proxy I: Insight from a
climate chamber experiment, Geochim. Cosmochim. Acta, 126, 614–623,
https://doi.org/10.1016/j.gca.2013.10.048, 2014.
Zech, M., Zech, R., Rozanski, K., Gleixner, G., and Zech, W.: Do n-alkane
biomarkers in soils/sediments reflect the δ2H isotopic
composition of precipitation? A case study from Mt. Kilimanjaro and
implications for paleoaltimetry and paleoclimate research, Isotop. Environ. Health Stud., 51, 508–524,
https://doi.org/10.1080/10256016.2015.1058790, 2015.
Zech, R., Zech, M., Marković, S., Hambach, U., and Huang, Y.: Humid
glacials, arid interglacials? Critical thoughts on pedogenesis and
paleoclimate based on multi-proxy analyses of the loess–paleosol sequence
Crvenka, Northern Serbia, Palaeogeogr. Palaeoclim. Palaeoecol.,
387, 165–175, https://doi.org/10.1016/j.palaeo.2013.07.023, 2013.