Articles | Volume 73, issue 2
https://doi.org/10.5194/egqsj-73-161-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-73-161-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Millennial-scale erosion rates in the Harz Mountains (Germany) from cosmogenic 10Be: implications for landscape evolution of basement highs in Central Europe
Ralf Hetzel
CORRESPONDING AUTHOR
Institut für Geologie und Paläontologie, Universität Münster, 48149 Münster, Germany
Henrik Rother
Landesamt für Geologie und Bergwesen Sachsen-Anhalt, 06130 Halle (Saale), Germany
Reinhard Wolff
Institut für Geologie und Paläontologie, Universität Münster, 48149 Münster, Germany
Kyra Hölzer
Institut für Geologie und Paläontologie, Universität Münster, 48149 Münster, Germany
Related subject area
Geomorphology
What do dust sinks tell us about their sources and past environmental dynamics? A case study for oxygen isotope stages 3–2 in the Middle Rhine Valley, Germany
Pleniglacial dynamics in an oceanic central European loess landscape
On the expression and distribution of glacial trimlines: a case study of Little Ice Age trimlines on Svalbard
Late Quaternary landform evolution and sedimentary successions in the Miaoli Tableland, northwestern Taiwan
A tribute to Büdel (1951): The climatic zones of the ice age
A tribute to Louis (1952): On the theory of glacial erosion in valleys
A tribute to Woldstedt (1952): Problems of terrace formation
A tribute to Rohdenburg (1970): Morphodynamic activity and stability phases instead of pluvial and interpluvial times
A first outline of the Quaternary landscape evolution of the Kashaf Rud River basin in the drylands of northeastern Iran
Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating
Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany
Disestablishing “Glacial Lake Speight”, New Zealand? An example for the validity of detailed geomorphological assessment with the study of mountain glaciations
Reconsidering the origin of the Sedrun fans (Graubünden, Switzerland)
Mathias Vinnepand, Peter Fischer, Ulrich Hambach, Olaf Jöris, Carol-Ann Craig, Christian Zeeden, Barry Thornton, Thomas Tütken, Charlotte Prud'homme, Philipp Schulte, Olivier Moine, Kathryn E. Fitzsimmons, Christian Laag, Frank Lehmkuhl, Wolfgang Schirmer, and Andreas Vött
E&G Quaternary Sci. J., 72, 163–184, https://doi.org/10.5194/egqsj-72-163-2023, https://doi.org/10.5194/egqsj-72-163-2023, 2023
Short summary
Short summary
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing detailed information on Quaternary environmental and climate changes. We present an integrative approach combining sedimentological, rock magnetic, and bulk geochemical data, as well as information on Sr and Nd isotope composition. The approach adds to a comprehensive understanding of LPS formation including changes in dust composition and associated circulation patterns during Quaternary climate changes.
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Camilla M. Rootes and Christopher D. Clark
E&G Quaternary Sci. J., 71, 111–122, https://doi.org/10.5194/egqsj-71-111-2022, https://doi.org/10.5194/egqsj-71-111-2022, 2022
Short summary
Short summary
Glacial trimlines are visible breaks in vegetation or landforms that mark the former extent of glaciers. They are often observed as faint lines running across valley sides and are useful for mapping the three-dimensional shape of former glaciers or for assessing by how much present-day glaciers have thinned and retreated. Here we present the first application of a new trimline classification scheme to a case study location in central western Spitsbergen, Svalbard.
Shih-Hung Liu, Robert Hebenstreit, and Margot Böse
E&G Quaternary Sci. J., 71, 1–22, https://doi.org/10.5194/egqsj-71-1-2022, https://doi.org/10.5194/egqsj-71-1-2022, 2022
Short summary
Short summary
The Miaoli Tableland (northwestern Taiwan) consists of a sequence of fine-grained tidal to coarse fluvial late Quaternary sediments which underwent a spatially differentiated uplift and fluvial dissection. They reveal repeated rework processes of fluvial cobbles from the highlands to the coast. A new landform classification based on high-resolution 3D terrain analysis results in a new interpretation of the landform evolution. The results favour a local rarely used Quaternary stratigraphic code.
Jef Vandenberghe
E&G Quaternary Sci. J., 70, 205–207, https://doi.org/10.5194/egqsj-70-205-2021, https://doi.org/10.5194/egqsj-70-205-2021, 2021
Short summary
Short summary
A main element in Büdel's concept is his quite provocative link between climate zones and geomorphological processes, a strong relation which was frequently contested later. Büdel's contribution is still relevant in modern times as the present-day climatic change will probably also invoke a poleward shift of climatic zones, accompanied by associated shifts in geomorphological environments and ecosystems.
Pierre G. Valla
E&G Quaternary Sci. J., 70, 209–212, https://doi.org/10.5194/egqsj-70-209-2021, https://doi.org/10.5194/egqsj-70-209-2021, 2021
James Rose, David R. Bridgland, and Rob Westaway
E&G Quaternary Sci. J., 70, 217–220, https://doi.org/10.5194/egqsj-70-217-2021, https://doi.org/10.5194/egqsj-70-217-2021, 2021
Dominik Faust and Markus Fuchs
E&G Quaternary Sci. J., 70, 243–246, https://doi.org/10.5194/egqsj-70-243-2021, https://doi.org/10.5194/egqsj-70-243-2021, 2021
Azra Khosravichenar, Morteza Fattahi, Alireza Karimi, Hassan Fazeli Nashli, and Hans von Suchodoletz
E&G Quaternary Sci. J., 70, 145–150, https://doi.org/10.5194/egqsj-70-145-2021, https://doi.org/10.5194/egqsj-70-145-2021, 2021
Short summary
Short summary
This article discusses the first basic framework of Quaternary landscape evolution in a main large river valley of the drylands of northeastern Iran and the first geomorphic frame for human migrations in the important migration corridor of central Asia.
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Stefan Winkler, David Bell, Maree Hemmingsen, Kate Pedley, and Anna Schoch
E&G Quaternary Sci. J., 67, 25–31, https://doi.org/10.5194/egqsj-67-25-2018, https://doi.org/10.5194/egqsj-67-25-2018, 2018
Short summary
Short summary
Geomorphological mapping and analysis conducted as an initial step towards a future sediment budget study of the middle Waimakariri River (Southern Alps, New Zealand) reveals that the traditional concept of the temporary palaeolake
glacial Lake Speightis conflicting with our conclusions of realistic chronosequences and timescales of para- and postglacial landform development. Especially the temporal and causal relation to the last deglaciation needs to be questioned and will be discussed.
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Cited articles
Ahnert, F.: Functional relationship between denudation, relief, and uplift in large mid-latitude drainage basins, Am. J. Sci., 268, 243–263, https://doi.org/10.2475/ajs.268.3.243, 1970.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochronol., 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017.
Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008 (code available at: http://hess.ess.washington.edu, last access: 29 September 2024).
Benda, L. and Dunne, T.: Stochastic forcing of sediment supply to channel networks from landsliding and debris flows, Water Resour. Res., 33, 2849–2863, https://doi.org/10.1029/97WR02388, 1997.
Binnie, S. A., Phillips, W. M., Summerfield, M. A., and Fifield, L. K.: Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range, Geology, 35, 743–746, https://doi.org/10.1130/G23641A.1, 2007.
Binnie, S. A., Dewald, A., Heinze, S., Voronina, E., Hein, A., Wittman, H., von Blanckenburg, F., Hetzel, R., Christl, M., Schaller, M., Léanni, L., ASTER Team, Hippe, K., Vockenhuber, C., Ivy-Ochs, S., Maden, C., Fülöp, R.-H., Fink, D., Wilcken, K. M., Fujioka, T., and Dunai, T. J.: Preliminary results of CoQtz-N: A quartz reference material for terrestrial in-situ cosmogenic 10Be and 26Al measurements, Nucl. Instrum. Meth. B, 456, 203–212, https://doi.org/10.1016/j.nimb.2019.04.073, 2019.
Bombien, H.: Geologisch-petrographische Untersuchungen zur quartären (früh-Saale-zeitlichen) Flussgeschichte im nördlichen Harzvorland, Mitteilungen aus dem Geologischen Institut der Universität Hannover, 26, 131 pp., 1987.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochronol., 31, 188–198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Braucher, R., Merchel, S., Borgomano, J., and Bourlès, D. L.: Production of cosmogenic radionuclides at great depth: A multi element approach, Earth Planet. Sci. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M., and Yiou, F.: Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo Experimental Forest, Puerto Rico, Earth Planet. Sci. Lett., 129, 193–202, https://doi.org/10.1016/0012-821X(94)00249-X, 1995.
Carretier, S, Regard, V., Vassallo. R., Martinod, J., Christophoul, F., Gayer, E., Audin, L., and, Lagane C.: A note on 10Be-derived mean erosion rates in catchments with heterogeneous lithology: examples from the western Central Andes, Earth Surf. Proc. Land. 40, 1719–1729, https://doi.org/10.1002/esp.3748, 2015.
DEKORP-BASIN Research Group: Deep crustal structure of the Northeast German basin: New DEKORP-BASIN'96 Deep-Profiling Results, Geology, 27, 55–58, https://doi.org/10.1130/0091-7613(1999)027<0055:DCSOTN>2.3.CO;2, 1999.
Delunel, R., Schlunegger, F., Valla, P. G., Dixon, J., Glotzbach, C., Hippe, K., Kober, F., Molliex, S., Norton, K. P., Salcher, B., Wittmann, H., Akçar, N., and Christl, M.: Late-Pleistocene catchment-wide denudation patterns across the European Alps, Earth-Sci. Rev., 211, 103407, https://doi.org/10.1016/j.earscirev.2020.103407, 2020.
Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: CologneAMS, a dedicated center for accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B, 294, 18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013.
DiBiase, R. A., Whipple, K. X., Heimsath, A. M., and Ouimet, W. B.: Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth Planet. Sci. Lett., 289, 134–144, https://doi.org/10.1016/j.epsl.2009.10.036, 2010.
Dielforder, A., Frasca, G., Brune, S., and Ford, M.: Formation of the Iberian-European convergent plate boundary fault and its effect on intraplate deformation in Central Europe, Geochem. Geophy. Geosy., 20, 2395–2417, https://doi.org/10.1029/2018GC007840, 2019.
Diercks, M.-L., Stanek, K., Domiìnguez-Gonzalez, L., and Ehling, B.: Quaternary landscape evolution and tectonics in Central Germany – A case study of the Harz, Geomorphology, 388, 107794, https://doi.org/10.1016/j.geomorph.2021.107794, 2021.
Dunai, T. J. (Eds.): Cosmogenic nuclides – Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, 187 pp., ISBN 9781108445726, 2010.
Duphorn, K.: Ist der Oberharz im Pleistozän vergletschert gewesen?, Eiszeitalter und Gegenwart, 19, 164–174, 1968.
Ehlers, J., Grube, A., Stephan, H. J., and Wansa, S.: Chapter 13 - Pleistocene glaciations of North Germany - new results, in: Quaternary Glaciations – Extent and Chronology: A Closer Look, edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Developments in Quaternary Sciences, 15, 149–162, https://doi.org/10.1016/B978-0-444-53447-7.00013-1, 2011.
Eissmann, L.: Quaternary geology of eastern Germany (Saxony, Saxon–Anhalt, South Brandenburg, Thuringia), type area of the Elsterian and Saalian Stages in Europe, Quaternary Sci. Rev., 21, 1275–1346, 2002.
Feldmann, L.: Das Quartär zwischen Harz und Allertal mit einem Beitrag zur Landschaftsgeschichte im Tertiär, Clausthaler Geowissenschaften, 1, 1–149, 2002.
Franke, W.: Variscan plate tectonics in Central Europe – current ideas and open questions, Tectonophysics, 169, 221–228, https://doi.org/10.1016/0040-1951(89)90088-7, 1989.
Franzke, H.-J., Voigt, T., von Eynatten, H., Brix, M. R., and Burmester, G.: Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg, Geowiss. Mitt. Thüringen, 11, 39–62, 2004.
Franzke, H. J., Hauschke, N., and Hellmund, M.: Spätpleistozäne bis frühholozäne Tektonik in einem Karsttrichter im Bereich der Störungszone des Harznordrandes nahe Benzingerode (Sachsen-Anhalt), Hallesches Jahrbuch für Geowissenschaften, 37, 1–10, https://doi.org/10.25673/91889, 2015.
Frebold, G.: Die Oberflächengestaltung des Brockengebietes, Jahrbuch der Geographischen Gesellschaft zu Hannover, 1932/33, 89–120, 1933.
Fuller, C. W., Willett, S. D., Hovius, N., and Slingerland, R.: Erosion rates for Taiwan mountain basins: new determinations from suspended sediment records and a stochastic model of their temporal variation, J. Geol., 111, 71–87, https://doi.org/10.1086/344665, 2003.
Gilbert, G. K.: Report on the geology of the Henry Mountains, U.S. Geographical and Geological Survey of the Rocky Mountain Region, Government Printing Office, Washington, https://doi.org/10.3133/70039916, 1877.
Glotzbach, C., Röttjer, M., Hampel, A., Hetzel, R., and Kubik, P. W.: Quantifying the impact of former glaciation on catchment-wide denudation rates derived from cosmogenic 10Be, Terra Nova, 26, 186–194, https://doi.org/10.1111/ter.12085, 2014.
Godard, V., Bourlès, D. L., Spinabella, F., Burbank, D. W., Bookhagen, B., Fisher, G. B., Moulin, A., and Léanni, L.: Dominance of tectonics over climate in Himalayan denudation, Geology, 42, 243–246, 2014.
Goethals, M. M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C. R., Kubik, P. W., Christl, M., and von Blanckenburg, F.: An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz, Earth Planet. Sci. Lett., 284, 187–198, https://doi.org/10.1016/j.epsl.2009.04.027, 2009.
Granger, D. E., Kirchner, J. W., and Finkel, R.: Spatially averaged long-term erosion rates measured from in situ produced cosmogenic nuclides in alluvial sediment, J. Geol., 104, 249–257, https://doi.org/10.1086/629823, 1996.
Hampel, A., Hetzel, R., Maniatis, G., and Karow, T.: Three-dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting, J. Geophys. Res., 114, B08406, https://doi.org/10.1029/2008JB006113, 2009.
Hampel, A., Hetzel, R., and Maniatis, G.: Response of faults to climate-driven changes in ice and water volumes on Earth's surface, Philos. T. Roy. Soc. A, 368, 2501–2517, https://doi.org/10.1098/rsta.2010.0031, 2010.
Hancock, G. and Kirwan, M.: Summit erosion rates deduced from 10Be: Implications for relief production in the central Appalachians, Geology, 35, 89–92, https://doi.org/10.1130/G23147A.1, 2007.
Heineke, C., Hetzel, R., Nilius, N.-P., Glotzbach, C., Akal, C., Christl, M., and Hampel, A.: Spatial patterns of erosion and landscape evolution in a bivergent metamorphic core complex revealed by cosmogenic 10Be: The central Menderes Massif (western Turkey), Geosphere, 15, 1846–1868, https://doi.org/10.1130/GES02013.1, 2019.
Hetzel, R.: Active faulting, mountain growth, and erosion at the margins of the Tibetan Plateau constrained by in situ-produced cosmogenic nuclides, Tectonophysics, 582, 1–24, https://doi.org/10.1016/j.tecto.2012.10.027, 2013.
Hinze, C., Jordan, H., Knoth, W., Kriebel, U., and Martiklos, G.: Geologische Karte Harz 1: 100 000, Landesamt für Geologie und Bergwesen Sachsen-Anhalt, 1998.
Hövermann, J.: Die diluvialen Terrassen des Oberharzes und seines Vorlandes - Ein Beitrag zur Frage der Harzhebung, Petermann. Geogr. Mitt., 94, 121–130, 1950.
Houlié, N. and Stern, T.: A comparison of GPS solutions for strain and SKS fast directions: Implications for modes of shear in the mantle of a plate boundary zone, Earth Planet. Sci. Lett., 345–348, 117–125, https://doi.org/10.1016/j.epsl.2012.06.029, 2012.
Jankowski, G.: Die Tertiärbecken des südlichen Harzvorlandes und ihre Beziehungen zur Subrosion, Geologie, Beiheft, 43, 1–64, 1964.
Jordan, H.: Quartäre Tektonik und Gipskarst am Südharz, Niedersachsen, Beiträge zur Geologie von Thüringen, Neue Folge, 2, 75–96, 1995.
Kaiser, A., Reicherter, K., Hübscher, C., and Gajewski, D.: Variation of the present-day stress field within the North German Basin insights - from thin shell FE modeling based on residual GPS velocities, Tectonophysics, 397, 55–72, https://doi.org/10.1016/j.tecto.2004.10.009, 2005.
Kirchner, J. W., Finkel, R. C., Riebe, C. S., Granger, D. E., Clayton, J. L., King, J. G., and Megahan, W. F.: Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales, Geology, 29, 591–594, https://doi.org/10.1130/0091-7613(2001)029<0591:MEOYKY>2.0.CO;2, 2001.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in Central Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision, Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
König, W. and Blumenstengel, H.: Die Oligozänvorkommen am Hartenberg und bei Hüttenrode im Mittelharz und ihre Bedeutung für die känozoische Harzentwicklung, Mitteilungen Verband deutscher Höhlen- und Karstforscher, 51, 120–125, 2005.
König, W., Köthe, A., and Ritz, I.: Die marine Beeinflussung der Subherzynen Senke und der Mittelharzhochfläche im Oligozän – Biostratigraphische und sedimentpetrographische Analysen tertiärer Sandvorkommen, Z. Geol. Wissenschaft, 39, 387–431, 2011.
Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Ac., 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992.
Krawczyk, C. M., Stiller, M., and DEKORP-Basin Research Group: Reflection seismic constraints on Paleozoic crustal structure and Moho beneath the NE German Basin, Tectonophysics, 314, 241–253, https://doi.org/10.1016/S0040-1951(99)00246-2, 1999.
Lal, D.: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sci. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lauer, T. and Weiß, M.: Timing of the Saalian- and Elsterian glacial cycles and the implications for Middle – Pleistocene hominin presence in central Europe, Sci. Rep.-UK, 8, 5111, https://doi.org/10.1038/s41598-018-23541-w, 2018.
Leydecker, G. and Kopera, J. R.: Seismological hazard assessment for a site in Northern Germany, an area of low seismicity, Eng. Geol., 52, 293–304, https://doi.org/10.1016/S0013-7952(99)00012-5, 1999.
Lüttig, G.: Hat sich der Nordwestharz im Postglazial gehoben?, Geologisches Jahrbuch, 70, 405–434, 1955.
Meyer, H., Hetzel, R., Fügenschuh, B., and Strauss, H.: Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany, Earth Planet. Sci. Lett., 290, 391–402, https://doi.org/10.1016/j.epsl.2009.12.034, 2010a.
Meyer, H., Hetzel, R., and Strauss, H.: Erosion rates on different timescales derived from cosmogenic 10Be and river loads: Implications for landscape evolution in the Rhenish Massif, Germany, Int. J. Earth Sci., 99, 395–412, https://doi.org/10.1007/s00531-008-0388-y, 2010b.
Mücke, E.: Zur Großformung der Hochfläche des östlichen Harzes, Hercynia, 3, 221–244, 1966.
Müller, K., Polom, U., Winsemann, J., Steffen, H., Tsukamoto, S., Günther, T., Igel, J., Spies, T., Lege, T., Frechen, M., Franzke, H. J., and Brandes, C.: Structural style and neotectonic activity along the Harz Boundary Fault, northern Germany: a multimethod approach integrating geophysics, outcrop data and numerical simulations, Int. J. Earth Sci., 109, 1811–1835, https://doi.org/10.1007/s00531-020-01874-0, 2020.
Niedermann, S.: Cosmic-ray-Produced Noble Gases in Terrestrial Rocks: Dating Tools for Surface Processes, Rev. Mineral. Geochem., 47, 731–784, https://doi.org/10.2138/rmg.2002.47.16, 2002.
Palumbo, L., Hetzel, R., Tao, M., and Li, X.: Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet, Geomorphology, 117, 130–142, https://doi.org/10.1016/j.geomorph.2009.11.019, 2010.
Pan, B.-T., Geng, H.-P., Hu, X.-F., Sun, R.-H., and Wang, C.: The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains, N.W. China, Earth Planet. Sc. Lett., 292, 148–157, https://doi.org/10.1016/j.epsl.2010.01.030, 2010.
Paul, J.: Hat sich der Harz im jüngeren Tertiär und Quartär gehoben?, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 170, 95–107, https://doi.org/10.1127/zdgg/2019/0181, 2019.
Penck, W.: Die morphologische Analyse, Ein Kapitel der physikalischen Geologie, Verlag J Engelhorn Nachf, Stuttgart, 283 pp., 1924.
Piña-Valdés, J., Socquet, A., Beauval, C., Doin, M.-P., D'Agostino, N., and Shen, Z.-K.: 3D GNSS velocity field sheds light on the deformation mechanisms in Europe: Effects of the vertical crustal motion on the distribution of seismicity, J. Geophys. Res., 127, e2021JB023451, https://doi.org/10.1029/2021JB023451, 2022.
Pinet, P. and Souriau, M.: Continental erosion and large-scale relief, Tectonics 7, 563–582, https://doi.org/10.1029/TC007i003p00563, 1988.
Philippi, E.: Über die präoligozäne Landoberfläche in Thüringen, Z. Dtsch. Geol. Ges., 62, 305–404, 1910.
Portenga, E. W. and Bierman, P. R.: Understanding Earth's eroding surface with 10Be, GSA Today, 21, 4–10, 2011.
Schaller, M., von Blanckenburg, F., Hovius, N., and Kubik, P.W.: Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments, Earth Planet. Sci. Lett., 188, 441–458, 2001.
Schaller, M., Ehlers, T. A., Stor, T., Torrent, J., Lobato, L., Christl, M., and Vockenhuber, C.: Spatial and temporal variations in denudation rates derived from cosmogenic nuclides in four European fluvial terrace sequences, Geomorphology, 274, 180–192, https://doi.org/10.1016/j.geomorph.2016.08.018, 2016.
Scharf, T. E., Codilean, A. T., de Wit, M., Jansen, J. D., and Kubik, P. W.: Strong rocks sustain ancient postorogenic topography in southern Africa, Geology, 41, 331–334, https://doi.org/10.1130/G33806.1, 2013.
Small, E. E., Anderson, R. S., and Hancock, G. S.: Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope, Geomorphology, 27, 131–150, 1999.
Stollhofen, H., Bachmann, G. H., Barnasch, J., Bayer, U., Beutler, G., Franz, M., Kästner, M., Legeler, B., Mutterlose, J., and Radies, D.: Upper Rotliegend to Early Cretaceous basin development, in: Dynamics of Complex Intracontinental Basins. The Central European Basin System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer, Berlin, Heidelberg, Germany, Chap. 4.3, 181–210, https://doi.org/10.1007/978-3-540-85085-4, 2008.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753–23759, https://doi.org/10.1029/2000JB900181, 2000.
Strobl, M., Hetzel, R., Niedermann, S., Ding, L., and Zhang, L.: Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10Be and 21Ne, Geomorphology, 153–154, 192–204, https://doi.org/10.1016/j.geomorph.2012.02.024, 2012.
Summerfield, M. A. and Hulton, N. J.: Natural controls of fluvial denudation rate in major world drainage basins, J. Geophys. Res., 99, 13871–13883, https://doi.org/10.1029/94JB00715, 1994.
Tanner, D. C. and Krawczyk, C. M.: Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: Evidence for the geometry of a thick-skinned thrust, Int. J. Earth Sci., 106, 2963–2972, https://doi.org/10.1007/s00531-017-1475-8, 2017.
Thiem, W.: Geomorphologie des westlichen Harzrandes und seiner Fußregion, Jahrbuch der Geographischen Gesellschaft zu Hannover, Sonderheft, 6, 271 pp., 1972.
Thiem, W.: Neue Aspekte für die Rekonstruktion der Reliefentwicklung des Harzes, Hercynia, 11, 233–260, https://doi.org/10.25673/93855, 1974.
Tippett, J. M. and Kamp, P. J. J.: Geomorphic evolution of the Southern Alps, New Zealand, Earth Surf. Proc. Land., 20, 177–192, 1995.
Turpeinen, H., Hampel, A., Karow, T., and Maniatis, G.: Effect of ice sheet growth and melting on the slip evolution of thrust faults, Earth Planet. Sci. Lett., 269, 230–241, https://doi.org/10.1016/j.epsl.2008.02.017, 2008.
Vance, D., Bickle, M., Ivy-Ochs, S., and Kubik, P. W.: Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments, Earth Planet. Sc. Lett., 206, 273–288, https://doi.org/10.1016/S0012-821X(02)01102-0, 2003.
Voigt, T., Wiese, F., von Eynatten, H., Franzke, H.-J., and Gaupp, R.: Facies evolution of syntectonic Upper Cretaceous Deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany), Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 203–244, https://doi.org/10.1127/1860-1804/2006/0157-0203, 2006.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
von Blanckenburg, F.: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sc. Lett., 242, 224–239, https://doi.org/10.1016/j.epsl.2005.11.017, 2006.
von der Sahle, E.: Härtlingszüge. Morphologische Studien aus deutschen Mittelgebirgen, Berliner Geogr. Arb., 21, 1–113, 1942.
von Eynatten, H., Voigt, T., Meier, A., Franzke, H.-J., and Gaupp, R.: Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to exhumation of the Harz Mountains and the timing of inversion tectonics in the Central European Basin, Int. J. Earth Sci., 97, 1315–1330, https://doi.org/10.1007/s00531-007-0212-0, 2008.
von Eynatten, H., Dunkl, I., Brix, M., Hoffmann, V.-E., Raab, M., Thomson, S. N., and Kohn, B.: Late Cretaceous exhumation and uplift of the Harz Mountains, Germany: a multi-method thermochronological approach, Int. J. Earth Sci., 108, 2097–2111, https://doi.org/10.1007/s00531-019-01751-5, 2019.
von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.-E., and Simon, A.: Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift, Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, 2021.
Weissermel, W., Grupe, O., Dahlgrün, F., and Schriel, W.: Zum Problem des Harzranddiluviums, Zeitschrift der Deutschen Geologischen Gesellschaft, 84, 173–189, 1932.
Weymann, H.-J., Feldmann, L., and Bombien, H.: Das Pleistozän des nördlichen Harzvorlandes – eine Zusammenfassung, Eiszeitalter und Gegenwart, 55, 43–63, 2005.
Wolff, R., Hetzel, R., and Strobl, M.: Quantifying river incision into low-relief surfaces using local and catchment-wide 10Be denudation rates, Earth Surf. Proc. Land., 43, 2327–2341, https://doi.org/10.1002/esp.4394, 2018.
Yi, D., Jay Zwally, H., and Sun, X.: ICESat measurement of Greenland ice sheet surface slope and roughness, Ann. Glaciol., 42, 83–89, 2005.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zech, J., Jeffries, T., Faust, D., Ullrich, B., and Linnemann, U.: U/Pb-dating and geochemical characterization of the Brocken and Ramberg Pluton, Harz Mountains, Germany, Geologica Saxonica, 56, 9–24, 2010.
Ziegler, P. A., Schumacher, M. E., Dèzes, P., Van Wees, J. D., and Cloetingh, S.: Post-Variscan evolution of the lithosphere in the area of the European Cenozoic Rift System, Geological Society, London, Memoirs, 32, 97–112, https://doi.org/10.1144/GSL.MEM.2006.032.01.06, 2006.
Short summary
We present 10Be-based erosion rates for the Harz Mountains. Erosion is slope-dependent, and the Harz topography evolves at rates of a few tens of meters per million years. The 300 m difference in elevation between a planation surface in the Harz and its lower surroundings results from rock uplift, erosion of sediments in adjacent areas, and migration and dissolution of Permian salt. Active reverse faulting along the northern Harz is inconsistent with geological, geophysical, and geodetic data.
We present 10Be-based erosion rates for the Harz Mountains. Erosion is slope-dependent, and the...