Articles | Volume 73, issue 1
https://doi.org/10.5194/egqsj-73-69-2024
https://doi.org/10.5194/egqsj-73-69-2024
Research article
 | 
26 Jan 2024
Research article |  | 26 Jan 2024

MiGIS: micromorphological soil and sediment thin section analysis using an open-source GIS and machine learning approach

Mirijam Zickel, Marie Gröbner, Astrid Röpke, and Martin Kehl

Related authors

Loess formation and chronology at the Palaeolithic key site Rheindahlen, Lower Rhine Embayment, Germany
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024,https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary

Related subject area

Methodological advances
A new Google Earth Engine tool for spaceborne detection of buried palaeogeographical features – examples from the Nile Delta (Egypt)
Tobias Ullmann, Eric Möller, Roland Baumhauer, Eva Lange-Athinodorou, and Julia Meister
E&G Quaternary Sci. J., 71, 243–247, https://doi.org/10.5194/egqsj-71-243-2022,https://doi.org/10.5194/egqsj-71-243-2022, 2022
Short summary
Comparison of bulk and sequential sampling methodologies on mammoth tooth enamel and their implications in paleoenvironmental reconstructions
Zuorui Liu, Amy Prendergast, Russell Drysdale, and Jan-Hendrik May
E&G Quaternary Sci. J., 71, 227–241, https://doi.org/10.5194/egqsj-71-227-2022,https://doi.org/10.5194/egqsj-71-227-2022, 2022
Short summary
18O analyses of bulk lipids as novel paleoclimate tool in loess research – a pilot study
Jakob Labahn, Lucas Bittner, Philip Hirschmann, Christopher-Bastian Roettig, Diana Burghardt, Bruno Glaser, Slobodan B. Marković, and Michael Zech
E&G Quaternary Sci. J., 71, 83–90, https://doi.org/10.5194/egqsj-71-83-2022,https://doi.org/10.5194/egqsj-71-83-2022, 2022

Cited articles

Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E.: A land use and land cover classification system for use with remote sensor data, Tech. rep., USGS Publications Warehouse, Professional Paper, 964, Reston, USA, https://doi.org/10.3133/pp964, 1976.​​​​​​​ a
Arnay, R., Hernández-Aceituno, J., and Mallol, C.: Soil micromorphological image classification using deep learning: The porosity parameter, Appl. Soft Comput., 102, 107093, https://doi.org/10.1016/j.asoc.2021.107093, 2021. a
Arpin, T. L., Mallol, C., and Goldberg, P.: Short contribution: A new method of analyzing and documenting micromorphological thin sections using flatbed scanners: Applications in geoarchaeological studies, Geoarchaeology, 17, 305–313, https://doi.org/10.1002/gea.10014, 2002. a, b
Beckmann, T.: Präparation bodenkundlicher Dünnschliffe für mikromorphologische Untersuchungen, Hohenheimer Bodenkundliche Hefte, 40, 89–103, 1997. a
Breimann, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a, b, c, d
Short summary
With our open-source toolbox, MiGIS for QGIS 3, we intend to advance digital micromorphological analysis. This approach focuses on the classification of micromorphological constituents based on their distinct colour values (multi-RGB signatures), acquired using flatbed scanning of thin sections in different modes (transmitted, cross-polarised, and reflected light). The resulting thin section maps enable feature quantification, visualisation of spatial patterns, and reproducibility.