Articles | Volume 73, issue 1
https://doi.org/10.5194/egqsj-73-69-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-73-69-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MiGIS: micromorphological soil and sediment thin section analysis using an open-source GIS and machine learning approach
Institute of Geography, University of Cologne, 50923 Cologne, Germany
Marie Gröbner
Institute of Geography, University of Cologne, 50923 Cologne, Germany
Astrid Röpke
Laboratory of Archaeobotany, Institute of Prehistoric Archaeology, University of Cologne, 50923 Cologne, Germany
Martin Kehl
Department of Geography, Institute for Integrated Natural Sciences, Faculty 3 Mathematics and Natural Sciences, University of Koblenz, 56070 Koblenz, Germany
Related authors
Dennis Handy, W. Marijn Van der Meij, Mirijam Zickel, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4832, https://doi.org/10.5194/egusphere-2025-4832, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
Geoscientific projects often struggle to manage complex data effectively, resulting in valuable information being lost due to poor findability and accessibility. To address this, we present a comprehensive research data framework for storing and processing data throughout a project, from fieldwork to data analysis. This ensures that datasets are clearly defined, reproducible and adhere to the FAIR principles (findability, accessibility, interoperability and reusability).
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Dennis Handy, W. Marijn Van der Meij, Mirijam Zickel, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-4832, https://doi.org/10.5194/egusphere-2025-4832, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
Geoscientific projects often struggle to manage complex data effectively, resulting in valuable information being lost due to poor findability and accessibility. To address this, we present a comprehensive research data framework for storing and processing data throughout a project, from fieldwork to data analysis. This ensures that datasets are clearly defined, reproducible and adhere to the FAIR principles (findability, accessibility, interoperability and reusability).
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Cited articles
Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use and land cover classification system for use with remote sensor data, Tech. rep., USGS Publications Warehouse, Professional Paper, 964, Reston, USA, https://doi.org/10.3133/pp964, 1976. a
Arnay, R., Hernández-Aceituno, J., and Mallol, C.: Soil micromorphological image classification using deep learning: The porosity parameter, Appl. Soft Comput., 102, 107093, https://doi.org/10.1016/j.asoc.2021.107093, 2021. a
Arpin, T. L., Mallol, C., and Goldberg, P.: Short contribution: A new method of analyzing and documenting micromorphological thin sections using flatbed scanners: Applications in geoarchaeological studies, Geoarchaeology, 17, 305–313, https://doi.org/10.1002/gea.10014, 2002. a, b
Beckmann, T.: Präparation bodenkundlicher Dünnschliffe für mikromorphologische Untersuchungen, Hohenheimer Bodenkundliche Hefte, 40, 89–103, 1997. a
Breimann, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c, d
Brewer, R.: Fabric and mineral analysis of soils, John Wiley & Sons, New York, USA, 1964. a
Brönnimann, D., Röder, B., Spichtig, N., Rissanen, H., Lassau, G., and Rentzel, P.: The Hidden Midden: Geoarchaeological investigation of sedimentation processes, waste disposal practices, and resource management at the La Tène settlement of Basel-Gasfabrik (Switzerland), Geoarchaeology, 35, 522–544, https://doi.org/10.1002/gea.21787, 2020. a
Canti, M. and Huisman, D. J.: Scientific advances in geoarchaeology during the last twenty years, J. Archaeol. Sci., 56, 96–108, https://doi.org/10.1016/j.jas.2015.02.024, 2015. a
Carpentier, F. and Vandermeulen, B.: High-Resolution Photography for Soil Micromorphology Slide Documentation, Geoarchaeology, 31, 603–607, https://doi.org/10.1002/gea.21563, 2016. a
Congalton, R. G. and Green, K.: Assessing the Accuracy of Remotely Sensed Data – Principles and Practices Third edition, CRC Press, Taylor & Francis Group, Boca Raton, USA, 3rd edn., ISBN 978-1-4200-5512-2, https://doi.org/10.1201/9780429052729, 2019. a, b
Courty, M. A., Goldberg, P., and MacPhail, R. I.: Soils and Micromorphology in Archaeology, Cambridge University Press, Cambridge, UK, ISBN 9780521324199, 1989. a
Drees, L. R. and Ransom, M. D.: Light Microscopic Techniques, in: Quantitative Methods in Soil Mineralogy, edited by: Chair, J. E. A. and Stucki, J. W., chap. 5, John Wiley & Sons, Ltd, ISBN 9780891188841, 137–176, https://doi.org/10.2136/1994.quantitativemethods.c5, 1994. a, b, c
Ghiasi-Freez, J., Soleimanpour, I., Kadkhodaie-Ilkhchi, A., Ziaii, M., Sedighi, M., and Hatampour, A.: Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers, Comput. Geosci., 45, 36–45, https://doi.org/10.1016/j.cageo.2012.03.006, 2012. a, b
Grisel, O., Mueller, A., Gramfort, L. A., Louppe, G., Prettenhofer, P., Blondel, M., Niculae, V., Nothman, J., Joly, A., Fan, T. J., Vanderplas, J., Kumar, M., Lemaitre, G., Qin, H., Hug, N., Estève, L., Varoquaux, N., Layton, R., Metzen, J. H., Jalali, A., (Venkat) Raghav, R., Schönberger, J., du Boisberranger, J., Yurchak, R., Li, W., la Tour, T. D., Woolam, C., Eren, K. and Diemert, E.: scikit-learn/scikit-learn: scikit-learn 1.0.1, version 1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.5596244, 2021. a
Haaland, M. M., Czechowski, M., Carpentier, F., Lejay, M., and Vandermeulen, B.: Documenting archaeological thin sections in high-resolution: A comparison of methods and discussion of applications, Geoarchaeology, 34, 100–114, https://doi.org/10.1002/gea.21706, 2018. a, b, c
IUSS Working Group (WRB): World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th edn., International Union of Soil Sciences (IUSS), Vienna, Austria, ISBN 9798986245119, 2022. a
Karasiak, N.: lennepkade/dzetsaka: Fix bug in processing provider with vector files (Dzetsaka QGIS classification plugin), version 3.5.1, Zenodo [code], https://doi.org/10.5281/zenodo.3463523, 2019. a
Kehl, M., Seeger, K., Pötter, S., Schulte, P., Klasen, N., Zickel, M., Pastoors, A., and Claßen, E.: Loess formation and chronology at the Palaeolithic key site Rheindahlen, Lower Rhine Embayment, Germany, E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, 2024. a, b, c, d, e, f, g, h, i, j, k, l
Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W., Lowers, H. A., Driscoll, R. L., and Klein, A. J.: USGS Spectral Library Version 7, Data series 1035, U.S. Geological Survey, Reston, USA, https://doi.org/10.3133/ds1035, 2017. a
Ligouis, B.: Reflected Light, in: Archaeological Soil and Sediment Micromorphology, edited by: Nicosia, C. and Stoops, G., chap. 44, John Wiley & Sons, Ltd, ISBN 9781118941065, 461–470, https://doi.org/10.1002/9781118941065.ch44, 2017. a
Lo Russo, S., Brönnimann, D., Deschler-Erb, S., Ebnöther, C., and Rentzel, P.: Mithraism under the microscope:: new revelations about rituals through micromorphology, histotaphonomy and zooarchaeology, Archaeol. Anthrop. Sci., 14, 1–21, https://doi.org/10.1007/s12520-022-01505-6, 2022. a
Mentzer, S. M.: Micro XRF, in: Archaeological Soil and Sediment Micromorphology, edited by: Nicosia, C. and Stoops, G., chap. 41, John Wiley & Sons, Ltd, ISBN 9781118941065, 431–440, https://doi.org/10.1002/9781118941065.ch41, 2017. a
Murphy, C. P., Bullock, P., and Turner, R. H.: The Measurement And Characterisation Of Voids In Soil Thin Sections By Image Analysis. Part I. Principles And Techniques, J. Soil Sci., 28, 498–508, https://doi.org/10.1111/j.1365-2389.1977.tb02258.x, 1977. a, b
Naseri, A. and Rezaei Nasab, A.: Automatic identification of minerals in thin sections using image processing, J. Amb. Intel. Hum. Comp., 14, 3369–3381, https://doi.org/10.1007/s12652-021-03474-5, 2021. a, b
Nesse, W.: Introduction to Optical Mineralogy, Oxford University Press, ISBN 9780199846276, 2013. a
Nicosia, C. and Stoops, G. (Eds.): Archaeological Soil and Sediment Micromorphology, John Wiley, Chichester, UK, https://doi.org/10.1002/9781118941065, 2017. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard Duchesnay: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, http://jmlr.org/papers/v12/pedregosa11a.html (last access: 18 January 2024), 2011. a, b
Pires de Lima, R., Duarte, D., Nicholson, C., Slatt, R., and Marfurt, K. J.: Petrographic microfacies classification with deep convolutional neural networks, Comp. Geosci., 142, 104481, https://doi.org/10.1016/j.cageo.2020.104481, 2020. a
qgis-bot.: qgis/QGIS: 3.22.10 (final-3_22_10), version 3.22, Zenodo [code], https://doi.org/10.5281/zenodo.7986774, 2022.
Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., Łoskot, M., Szekeres, T., Tourigny, E., Landa, M., Miara, I., Elliston, B., Kumar, C., Plesea, L., Morissette, D., Jolma, A., and Dawson, N.: GDAL, version 3.5.1, Zenodo [code], https://doi.org/10.5281/zenodo.6801315, 2022. a
Rubo, R. A., de Carvalho Carneiro, C., Michelon, M. F., and dos Santos Gioria, R.: Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images, J. Petrol. Sci. Eng., 183, 106382, https://doi.org/10.1016/j.petrol.2019.106382, 2019. a, b, c, d, e, f, g, h
Sauzet, O., Cammas, C., Gilliot, J. M., Bajard, M., and Montagne, D.: Development of a novel image analysis procedure to quantify biological porosity and illuvial clay in large soil thin sections, Geoderma, 292, 135–148, https://doi.org/10.1016/j.geoderma.2017.01.004, 2017. a
Shahack-Gross, R.: Archaeological Micromorphology Self-Evaluation Exercise, Geoarchaeology, 31, 49–57, https://doi.org/10.1002/gea.21536, 2015. a
Stoops, G., Marcelino, V., and Mees, F. (Eds.): Interpretation of Micromorphological Features of Soils and Regoliths, 2nd edn., Elsevier, ISBN 978-0-444-63522-8, https://doi.org/10.1016/C2014-0-01728-5, 2018. a, b, c
Tang, D. G., Milliken, K. L., and Spikes, K. T.: Machine learning for point counting and segmentation of arenite in thin section, Mar. Petrol. Geol., 120, 104518, https://doi.org/10.1016/j.marpetgeo.2020.104518, 2020. a, b, c, d
Tarquini, S. and Favalli, M.: A microscopic information system (MIS) for petrographic analysis, Comput. Geosci., 36, 665–674, https://doi.org/10.1016/j.cageo.2009.09.017, 2010. a, b, c
Thierion, V. and Lang, M.: Object-Based Classification for Mountainous Vegetation Physiognomy Mapping, in: QGIS and Applications in Agriculture and Forest, edited by: Baghdadi, N., Mallet, C., and Zribi, M., chap. 9, John Wiley & Sons, Ltd, ISBN 9781119457107, 283–339, https://doi.org/10.1002/9781119457107.ch9, 2018. a
van der Meer, J. J. M. and Menzies, J.: The micromorphology of unconsolidated sediments, Sediment. Geol., 238, 213–232, 2011. a
Vapnik, V. N.: The Nature of Statistical Learning Theory, Springer New York, New York, USA, ISBN 978-1-4757-3264-1, https://doi.org/10.1007/978-1-4757-3264-1, 2000. a, b
Vepraskas, M. J., Lindbo, D. L., and Stolt, M. H.: Redoximorphic Features, in: Interpretation of Micromorphological Features of Soils and Regoliths (Second Edition), edited by: Stoops, G., Marcelino, V., and Mees, F., Elsevier, 425–445, https://doi.org/10.1016/b978-0-444-63522-8.00015-2, 2018. a, b
Whitcraft, A., Vermote, E. F., Becker-Reshef, I., and Justice, C. O.: Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations, Remote Sens. Environ., 156, 438–447, https://doi.org/10.1016/j.rse.2014.10.009, 2015. a
Zickel, M. and Gröbner, M.: MiGIS toolbox for QGIS 3, in: E&G Quaternary Science Journal (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.10527165, 2023. a
Short summary
With our open-source toolbox, MiGIS for QGIS 3, we intend to advance digital micromorphological analysis. This approach focuses on the classification of micromorphological constituents based on their distinct colour values (multi-RGB signatures), acquired using flatbed scanning of thin sections in different modes (transmitted, cross-polarised, and reflected light). The resulting thin section maps enable feature quantification, visualisation of spatial patterns, and reproducibility.
With our open-source toolbox, MiGIS for QGIS 3, we intend to advance digital micromorphological...