Brewer, R.: Fabric and mineral analysis of soils, John Wiley & Sons, New York, USA, 1964. a
Brönnimann, D., Röder, B., Spichtig, N., Rissanen, H., Lassau, G., and Rentzel, P.: The Hidden Midden: Geoarchaeological investigation of sedimentation processes, waste disposal practices, and resource management at the La Tène settlement of Basel-Gasfabrik (Switzerland), Geoarchaeology, 35, 522–544,
https://doi.org/10.1002/gea.21787, 2020.
a
Bullock, P. and International Society of Soil Science: Handbook for Soil Thin Section Description, Waine Research, Albrighton, UK, 1985.
a,
b
Carpentier, F. and Vandermeulen, B.: High-Resolution Photography for Soil Micromorphology Slide Documentation, Geoarchaeology, 31, 603–607,
https://doi.org/10.1002/gea.21563, 2016.
a
Congalton, R. G. and Green, K.: Assessing the Accuracy of Remotely Sensed Data – Principles and Practices Third edition, CRC Press, Taylor & Francis Group, Boca Raton, USA, 3rd edn., ISBN 978-1-4200-5512-2,
https://doi.org/10.1201/9780429052729, 2019.
a,
b
Courty, M. A., Goldberg, P., and MacPhail, R. I.: Soils and Micromorphology in Archaeology, Cambridge University Press, Cambridge, UK, ISBN 9780521324199, 1989. a
Drees, L. R. and Ransom, M. D.: Light Microscopic Techniques, in: Quantitative Methods in Soil Mineralogy, edited by: Chair, J. E. A. and Stucki, J. W., chap. 5, John Wiley & Sons, Ltd, ISBN 9780891188841, 137–176,
https://doi.org/10.2136/1994.quantitativemethods.c5, 1994.
a,
b,
c
FitzPatrick, E. A.: Micromorphology of Soils, Springer Science & Business Media, London, 2nd edn., ISBN 9789400955448 , 2012.
a,
b,
c
GDAL & OGR contributors: GDAL & OGR Geospatial Data Abstraction software Library, release 3,
https://gdal.org/ (last access: 18 January 2024), 2022.
a,
b,
c
Ghiasi-Freez, J., Soleimanpour, I., Kadkhodaie-Ilkhchi, A., Ziaii, M., Sedighi, M., and Hatampour, A.: Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers, Comput. Geosci., 45, 36–45,
https://doi.org/10.1016/j.cageo.2012.03.006, 2012.
a,
b
Grisel, O., Mueller, A., Gramfort, L. A., Louppe, G., Prettenhofer, P., Blondel, M., Niculae, V., Nothman, J., Joly, A., Fan, T. J., Vanderplas, J., Kumar, M., Lemaitre, G., Qin, H., Hug, N., Estève, L., Varoquaux, N., Layton, R., Metzen, J. H., Jalali, A., (Venkat) Raghav, R., Schönberger, J., du Boisberranger, J., Yurchak, R., Li, W., la Tour, T. D., Woolam, C., Eren, K. and Diemert, E.: scikit-learn/scikit-learn: scikit-learn 1.0.1, version 1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.5596244, 2021.
a
Haaland, M. M., Czechowski, M., Carpentier, F., Lejay, M., and Vandermeulen, B.: Documenting archaeological thin sections in high-resolution: A comparison of methods and discussion of applications, Geoarchaeology, 34, 100–114,
https://doi.org/10.1002/gea.21706, 2018.
a,
b,
c
IUSS Working Group (WRB): World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, 4th edn., International Union of Soil Sciences (IUSS), Vienna, Austria, ISBN 9798986245119, 2022. a
Karasiak, N.: lennepkade/dzetsaka: Fix bug in processing provider with vector files (Dzetsaka QGIS classification plugin), version 3.5.1, Zenodo [code],
https://doi.org/10.5281/zenodo.3463523, 2019.
a
Kehl, M., Seeger, K., Pötter, S., Schulte, P., Klasen, N., Zickel, M., Pastoors, A., and Claßen, E.: Loess formation and chronology at the Palaeolithic key site Rheindahlen, Lower Rhine Embayment, Germany, E&G Quaternary Sci. J., 73, 41–67,
https://doi.org/10.5194/egqsj-73-41-2024, 2024.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W., Lowers, H. A., Driscoll, R. L., and Klein, A. J.: USGS Spectral Library Version 7, Data series 1035, U.S. Geological Survey, Reston, USA,
https://doi.org/10.3133/ds1035, 2017.
a
Ligouis, B.: Reflected Light, in: Archaeological Soil and Sediment Micromorphology, edited by: Nicosia, C. and Stoops, G., chap. 44, John Wiley & Sons, Ltd, ISBN 9781118941065, 461–470,
https://doi.org/10.1002/9781118941065.ch44, 2017.
a
Lillesand, T., Kiefer, R., and Chipman, J.: Remote Sensing and Image Interpretation, 7th edn., John Wiley & Sons, Ltd., New York, USA, ISBN 9781118343289, 2015.
a,
b,
c
Lo Russo, S., Brönnimann, D., Deschler-Erb, S., Ebnöther, C., and Rentzel, P.: Mithraism under the microscope:: new revelations about rituals through micromorphology, histotaphonomy and zooarchaeology, Archaeol. Anthrop. Sci., 14, 1–21,
https://doi.org/10.1007/s12520-022-01505-6, 2022.
a
Mentzer, S. M.: Micro XRF, in: Archaeological Soil and Sediment Micromorphology, edited by: Nicosia, C. and Stoops, G., chap. 41, John Wiley & Sons, Ltd, ISBN 9781118941065, 431–440,
https://doi.org/10.1002/9781118941065.ch41, 2017.
a
Murphy, C. P., Bullock, P., and Turner, R. H.: The Measurement And Characterisation Of Voids In Soil Thin Sections By Image Analysis. Part I. Principles And Techniques, J. Soil Sci., 28, 498–508,
https://doi.org/10.1111/j.1365-2389.1977.tb02258.x, 1977.
a,
b
Nesse, W.: Introduction to Optical Mineralogy, Oxford University Press, ISBN 9780199846276, 2013. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Édouard Duchesnay: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830,
http://jmlr.org/papers/v12/pedregosa11a.html (last access: 18 January 2024), 2011.
a,
b
Pires de Lima, R., Duarte, D., Nicholson, C., Slatt, R., and Marfurt, K. J.: Petrographic microfacies classification with deep convolutional neural networks, Comp. Geosci., 142, 104481,
https://doi.org/10.1016/j.cageo.2020.104481, 2020.
a
qgis-bot.: qgis/QGIS: 3.22.10 (final-3_22_10), version 3.22, Zenodo [code], https://doi.org/10.5281/zenodo.7986774, 2022.
QGIS Development Team: QGIS Geographic Information System software, version 3.22, Open Source Geospatial Foundation Project [code],
http://qgis.org (last access: 18 January 2024), 2022a.
a,
b
QGIS Development Team: Documentation for QGIS 3.22, QGIS – Geographic Information System, QGIS Association,
https://docs.qgis.org/3.22/en/docs/ (last access: 18 January 2024), 2022b.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Rouault, E., Warmerdam, F., Schwehr, K., Kiselev, A., Butler, H., Łoskot, M., Szekeres, T., Tourigny, E., Landa, M., Miara, I., Elliston, B., Kumar, C., Plesea, L., Morissette, D., Jolma, A., and Dawson, N.: GDAL, version 3.5.1, Zenodo [code],
https://doi.org/10.5281/zenodo.6801315, 2022.
a
Rubo, R. A., de Carvalho Carneiro, C., Michelon, M. F., and dos Santos Gioria, R.: Digital petrography: Mineralogy and porosity identification using machine learning algorithms in petrographic thin section images, J. Petrol. Sci. Eng., 183, 106382,
https://doi.org/10.1016/j.petrol.2019.106382, 2019.
a,
b,
c,
d,
e,
f,
g,
h
Sauzet, O., Cammas, C., Gilliot, J. M., Bajard, M., and Montagne, D.: Development of a novel image analysis procedure to quantify biological porosity and illuvial clay in large soil thin sections, Geoderma, 292, 135–148,
https://doi.org/10.1016/j.geoderma.2017.01.004, 2017.
a
Scikit-learn developers: User guide: 1.11.2. Forests of randomized trees, Scikit-learn community,
https://scikit-learn.org/stable/modules/ensemble.html#random-forests (last access: 18 January), 2007–2023.
a,
b
Stoops, G.: Guidelines for Analysis and Description of Soil and Regolith Thin Sections, ASA, CSSA, and SSSA books, Soil Science Society of America, Inc., Wiley (online), 2nd edn.,
https://doi.org/10.1002/9780891189763, 2020.
a,
b,
c,
d,
e,
f,
g,
h
Stoops, G., Marcelino, V., and Mees, F. (Eds.): Interpretation of Micromorphological Features of Soils and Regoliths, 2nd edn., Elsevier, ISBN 978-0-444-63522-8,
https://doi.org/10.1016/C2014-0-01728-5, 2018.
a,
b,
c
Tang, D. G., Milliken, K. L., and Spikes, K. T.: Machine learning for point counting and segmentation of arenite in thin section, Mar. Petrol. Geol., 120, 104518,
https://doi.org/10.1016/j.marpetgeo.2020.104518, 2020.
a,
b,
c,
d
Thierion, V. and Lang, M.: Object-Based Classification for Mountainous Vegetation Physiognomy Mapping, in: QGIS and Applications in Agriculture and Forest, edited by: Baghdadi, N., Mallet, C., and Zribi, M., chap. 9, John Wiley & Sons, Ltd, ISBN 9781119457107, 283–339,
https://doi.org/10.1002/9781119457107.ch9, 2018.
a
Vepraskas, M. J., Lindbo, D. L., and Stolt, M. H.: Redoximorphic Features, in: Interpretation of Micromorphological Features of Soils and Regoliths (Second Edition), edited by: Stoops, G., Marcelino, V., and Mees, F., Elsevier, 425–445,
https://doi.org/10.1016/b978-0-444-63522-8.00015-2, 2018.
a,
b
Visalli, R., Ortolano, G., Godard, G., and Cirrincione, R.: Micro-Fabric Analyzer (MFA): A New Semiautomated ArcGIS-Based Edge Detector for Quantitative Microstructural Analysis of Rock Thin-Sections, ISPRS Int. J. Geo-Inf., 10, 51,
https://doi.org/10.3390/ijgi10020051, 2021.
a,
b,
c,
d,
e
Whitcraft, A., Vermote, E. F., Becker-Reshef, I., and Justice, C. O.: Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations, Remote Sens. Environ., 156, 438–447,
https://doi.org/10.1016/j.rse.2014.10.009, 2015.
a