Articles | Volume 72, issue 1
https://doi.org/10.5194/egqsj-72-113-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-72-113-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The past is the key to the future – considering Pleistocene subglacial erosion for the minimum depth of a radioactive waste repository
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),
Stilleweg 2, 30655 Hanover, Germany
Anke Bebiolka
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),
Wilhelmstr. 25–30, 13593 Berlin, Germany
Vera Noack
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),
Wilhelmstr. 25–30, 13593 Berlin, Germany
Jörg Lang
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),
Stilleweg 2, 30655 Hanover, Germany
Related authors
Jörg Lang, Anke Bebiolka, Sonja Breuer, and Maximilian Pfaff
E&G Quaternary Sci. J., 73, 159–160, https://doi.org/10.5194/egqsj-73-159-2024, https://doi.org/10.5194/egqsj-73-159-2024, 2024
Short summary
Short summary
The formation of tunnel valleys and other subglacial erosional landforms is among the deepest-reaching erosional processes. Such deep erosion during potential future ice ages could seriously affect the integrity of the geological barrier of a radioactive waste repository. This special issue aims to collect studies on all aspects of subglacial erosion and its treatment with regard to site selection and the long-term safety of radioactive waste repositories.
Jörg Lang, Anke Bebiolka, Sonja Breuer, and Maximilian Pfaff
E&G Quaternary Sci. J., 73, 159–160, https://doi.org/10.5194/egqsj-73-159-2024, https://doi.org/10.5194/egqsj-73-159-2024, 2024
Short summary
Short summary
The formation of tunnel valleys and other subglacial erosional landforms is among the deepest-reaching erosional processes. Such deep erosion during potential future ice ages could seriously affect the integrity of the geological barrier of a radioactive waste repository. This special issue aims to collect studies on all aspects of subglacial erosion and its treatment with regard to site selection and the long-term safety of radioactive waste repositories.
Dirk Scheer, Wilfried Konrad, Holger Class, Alexander Kissinger, Stefan Knopf, and Vera Noack
Hydrol. Earth Syst. Sci., 21, 2739–2750, https://doi.org/10.5194/hess-21-2739-2017, https://doi.org/10.5194/hess-21-2739-2017, 2017
Short summary
Short summary
Stakeholder participation in numerical modeling of brine migration due to injection of CO2 into deep saline aquifers is tested in this work. Part 1 reports the process of participatory modeling in the development of a numerical model and Part 2 discusses essential technical findings obtained through this model, showing that notable increases in salt concentrations are confined to regions where they were already high a priori and where barrier layers are discontinuous.
Alexander Kissinger, Vera Noack, Stefan Knopf, Wilfried Konrad, Dirk Scheer, and Holger Class
Hydrol. Earth Syst. Sci., 21, 2751–2775, https://doi.org/10.5194/hess-21-2751-2017, https://doi.org/10.5194/hess-21-2751-2017, 2017
Short summary
Short summary
Stakeholder participation in numerical modeling of brine migration due to injection of CO2 into deep saline aquifers is tested in this work. Part 1 reports the process of participatory modeling on the development of a numerical model and Part 2 discusses essential technical findings obtained through this model showing that notable increases in salt concentrations are confined to regions where they were already high a priori and where barrier layers are discontinuous.
Alexander Kissinger, Vera Noack, Stefan Knopf, Wilfried Konrad, Dirk Scheer, and Holger Class
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-281, https://doi.org/10.5194/hess-2016-281, 2016
Manuscript not accepted for further review
Short summary
Short summary
Stakeholder participation in numerical modeling of brine migration due to injection of CO2 into deep saline aquifers has proven a valuable approach to identifying and quantifying the potential hazard of groundwater contamination with salt. This paper (i) reports the process of participatory modeling and (ii) discusses essential findings showing that notable increases in salt concentrations are confined to regions where they were already high a priori and where barrier layers are discontinuous.
Related subject area
Quaternary geology
Age and formation of the presumed Late Pliocene to Middle Pleistocene Mühlbach formation, High Rhine Valley, southwest Germany
Subglacial deformation and till formation in a stratigraphic complex Late Pleistocene sequence (Einödgraben/Aurach, Kitzbühel Alps, Austria)
Loess formation and chronology at the Palaeolithic key site Rheindahlen, Lower Rhine Embayment, Germany
Subglacial hydrology from high-resolution ice-flow simulations of the Rhine Glacier during the Last Glacial Maximum: a proxy for glacial erosion
Comparison of overdeepened structures in formerly glaciated areas of the northern Alpine foreland and northern central Europe
Tunnel valleys in the southeastern North Sea: more data, more complexity
The lithostratigraphic formations of the coastal Holocene in NE Germany – a synthesis
Morpho-sedimentary characteristics of Holocene paleochannels in the Upper Rhine alluvial plain, France
Two glaciers and one sedimentary sink: the competing role of the Aare and the Valais glaciers in filling an overdeepened trough inferred from provenance analysis
A tribute to Narr (1952): On the stratigraphy of Upper Palaeolithic types and type groups
A tribute to Fink (1956): On the correlation of terraces and loesses in Austria
A tribute to Schwarzbach (1968): Recent ice age hypotheses
A tribute to Boenigk (1978): The fluvial development of the Lower Rhine Basin during the late Tertiary and early Quaternary
A composite 10Be, IR-50 and 14C chronology of the pre-Last Glacial Maximum (LGM) full ice extent of the western Patagonian Ice Sheet on the Isla de Chiloé, south Chile (42° S)
Der späteiszeitliche Tüttensee-Komplex als Ergebnis der Abschmelzgeschichte am Ostrand des Chiemsee-Gletschers und sein Bezug zum „Chiemgau Impakt“ (Landkreis Traunstein, Oberbayern)
The multistage structural development of the Upper Weichselian Jasmund Glacitectonic Complex (Rügen, NE Germany)
The formation of Middle and Upper Pleistocene terraces (Übergangsterrassen and Hochterrassen) in the Bavarian Alpine Foreland – new numeric dating results (ESR, OSL, 14C) and gastropod fauna analysis
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Jürgen M. Reitner and John Menzies
E&G Quaternary Sci. J., 73, 101–116, https://doi.org/10.5194/egqsj-73-101-2024, https://doi.org/10.5194/egqsj-73-101-2024, 2024
Short summary
Short summary
Knowledge of subglacial conditions is of great relevance for understanding glacier dynamics. A combination of micro- and macrosedimentological analysis of diamictons and deformation structures can form the basis for the reconstruction of past subglacial conditions. We present the results of such a study on subglacial tills in the Kitzbühel Alps (Tyrol, Austria). Our study demonstrates the need for a reinvestigation of deposits in respect of genesis and importance for the glacial record.
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Denis Cohen, Guillaume Jouvet, Thomas Zwinger, Angela Landgraf, and Urs H. Fischer
E&G Quaternary Sci. J., 72, 189–201, https://doi.org/10.5194/egqsj-72-189-2023, https://doi.org/10.5194/egqsj-72-189-2023, 2023
Short summary
Short summary
During glacial times in Switzerland, glaciers of the Alps excavated valleys in low-lying regions that were later filled with sediment or water. How glaciers eroded these valleys is not well understood because erosion occurred near ice margins where ice moved slowly and was present for short times. Erosion is linked to the speed of ice and to water flowing under it. Here we present a model that estimates the location of water channels beneath the ice and links these locations to zones of erosion.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Arne Lohrberg, Jens Schneider von Deimling, Henrik Grob, Kai-Frederik Lenz, and Sebastian Krastel
E&G Quaternary Sci. J., 71, 267–274, https://doi.org/10.5194/egqsj-71-267-2022, https://doi.org/10.5194/egqsj-71-267-2022, 2022
Short summary
Short summary
We present an update on the distribution of tunnel valleys in the southeastern North Sea between Amrum and Heligoland based on active seismic data. Our results demonstrate that very dense grids of seismic profiles are needed to understand the distribution and the formation of tunnel valleys in a given region. We also demonstrate that acquiring offshore active seismic data is time- and cost-effective to learn more about the formation and filling of tunnel valleys in different geological settings.
Reinhard Lampe
E&G Quaternary Sci. J., 71, 249–265, https://doi.org/10.5194/egqsj-71-249-2022, https://doi.org/10.5194/egqsj-71-249-2022, 2022
Short summary
Short summary
The depositional sequences of all types of coastal sediments which accumulated during the Holocene sea-level rise along the NE German coast and in the inner coastal waters are comprehensively described and classified into four formations and two subformations. Their detailed characterisation and chronostratigraphic correlation are an important addition to the only brief definition given in the LithoLex database of the Federal Institute for Geosciences and Natural Resources (BGR).
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Michael A. Schwenk, Laura Stutenbecker, Patrick Schläfli, Dimitri Bandou, and Fritz Schlunegger
E&G Quaternary Sci. J., 71, 163–190, https://doi.org/10.5194/egqsj-71-163-2022, https://doi.org/10.5194/egqsj-71-163-2022, 2022
Short summary
Short summary
We investigated the origin of glacial sediments in the Bern area to determine their route of transport either with the Aare Glacier or the Valais Glacier. These two ice streams are known to have joined in the Bern area during the last major glaciation (ca. 20 000 years ago). However, little is known about the ice streams prior to this last glaciation. Here we collected evidence that during a glaciation about 250 000 years ago the Aare Glacier dominated the area as documented in the deposits.
Nicholas J. Conard
E&G Quaternary Sci. J., 70, 213–216, https://doi.org/10.5194/egqsj-70-213-2021, https://doi.org/10.5194/egqsj-70-213-2021, 2021
Short summary
Short summary
Karl J. Narr's paper on the stratigraphy of Upper Palaeolithic artefact types and cultural groups from 1952 synthesized the state of research in the early 1950s. Narr's singular focus on cultural history is instructive in terms of both the history of research and as a reflection of what the goals of Palaeolithic archaeology could and should be today.
Tobias Sprafke
E&G Quaternary Sci. J., 70, 221–224, https://doi.org/10.5194/egqsj-70-221-2021, https://doi.org/10.5194/egqsj-70-221-2021, 2021
Short summary
Short summary
This work is an invited retrospective to the seminal paper of Fink (1956). Fink combined field evidence from geology, geomorphology, and soil science to provide a holistic framework of Quaternary stratigraphy and paleoenvironmental evolution in the Austrian Alpine foreland. This paper is an outstanding example of the relevance of interdisciplinary perspectives to understand landscape evolution. With a few exceptions in detail, the findings of Fink remain largely valid until today.
Jürgen Ehlers
E&G Quaternary Sci. J., 70, 235–237, https://doi.org/10.5194/egqsj-70-235-2021, https://doi.org/10.5194/egqsj-70-235-2021, 2021
Philip L. Gibbard
E&G Quaternary Sci. J., 70, 251–255, https://doi.org/10.5194/egqsj-70-251-2021, https://doi.org/10.5194/egqsj-70-251-2021, 2021
Short summary
Short summary
This is an appraisal of the article by Wolfgang Boenigk published in Eiszeitalter und Gegenwart in 1978.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Robert Huber, Robert Darga, and Hans Lauterbach
E&G Quaternary Sci. J., 69, 93–120, https://doi.org/10.5194/egqsj-69-93-2020, https://doi.org/10.5194/egqsj-69-93-2020, 2020
Anna Gehrmann
E&G Quaternary Sci. J., 69, 59–60, https://doi.org/10.5194/egqsj-69-59-2020, https://doi.org/10.5194/egqsj-69-59-2020, 2020
Gerhard Schellmann, Patrick Schielein, Wolfgang Rähle, and Christoph Burow
E&G Quaternary Sci. J., 68, 141–164, https://doi.org/10.5194/egqsj-68-141-2019, https://doi.org/10.5194/egqsj-68-141-2019, 2019
Short summary
Short summary
This study presents ESR, OSL and C-14 data from Upper and Middle Pleistocene fluvial terraces (Übergangsterrassen, Hochterrassen) and its loess cover in the Bavarian Alpine Foreland. It will be illustrated that the ESR dating of embedded land-snail shells offers a new dating approach with an upper dating limit most probably much older than the penultimate interglacial (MIS 7). Furthermore, it shows that in some areas Hochterrassen gravels are underlain by older interglacial gravel deposits.
Cited articles
Aber, J. S. and Ber, A.: Glaciotectonism, Developments in Quaternary
Sciences, Elsevier, 256 pp., ISBN 9780444529435, 2007.
Al Hseinat, M., Hübscher, C., Lang, J., Lüdmann, T., Ott, I., and
Polom, U.: Triassic to recent tectonic evolution of a crestal collapse
graben above a salt-cored anticline in the Glückstadt Graben/North
German Basin, Tectonophysics, 680, 50–66,
https://doi.org/10.1016/j.tecto.2016.05.008, 2016.
Andersen, L. T., Hansen, D. L., and Huuse, M.: Numerical modelling of thrust
structures in unconsolidated sediments: implications for glaciotectonic
deformation, J. Struct. Geol., 27, 587–596,
https://doi.org/10.1016/j.jsg.2005.01.005, 2005.
Batchelor, C. L., Margold, M., Krapp, M., Murton, D. K., Dalton, A. S.,
Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The
configuration of Northern Hemisphere ice sheets through the Quaternary,
Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Boulton, G. S. and Hindmarsh, R. C. A.: Sediment deformation beneath
glaciers: Rheology and geological consequences, J. Geophys.
Res.-Solid Earth, 92, 9059–9082,
https://doi.org/10.1029/JB092iB09p09059, 1987.
Boulton, G. S., Hagdorn, M., Maillot, P. B., and Zatsepin, S.: Drainage
beneath ice sheets: groundwater–channel coupling, and the origin of esker
systems from former ice sheets, Quaternary Sci. Rev., 28, 621–638,
https://doi.org/10.1016/j.quascirev.2008.05.009, 2009.
Brandes, C., Polom, U., Winsemann, J., and Sandersen, P. B. E.: The
near-surface structure in the area of the Børglum fault,
Sorgenfrei-Tornquist Zone, northern Denmark: Implications for fault
kinematics, timing of fault activity and fault control on tunnel valley
formation, Quaternary Sci. Rev., 289, 107619,
https://doi.org/10.1016/j.quascirev.2022.107619, 2022.
Brückner-Röhling, S., Espig, M., Fischer, M., Fleig, S., Forsbach,
H., Kockel, F., Krull, P., Stiewe, H., and Wirth, H.:
Standsicherheitsnachweise Nachbetriebsphase: Seismische Gefährdung –
Teil 1: Strukturgeologie, Bundesanstalt für Geowissenschaften und
Rohstoffe (BGR), Hannover, BGR-Bericht, 253, 2002.
Bruns, I., Fischer, K., Meinsen, J., and Wangenheim, C.: Eine aktualisierte
Quartärbasis für Niedersachsen – Erste Einblicke in die
Modellierung, DEUQUA “Connecting Geoarchives, Potsdam, 1 p.,
https://doi.org/10.48440/GFZ.b103-22024, 2022.
Catania, G. and Paola, C.: Braiding under glass, Geology, 29, 259–262,
https://doi.org/10.1130/0091-7613(2001)029{%}3C0259:BUG{%}3E2.0.CO;2,
2001.
Clayton, L., Attig, J. W., and Mickelson, D. M.: Tunnel channels formed in
Wisconsin during the last glaciation, in: Glacial Processes Past and
Present, edited by: Mickelson, D. M. and Attig, J. W., Geological Society
of America, https://doi.org/10.1130/0-8137-2337-x.69, 1999.
Doornenbal, H. and Stevenson, A.: Petroleum Geological Atlas of the Southern
Permian Basin Area, EAGE Publications b.v. (Houten), ISBN 978-90-73781-61-0, 2010.
Ehlers, J. and Linke, G.: The origin of deep buried channels of Elsterian
age in Northwest Germany, J. Quaternary Sci., 4, 255–265,
https://doi.org/10.1002/jqs.3390040306, 1989.
Ehlers, J., Grube, A., Stephan, H.-J., and Wansa, S.: Pleistocene
Glaciations of North Germany – New Results, in: Developments in Quaternary
Sciences, edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D.,
Elsevier, 149–162, https://doi.org/10.1016/B978-0-444-53447-7.00013-1, 2011.
Eissmann, L.: Quaternary geology of eastern Germany (Saxony, Saxon–Anhalt,
South Brandenburg, Thüringia), type area of the Elsterian and Saalian
Stages in Europe, Quaternary Sci. Rev., 21, 1275–1346,
https://doi.org/10.1016/S0277-3791(01)00075-0, 2002.
Fischer, U. H., Bebiolka, A., Brandefelt, J., Cohen, D., Harper, J.,
Hirschorn, S., Jensen, M., Kennell, L., Liakka, J., Näslund, J.-O.,
Normani, S., Stück, H., and Weitkamp, A.: Radioactive waste under
conditions of future ice ages, in: Snow and Ice-Related Hazards, Risks, and
Disasters (Second Edition), edited by: Haeberli, W. and Whiteman, C.,
Elsevier, 323–375, https://doi.org/10.1016/B978-0-12-817129-5.00005-6, 2021.
Gegg, L. and Preusser, F.: Comparison of overdeepened structures in formerly glaciated areas of the northern Alpine foreland and northern central Europe, E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, 2023.
Gehrmann, A., Pedersen, S. A. S., and Meschede, M.: New insights into the
structural development and shortening of the southern Jasmund Glacitectonic
Complex (Rügen, Germany) based on balanced cross sections, Int.
J. Earth Sci., 111, 1697–1715, https://doi.org/10.1007/s00531-022-02216-y, 2022.
Grube, F.: Übertiefte Rinnen im Hamburger Raum, E&G Quaternary Sci.
J., 29, 157–172, https://doi.org/10.3285/eg.29.1.13, 1979.
Grube, F.: Tunnel Valleys, in: Glacial Deposits in North-West Europe, edited
by: Ehlers, J., A. A. Balkema, Rotterdam, 257–258, 1983.
Hese, F., Ahlers, P., Krienke, K., and Neumann, T.: Neubearbeitung der
Quartärbasis in Schleswig-Holstein, Subglaziale Rinnen Workshop 2021,
Poster, 10 December 2021, Hannover, 2021.
Hinsch, W.: Rinnen an der Basis des glaziären Pleistozäns in
Schleswig-Holstein, E&G Quaternary Sci. J., 29, 173–178,
https://doi.org/10.3285/eg.29.1.14, 1979.
Hooke, R. L. and Jennings, C. E.: On the formation of the tunnel valleys of
the southern Laurentide ice sheet, Quaternary Sci. Rev., 25,
1364–1372, https://doi.org/10.1016/j.quascirev.2006.01.018, 2006.
Huuse, M. and Lykke-Andersen, H.: Large-scale glaciotectonic thrust
structures in the eastern Danish North Sea, Geological Society, London,
Special Publications, 176, 293–305, https://doi.org/10.1144/GSL.SP.2000.176.01.22, 2000a.
Huuse, M. and Lykke-Andersen, H.: Overdeepened Quaternary valleys in the
eastern Danish North Sea: morphology and origin, Quaternary Sci. Rev.,
19, 1233–1253, https://doi.org/10.1016/S0277-3791(99)00103-1, 2000b.
Janszen, A., Moreau, J., Moscariello, A., Ehlers, J., and Kröger, J.:
Time-transgressive tunnel-valley infill revealed by a three-dimensional
sedimentary model, Hamburg, north-west Germany, Sedimentology, 60, 693–719,
https://doi.org/10.1111/j.1365-3091.2012.01357.x, 2013.
Jørgensen, F. and Sandersen, P. B. E.: Buried and open tunnel valleys in
Denmark – erosion beneath multiple ice sheets, Quaternary Sci. Rev.,,
25, 1339–1363, https://doi.org/10.1016/j.quascirev.2005.11.006, 2006.
Kehew, A., Piotrowski, J., and Jørgensen, F.: Tunnel valleys: Concepts
and controversies – A review, Earth-Sci. Rev., 113, 33–58,
https://doi.org/10.1016/j.earscirev.2012.02.002, 2012.
Kirkham, J. D., Hogan, K. A., Larter, R. D., Self, E., Games, K., Huuse, M.,
Stewart, M. A., Ottesen, D., Arnold, N. S., and Dowdeswell, J. A.: Tunnel
valley infill and genesis revealed by high-resolution 3-D seismic data,
Geology, 49, 1516–1520, https://doi.org/10.1130/g49048.1, 2021.
Kirkham, J. D., Hogan, K. A., Larter, R. D., Arnold, N. S., Ely, J. C.,
Clark, C. D., Self, E., Games, K., Huuse, M., Stewart, M. A., Ottesen, D.,
and Dowdeswell, J. A.: Tunnel valley formation beneath deglaciating
mid-latitude ice sheets: Observations and modelling, Quaternary Sci.
Rev., 107680, https://doi.org/10.1016/j.quascirev.2022.107680, 2022.
Kristensen, T. B., Huuse, M., Piotrowski, J. A., and Clausen, O. R.: A
morphometric analysis of tunnel valleys in the eastern North Sea based on 3D
seismic data, J. Quaternary Sci., 22, 801–815,
https://doi.org/10.1002/jqs.1123, 2007.
Kupetz, M.: Geologischer Bau und Genese der Stauchendmoräne Muskauer
Faltenbogen, Brandenburgische Geowissenschaftliche Beiträge, 4, 1–20,
http://www.schweizerbart.de//publications/detail/isbn/9783510652952/Stackebrandt_Franke_Geologie_von_Brande (last access: 17 May 2023), 1997.
Kuster, H. and Meyer, K. D.: Glaziäre Rinnen im mittleren und
nördlichen Niedersachsen, E&G Quaternary Sci. J., 29, 135–156,
https://doi.org/10.3285/eg.29.1.12, 1979.
Lang, J., Winsemann, J., Steinmetz, D., Polom, U., Pollok, L., Böhner,
U., Serangeli, J., Brandes, C., Hampel, A., and Winghart, S.: The
Pleistocene of Schöningen, Germany: a complex tunnel valley fill
revealed from 3D subsurface modelling and shear wave seismics, Quaternary
Sci. Rev., 39, 86–105,
https://doi.org/10.1016/j.quascirev.2012.02.009, 2012.
Lang, J., Hampel, A., Brandes, C., and Winsemann, J.: Response of salt
structures to ice-sheet loading: implications for ice-marginal and
subglacial processes, Quaternary Sci. Rev., 101, 217–233,
https://doi.org/10.1016/j.quascirev.2014.07.022, 2014.
Lang, J., Böhner, U., Polom, U., Serangeli, J., and Winsemann, J.: The
Middle Pleistocene tunnel valley at Schöningen as a Paleolithic archive,
J. Human Evolut., 89, 18–26,
https://doi.org/10.1016/j.jhevol.2015.02.004, 2015.
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J., and Wansa, S.: Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes, E&G Quaternary Sci. J., 56, 7–65, https://doi.org/10.3285/eg.56.1-2.02, 2007.
Lohrberg, A., Schwarzer, K., Unverricht, D., Omlin, A., and Krastel, S.:
Architecture of tunnel valleys in the southeastern North Sea: new insights
from high-resolution seismic imaging, J. Quatern. Sci., 35,
892–906, https://doi.org/10.1002/jqs.3244, 2020.
Lohrberg, A., Krastel, S., Unverricht, D., and Schwarzer, K.: The Heligoland
Glacitectonic Complex in the southeastern North Sea: indicators of a pre- or
early-Elsterian ice margin, Boreas, 51, 100–117,
https://doi.org/10.1111/bor.12551, 2022a.
Lohrberg, A., Schneider von Deimling, J., Grob, H., Lenz, K.-F., and Krastel, S.: Tunnel valleys in the southeastern North Sea: more data, more complexity, E&G Quaternary Sci. J., 71, 267–274, https://doi.org/10.5194/egqsj-71-267-2022, 2022b.
MacRae, R. A. and Christians, A. R.: A reexamination of Pleistocene tunnel
valley distribution on the central Scotian Shelf, Can. J. Earth
Sci., 50, 535–544, https://doi.org/10.1139/cjes-2012-0057, 2013.
Meyer, K. D.: Ground and end moraines in Lower Saxony, in: Tills and
Glaciotectonics, edited by: van der Meer, J. J. M., Balkema, Rotterdam,
197–204, ISBN 0317650114, 1987.
Müller, U. and Obst, K.: Junge halokinetische Bewegungen im Bereich der
Salzkissen Schlieven und Marnitz in Südwest-Mecklenburg, Brandenburg.
geowiss. Beitr., 15, 147–145, https://www.schweizerbart.de/publications/detail/isbn/9783510652952/Stackebrandt/_Franke/_Geologie_von_Brande (last access: 17 May 2023), 2008.
Noack, V., Cherubini, Y., Scheck-Wenderoth, M., Lewerenz, B., Höding,
T., Simon, A., and Moeck, I. S.: Assessment of the present-day thermal field
(NE German Basin) – Inferences from 3D modelling, Geochemistry, 70, 47–62,
https://doi.org/10.1016/j.chemer.2010.05.008, 2010.
Ó Cofaigh, C.: Tunnel valley genesis, Prog. Phys. Geog.-Earth Environ., 20, 1–19, https://doi.org/10.1177/030913339602000101, 1996.
Ottesen, D., Stewart, M., Brönner, M., and Batchelor, C. L.: Tunnel
valleys of the central and northern North Sea (56∘ N to
62∘ N): Distribution and characteristics, Mar. Geol., 425,
106199, https://doi.org/10.1016/j.margeo.2020.106199, 2020.
Passchier, S., Laban, C., Mesdag, C. S., and Rijsdijk, K. F.: Subglacial bed
conditions during Late Pleistocene glaciations and their impact on ice
dynamics in the southern North Sea, Boreas, 39, 633–647,
https://doi.org/10.1111/j.1502-3885.2009.00138.x, 2010.
Piotrowski, J. A.: Tunnel-valley formation in northwest Germany – geology,
mechanisms of formation and subglacial bed conditions for the Bornhöved
tunnel valley, Sediment. Geol., 89, 107–141,
https://doi.org/10.1016/0037-0738(94)90086-8, 1994.
Piotrowski, J. A.: Subglacial hydrology in north-western Germany during the
last glaciation: groundwater flow, tunnel valleys and hydrological cycles,
Quaternary Sci. Rev., 16, 169–185, https://doi.org/10.1016/S0277-3791(96)00046-7,
1997.
Piotrowski, J. A., Geletneky, J., and Vater, R.: Soft-bedded sub-glacial
meltwater channel from Welzow-Süd open-cast lignite mine, Lower Lusatia,
eastern Germany, Boreas, 28, 363–374, https://doi.org/10.1111/j.1502-3885.1999.tb00226.x,
1999.
Piotrowski, J. A., Larsen, N. K., and Junge, F. W.: Reflections on soft
subglacial beds as a mosaic of deforming and stable spots, Quaternary
Sci. Rev., 23, 993–1000,
https://doi.org/10.1016/j.quascirev.2004.01.006, 2004.
Prins, L. T., Andresen, K. J., Clausen, O. R., and Piotrowski, J. A.:
Formation and widening of a North Sea tunnel valley – The impact of slope
processes on valley morphology, Geomorphology, 368, 107347,
https://doi.org/10.1016/j.geomorph.2020.107347, 2020.
Ravier, E., Buoncristiani, J.-F., Guiraud, M., Menzies, J., Clerc, S.,
Goupy, B., and Portier, E.: Porewater pressure control on subglacial soft
sediment remobilization and tunnel valley formation: A case study from the
Alnif tunnel valley (Morocco), Sediment. Geol., 304, 71–95,
https://doi.org/10.1016/j.sedgeo.2014.02.005, 2014.
Ravier, E., Buoncristiani, J.-F., Menzies, J., Guiraud, M., Clerc, S., and
Portier, E.: Does porewater or meltwater control tunnel valley genesis? Case
studies from the Hirnantian of Morocco, Palaeogeogr. Palaeocl., 418, 359–376, https://doi.org/10.1016/j.palaeo.2014.12.003,
2015.
Sandersen, P. B. E. and Jørgensen, F.: Substratum control on
tunnel-valley formation in Denmark, in: Glaciogenic Reservoirs and
Hydrocarbon Systems, edited by: Huuse, M., Redfern, J., Le Heron, D. P.,
Dixon, R. J., Moscariello, A., and Craig, A., Geological Society Special
Publications, 1, Geological Society of London, London/UK, 145–157,
https://doi.org/10.1144/SP368.12, 2012.
Sandersen, P. B. E. and Jørgensen, F.: Tectonic impact on Pleistocene and
Holocene erosional patterns in a formerly glaciated intra-plate area,
Quaternary Sci. Rev., 293, 107681,
https://doi.org/10.1016/j.quascirev.2022.107681, 2022.
Sandersen, P. B. E., Jørgensen, F., Larsen, N. K., Westergaard, J. H.,
and Auken, E.: Rapid tunnel-valley formation beneath the receding Late
Weichselian ice sheet in Vendsyssel, Denmark, Boreas, 38, 834–851,
https://doi.org/10.1111/j.1502-3885.2009.00105.x, 2009.
Schulz, R.: Forschungsbohrungen des GGA-Instituts, Zeitschrift für
angewandte Geologie, 48, 3–8, ISSN 0044-2259, 2002.
Schütze, K.: Übersichtskarte Präquartär und
Quartärbasis, Landesamt für Umwelt, Naturschutz und Geologie
Mecklenburg-Vorpommern (LUNG), Geologische Karte von Mecklenburg-Vorpommern
1:500.000, 2006.
Shreve, R. L.: Movement of Water in Glaciers, J. Glaciol., 11,
205–214, https://doi.org/10.3189/S002214300002219X, 1972.
Smed, P.: Die Entstehung der dänischen und norddeutschen Rinnentäler (Tunneltäler) – Glaziologische Gesichtspunkte, E&G Quaternary Sci. J., 48, 1–18, https://doi.org/10.3285/eg.48.1.01, 1998.
Sonntag, A. and Lippstreu, L.: Tiefenlage der Quartärbasisfläche,
in: Atlas zur Geologie von Brandenburg, 4. aktualisierte Auflage ed., edited
by: Stackebrandt, W. and Manhenke, V., Landesamt für Bergbau, Geologie
und Rohstoffe Brandenburg (LBGR), Cottbus, 54–55, ISBN 978-3-9808157-4-1, 2010.
Stackebrandt, W.: Subglacial channels of Northern Germany – a brief review,
Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 160,
203–210, https://doi.org/10.1127/1860-1804/2009/0160-0203, 2009.
Stackebrandt, W., Ludwig, A. O., and Ostaficzuk, S.: Base of Quaternary
deposits of the Baltic Sea depression and adjacent areas (Map 2),
Brandenburgische geowissenschaftliche Beiträge, 8, 13–19, https://lbgr.brandenburg.de/lbgr/de/geologischer-dienst/brandenburgische-geowissenschaftliche-beitraege/ (last access: 17 May 2023), 2001.
Stackebrandt, W., Manhenke, V., Stackebrandt, W., Andreae, A., and
Strahl, J. (Eds.): Atlas zur Geologie von Brandenburg, 4. aktualisierte
Auflage, Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg
(LBGR), Cottbus, 157 pp., ISBN 978-3-9808157-4-1, 2010.
StandAG: Gesetz zur Suche und Auswahl eines Standortes für ein Endlager
für hochradioaktive Abfälle (Standortauswahlgesetz – StandAG) vom
5. Mai 2017 (BGBl. I 2017, Nr. 26, S. 1074) zuletzt geändert durch
Artikel 3 des Gesetzes vom 12. Dezember 2019 (BGBl. I 2019, Nr. 48, S.
2510), Stand 01/20, Deutscher Bundestag, 2017.
Steinmetz, D., Winsemann, J., Brandes, C., Siemon, B., Ullmann, A.,
Wiederhold, H., and Meyer, U.: Towards an improved geological interpretation
of airborne electromagnetic data: a case study from the Cuxhaven tunnel
valley and its Neogene host sediments (northwest Germany), Netherlands
J. Geosci., 94, 201–227, https://doi.org/10.1017/njg.2014.39, 2015.
ten Veen, J.: Future evolution of the geological and geohydrological
properties of the geosphere, TNO, Utrecht, OPERA-PU-TNO412, 121, Utrecht, OPERA, 2015.
van der Vegt, P., Janszen, A., and Moscariello, A.: Tunnel valleys: current
knowledge and future perspectives, Geological Society, London, Special
Publications, 368, 75–97, https://doi.org/10.1144/sp368.13, 2012.
van der Wateren, F. M.: Structural geology and sedimentology of push
moraines: processes of soft sediment deformation in a glacial environment
and the distribution of glaciotectonic styles, Mededelingen Rijks
Geologische Dienst, 54, 167 pp., ISSN 90-72869-44-3, 1995.
Wenau, S. and Alves, T. M.: Salt-induced crestal faults control the
formation of Quaternary tunnel valleys in the southern North Sea, Boreas,
49, 799–812, https://doi.org/10.1111/bor.12461, 2020.
Wingfield, R.: The origin of major incisions within the Pleistocene deposits
of the North Sea, Mar. Geol., 91, 31–52,
https://doi.org/10.1016/0025-3227(90)90131-3, 1990.
Winsemann, J., Koopmann, H., Tanner, D. C., Lutz, R., Lang, J., Brandes, C.,
and Gaedicke, C.: Seismic interpretation and structural restoration of the
Heligoland glaciotectonic thrust-fault complex: Implications for multiple
deformation during (pre-)Elsterian to Warthian ice advances into the
southern North Sea Basin, Quaternary Sci. Rev., 227, 106068,
https://doi.org/10.1016/j.quascirev.2019.106068, 2020.
Short summary
Our work presented here deals with the impact of deep glacial erosion forms and their effect on the safety of a possible repository for highly radioactive waste. In past ice ages, glaciers have formed deep tunnel valleys. We assume that similar depths of erosion can be reached in future ice ages. This must be taken into account in the safety assessment of radioactive waste repositories. We have calculated a new depth zone map from maps and data based on records from the Pleistocene.
Our work presented here deals with the impact of deep glacial erosion forms and their effect on...