Articles | Volume 74, issue 1
https://doi.org/10.5194/egqsj-74-59-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-74-59-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Iterative outlier identification for robust cosmogenic 26Al∕10Be burial dating of fluvial terraces: a case study from the Danube River (Vienna Basin, Austria)
Zsófia Ruszkiczay-Rüdiger
CORRESPONDING AUTHOR
Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
CSFK, MTA Centre of Excellence, Budapest, Hungary
Stephanie Neuhuber
CORRESPONDING AUTHOR
Institut für Angewandte Geologie, Universität für Bodenkultur, Vienna, Austria
Esther Hintersberger
CORRESPONDING AUTHOR
Department of Geological Mapping, GeoSphere Austria, Vienna, Austria
Near Surface Land and Marine Geology, Geological Survey of Denmark and Greenland, Aarhus, Denmark
Related authors
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Sandra M. Braumann, Joerg M. Schaefer, Stephanie M. Neuhuber, Christopher Lüthgens, Alan J. Hidy, and Markus Fiebig
Clim. Past, 17, 2451–2479, https://doi.org/10.5194/cp-17-2451-2021, https://doi.org/10.5194/cp-17-2451-2021, 2021
Short summary
Short summary
Glacier reconstructions provide insights into past climatic conditions and elucidate processes and feedbacks that modulate the climate system both in the past and present. We investigate the transition from the last glacial to the current interglacial and generate beryllium-10 moraine chronologies in glaciated catchments of the eastern European Alps. We find that rapid warming was superimposed by centennial-scale cold phases that appear to have influenced large parts of the Northern Hemisphere.
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Esther Hintersberger, Kurt Decker, Johanna Lomax, and Christopher Lüthgens
Nat. Hazards Earth Syst. Sci., 18, 531–553, https://doi.org/10.5194/nhess-18-531-2018, https://doi.org/10.5194/nhess-18-531-2018, 2018
Short summary
Short summary
The Vienna Basin is a low seismicity area, where historical data do not identify all potential earthquake sources. Despite observed Quaternary offset, there are no earthquakes along the Markgrafneusiedl Fault (MF). Results from 3 palaeoseismic trenches show evidence for 5–6 earthquakes with magnitudes up to M = 6.8 during the last 120 kyr. Therefore the MF should be considered as a seismic source, together with similar faults in the Vienna Basin, increasing the seismic potential close to Vienna.
Related subject area
Geochronology
Older than expected: fluvial aggradation of the Rhine's main terrace at Kärlich dated around 1.5 Ma by electron spin resonance
Geometry, chronology and dynamics of the last Pleistocene glaciation of the Black Forest
Chronological and sedimentological investigations of the Late Pleistocene succession in Osterbylund (Schleswig-Holstein, Germany)
Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages
A comparison of polymineral and K-feldspar post-infrared infrared stimulated luminescence ages of loess from Franconia, southern Germany
Luminescence dating of eolian and fluvial archives in the middle and lower Danube catchment and the paleoenvironmental implications
10Be-based exploration of the timing of deglaciation in two selected areas of southern Norway
New chronological constraints on the timing of Late Pleistocene glacier advances in northern Switzerland
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Christine Thiel, Michael Kenzler, Hans-Jürgen Stephan, Manfred Frechen, Brigitte Urban, and Melanie Sierralta
E&G Quaternary Sci. J., 72, 57–72, https://doi.org/10.5194/egqsj-72-57-2023, https://doi.org/10.5194/egqsj-72-57-2023, 2023
Short summary
Short summary
Geological glacial features such as moraines can be used to construct the environment of former times. While sands may indicate colder phases, soils and peat preserved witness warm phases. Using various dating techniques, the ages of such features can be obtained. This is important in order to get an understanding of the climate of the past, in this study on the extent of the ice marginal position in Schleswig-Holstein.
Ludwig Zöller, Manfred Fischer, Zdzisław Jary, Pierre Antoine, and Marcin Krawczyk
E&G Quaternary Sci. J., 71, 59–81, https://doi.org/10.5194/egqsj-71-59-2022, https://doi.org/10.5194/egqsj-71-59-2022, 2022
Short summary
Short summary
Comparing quartz optically stimulated luminescence (OSL) and fine-grain post-infrared infrared stimulated luminescence (pIRIR) ages, agreement was largely found, e.g. the bracketing of the L1SS1 pedocomplex to ca. 30–40 ka. Nevertheless some age differences between the Bayreuth (OSL) and the Gliwice (pIRIR) data invite further discussion. Exact dating using various protocols and grain sizes remains challenging, in particular for a periglacial environment with strong heterogeneity of material.
Neda Rahimzadeh, Tobias Sprafke, Christine Thiel, Birgit Terhorst, and Manfred Frechen
E&G Quaternary Sci. J., 70, 53–71, https://doi.org/10.5194/egqsj-70-53-2021, https://doi.org/10.5194/egqsj-70-53-2021, 2021
Janina Johanna Bösken
E&G Quaternary Sci. J., 69, 89–92, https://doi.org/10.5194/egqsj-69-89-2020, https://doi.org/10.5194/egqsj-69-89-2020, 2020
Short summary
Short summary
The presented doctoral dissertation uses luminescence dating techniques to reconstruct the past environmental and climatic conditions in the middle and lower Danube basin during the period of Homo sapiens' emergence in Europe. The methodological approach focused on optically stimulated luminescence dating of loess deposits, but for some the sections the geochronological methods were combined with physical, biological and geochemical proxy data to reconstruct the paleoenvironmental conditions.
Philipp Marr, Stefan Winkler, Steven A. Binnie, and Jörg Löffler
E&G Quaternary Sci. J., 68, 165–176, https://doi.org/10.5194/egqsj-68-165-2019, https://doi.org/10.5194/egqsj-68-165-2019, 2019
Short summary
Short summary
This paper is about deglaciation history in two areas of southern Norway. By dating rock surfaces we can estimate a minimum ice sheet thickness of 1476 m a.s.l. and a timing of deglaciation around 13 000 years ago in the western study area. In the eastern study area the deglaciation history is complex as the bedrock age most likely has inheritance from earlier ice-free periods. Comparing both study areas demonstrates the complex dynamics of the deglaciation in different areas in southern Norway.
Dorian Gaar, Hans Rudolf Graf, and Frank Preusser
E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, https://doi.org/10.5194/egqsj-68-53-2019, 2019
Short summary
Short summary
Deposits related to the last advance of Reuss Glacier are dated using a luminescence methodology. An age of 25 ka for sediment directly overlying the lodgement till corresponds with existing age constraints for the last maximal position of glaciers. Luminescence dating further implies an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The data are discussed regarding potential changes in the source of precipitation during the Late Pleistocene.
Cited articles
Balco, G. and Rovey, C. W.: An isochron method for cosmogenic-nuclide dating of buried soils and sediments, Am. J. Sci., 308, 1083–1114, https://doi.org/10.2475/10.2008.02, 2008.
Balco, G.: Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data, Quat. Geochronol. 39, 150–173, https://doi.org/10.1016/j.quageo.2017.02.001, 2017.
Bender, A. M., Amos, C. B., Bierman, P., Rood, D. H., Staisch, L., Kelsey, H., and Sherrod, B.: Differential uplift and incision of the Yakima River terraces, central Washington State, J. Geophys. Res.-Sol. Earth, 121, 365–384, https://doi.org/10.1002/2015JB012303, 2016.
Blard, P. H., Bourlés, D., Lave, J., and Pik, R.: Applications of ancient cosmic-ray exposures: theory, techniques and limitations, Quat. Geochronol., 1, 59–73, https://doi.org/10.1016/j.quageo.2006.06.003, 2006.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., and Stone, J.: Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochronol., 31, 188–198, https://doi.org/10.1016/j.quageo.2015.01.009, 2016.
Braucher, R., Brown, E. T., Bourlès, D. L., and Colin, F.: In situ-produced 10Be measurements at great depths: implications for production rates by fast muons, Earth Planet. Sci. Lett., 211, 251–258, https://doi.org/10.1016/S0012-821X(03)00205-X, 2003.
Braucher, R., Del Castillo, P., Siame, L., Hidy, A. J., and Bourles, D. L.: Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases, Quat. Geochronol., 4, 56–64, https://doi.org/10.1016/j.quageo.2008.06.001, 2009.
Braucher, R., Merchel, S., Borgomano, J., and Bourles, D. L.: Production of cosmogenic radionuclides at great depth: A multi element approach, Earth Planet. Sc. Lett., 309, 1–9, https://doi.org/10.1016/j.epsl.2011.06.036, 2011.
Braumann, S. M., Neuhuber, S., Fiebig, M., Schaefer, J. M., and Lüthgens, C.: Challenges in constraining ages of fluvial terraces in the Vienna Basin (Austria) using combined isochron burial and pIRIR225 luminescence dating, Quatern. Int., 509, 87–102, https://doi.org/10.1016/j.quaint.2018.01.009, 2019.
Brocard, G. Y., van der Beek, P. A., Bourlés, D. L., Siame, L. L., and Mugnier, J. L.: Long-term fluvial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects, Earth Planet. Sc. Lett., 209, 197–214, https://doi.org/10.1016/S0012-821X(03)00031-1, 2003.
Clark, P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V., Mix, A. C., Pisias, N. G., and Roy, M.: The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, Quaternary Sci. Rev., 25, 3150–3184, https://doi.org/10.1016/j.quascirev.2006.07.008, 2006.
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D.: Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nucl. Instrum. Meth. B., 268, 192–199, https://doi.org/10.1016/j.nimb.2009.09.012, 2010.
Danišík, M., Dunkl, I., Putiš, M., Frisch, W., and Krá, J.: Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian Basin – an apatite fission track study, Austrian J. Earth Sc., 95, 60–70, ISSN 0251-7493, 2004.
Decker, K., Peresson, H., and Hinsch, R.: Active tectonics and Quaternary basin formation along the Vienna Basin transform fault, Quaternary Sci. Rev., 24, 307–322, https://doi.org/10.1016/j.quascirev.2004.04.012, 2005.
Dunai, T. J.: Cosmogenic Nuclides. Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge Univ Press, New York, 187 pp., ISBN 13 978-0-511-67752-6, 2010.
Erlanger, E. D., Granger, D. E., and Gibbon, R. J.: Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces, Geology, 40, 1019–1022, https://doi.org/10.1130/G33172.1, 2012.
Fenton, C. R., Binnie, S. A., Dunai, T., and Niedermann, S.: The SPICE project: Calibrated cosmogenic 26Al production rates and cross-calibrated 26Al/10Be, 26Al/14C, and 26Al/21Ne ratios in quartz from the SP basalt flow, AZ, USA, Quat. Geochron., 67, 101218, https://doi.org/10.1016/j.quageo.2021.101218, 2022.
Finnegan, N. J., Schumer, R., and Finnegan, S.: A signature of transience in bedrock river incision rates over timescales of 104–107 years, Nature, 505, 391–396, https://doi.org/10.1038/nature12913, 2014.
Fuchs, W. and Grill, R.: Geologische Karte von Wien und Umgebung 1 : 200.000 Ed. Geologische Bundesanstalt Wien, 1984.
Geosphere Austria, online well database: Selected drillings of OMV with report, GeoSphere Austria https://gis.geosphere.at/maps/services/bohrungen/schussbohrungen/MapServer/WMSServer (last access: 12 February 2025), 2025.
Gibbard, P. L. and Lewin, J.: River incision and terrace formation in the Late Cenozoic of Europe, Tectonophysics, 474, 41–55, https://doi.org/10.1016/j.tecto.2008.11.017, 2009.
Gosse, J. C. and Phillips F. M.: Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Sci. Rev., 20, 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2, 2001.
Granger, D. E.: A review of burial dating methods using 26Al and 10Be, in: In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes, edited by: Alonso-Zarza A. M. and Tanner L. H., Geological Society of America, 1–16, https://doi.org/10.1130/2006.2415(01), 2006.
Granger, D. E.: Cosmogenic nuclide burial dating in archaeology and paleoanthropology, in: Treatise on Geochemistry (2nd edn.), edited by: Holland H. D. and Turekian K. K., Oxford: Elsevier, 14, 81–97, https://doi.org/10.1016/B978-0-08-095975-7.01208-0, 2014.
Granger, D. E. and Muzikar, P. F.: Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations, Earth Planet. Sc. Lett., 188, 269–281, https://doi.org/10.1016/S0012-821X(01)00309-0, 2001.
Granger, D. E., Kirchner, J. W., and Finkel, R. C.: Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium, Geology, 25, 107–110, https://doi.org/10.1130/0091-7613(1997)025<0107:QDROTN>2.3.CO;2, 1997.
Harzhauser, M., Daxner-Höck, G., and Piller, W. E.: An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin, Austrian J. Earth Sc., 95/96, 6–19, ISSN 0251-7493, 2004.
Harzhauser, M., Peresson, M., Benold, C., Mandic, O., Coric, S., and De Lange, G. J.: Environmental shifts in and around Lake Pannon during the Tortonian Thermal Maximum based on a multi-proxy record from the Vienna Basin (Austria, Late Miocene, Tortonian), Palaeogeog. Palaeocl., 610, 111332, https://doi.org/10.1016/j.palaeo.2022.111332, 2023.
Harzhauser, M., Kranner, M., Siedl, W., Conradi, F., and Piller, W. E.: The Neogene of the Vienna Basin: a synthesis, edited by: Tari, G. C., Kitchka, A:, Krézsek, C., Lučić, D., Markič, M:, Radivojević, D., Sachsenhofer, R. F., Šujan, M., The Miocene Extensional Pannonian Subbasin, V:1: Regional Geology, Geological Society, London, Special Publications v. 554, https://doi.org/10.1144/SP554-2023-168, 2024.
Hassinger, H.: Geomorphologische Studien aus dem inneralpinen Wiener Becken und seinem Randgebirge, Geogr. Abhandlungen VI I I, Heft 3, Leipzig-Teubner, 206 p., 1905.
Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 1. Fast muons, Earth and Planet. Sc. Lett., 200, 345–355, https://doi.org/10.1016/S0012-821X(02)00640-4, 2002a.
Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Knie, K., and Nolte, E.: Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth and Planet. Sc. Lett., 200, 357–369, https://doi.org/10.1016/S0012-821X(02)00641-6, 2002b.
Hintersberger, E., Decker, K., Lomax, J., and Lüthgens, C.: Implications from palaeoseismological investigations at the Markgrafneusiedl Fault (Vienna Basin, Austria) for seismic hazard assessment, Nat. Hazards Earth Syst. Sci., 18, 531–553, https://doi.org/10.5194/nhess-18-531-2018, 2018.
Hinsch, R., Decker, K., and Wagreich, M.: 3-D mapping of segmented active faults in the southern Vienna Basin, Quaternary. Sci. Rev., 24, 321–336, https://doi.org/10.1016/j.quascirev.2004.04.011, 2005.
Jolivet, M., Braucher, R., Dovchintseren, D., Hocquet, S., Schmitt, J. M., and Aster Team: Erosion around a large-scale topographic high in a semi-arid sedimentary basin: Interactions between fluvial erosion, aeolian erosion and aeolian transport, Geomorphology, 386, 107747, https://doi.org/10.1016/j.geomorph.2021.107747, 2001.
Knudsen, M. F., Nørgaard, J., Grischott, R., Kober, F., Egholm, D. L., Hansen, T. M., and Jansen, J. D.: New cosmogenic nuclide burial-dating model indicates onset of major glaciations in the Alps during Middle Pleistocene Transition, Earth Planet. Sc. Lett., 549, 116491, https://doi.org/10.1016/j.epsl.2020.116491, 2020.
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U. C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, Ch., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A.: A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting, Nucl. Instrum. Meth. B., 268, 187–191, https://doi.org/10.1016/j.nimb.2009.09.020, 2010.
Küpper, H.: Uroberfläche und jüngste Tektonik im südlichen Wiener Becken. Skizzen zum Antlitz der Erde, Kober-Festschrift, 376–386, Wien, 1953.
Lal, D.: Cosmic ray labeling of erosion surfaces – In situ nuclide production rates and erosion models, Earth Planet. Sc. Lett., 104, 424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991.
Lebatard, A.-É., Alcicek, M. C., Rochette, P., Khatib, S., Vialet, A., Boulbes, N., Bourlès, D. L., Demory, F., Guipert, G., Mayda, S., Titov, V. V., Vidal, L., and Lumley, H.: Dating the Homo erectus bearing travertine from Kocabaş, (Denizli, Turkey) at least 1.1 Ma, Earth Planet. Sc. Lett. 390, 8–18, https://doi.org/10.1016/j.epsl.2013.12.031, 2014.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf D., Zerboni, A., Hosek, J., Markovic, S. B., Obrecht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation, Earth-Sci. Rev. 215, 103496, https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Lotter, M. G., Kuman, K., and Granger, D. E.: Cosmogenic nuclide burial dating at Penhill Farm: An Earlier Stone Age Acheulean locality in the lower Sundays River Valley, South Africa, Quat. Geochronol., 75, 101431, https://doi.org/10.1016/j.quageo.2023.101431, 2023.
Luo, L., Granger, D. E., Tu, H., Lai, Z., Shen, G., Bae, C. J., Ji, X., and Liu, J.: The first radiometric age by isochron 26Al/10Be burial dating for the Early Pleistocene Yuanmou hominin site, southern China, Quat. Geochronol., 55, 101022, https://doi.org/10.1016/j.quageo.2019.101022, 2020.
Mencin Gale, E., Rupnik, P. J., Akçar, N., Christl, M., Vockenhuber, C., Anselmetti, F. S., and Šmuc, A.: The onset of Pliocene–Early Pleistocene fluvial aggradation in the Southeastern Alpine Foreland (Velenje Basin, Slovenia) and its paleoenvironmental implications, J. Quaternary Sci., 30, 691–709, https://doi.org/10.1002/jqs.3623, 2024.
Neuhuber, S., Plan, L., Gier, S., Hintersberger, E., Lachner, J., Scholz, D., Lüthgens, C., Braumann, S., Bodenlenz, F., Voit, K., and Fiebig, M.: Numerical age dating of cave sediments to quantify vertical movement at the Alpine-Carpathian transition in the Plio- and Pleistocene, Geologica Carpath., 71, 539–557, https://doi.org/10.31577/GeolCarp.71.6.5, 2020.
Nishiizumi, K.: Preparation of 26Al AMS standards, Nucl. Instruments B, 223–224, 388–392, https://doi.org/10.1016/s0168-583x(04)00600-7, 2004.
Nørgaard, J., Jansen, J. D., Neuhuber, S., Ruszkiczay-Rüdiger, Z., and Knudsen, M. F.: P–PINI: A cosmogenic nuclide burial dating method for landscapes undergoing non-steady erosion, Quat. Geochronol., 74, 101420, https://doi.org/10.1016/j.quageo.2022.101420, 2023.
Odom, W. E. and Granger, D. E.: The Pliocene-to-present course of the Tennessee River, J. Geol., 130, 325–333, https://doi.org/10.1086/719951, 2022.
Pappu, S., Gunell, Y., Akhilesh, K., Braucher, R., Taieb, M., Demory, F., and Thouveny, N.: Early Pleistocene presence of Acheulian hominins in South India, Science, 331, 1596–1599, https://doi.org/10.1126/science.1200183, 2011.
Rixhon, G.: Deeper underground: Cosmogenic burial dating of cave-deposited alluvium to reconstruct long-term fluvial landscape evolution, Earth-Sci. Rev., 239, 104357, https://doi.org/10.1016/j.earscirev.2023.104357, 2023.
Rixhon, G., Braucher, R., Bourlès, D., Siame, L., Bovy, B., and Demoulin, A.: Quaternary river incision in NE Ardennes (Belgium)-Insights from 10Be/26Al dating of river terraces, Quaternary Geochronol., 6, 273–284, https://doi.org/10.1016/j.quageo.2010.11.001, 2011.
Rixhon, G., Bourlès, D. L., Braucher, R., Siame, L., Cordy, J. M., and Demoulin, A.: 10Be dating of the Main Terrace level in the Amblève valley (Ardennes, Belgium): new age constraint on the archaeological and palaeontological filling of the Belle-Roche palaeokarst, Boreas, 43, 528–542, https://doi.org/10.1111/bor.12066, 2014.
Rixhon, G., Briant, R. M., Cordier, S., Duval, M., Jones, A., and Scholz, D.: Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods, Quaternary Sci. Rev., 166, 91–113, https://doi.org/10.1016/j.quascirev.2016.08.016, 2017.
Rodés, Á., Pallàs, R., Braucher, R., Moreno, X., Masana, E., and Bourlés, D. L.: Effect of density uncertainties in cosmogenic 10Be depth-profiles: Dating a cemented Pleistocene alluvial fan (Carboneras Fault, SE Iberia), Quat. Geochronol., 6, 186–194, https://doi.org/10.1016/j.quageo.2010.10.004, 2011.
Ruszkiczay-Rüdiger, Zs., Braucher, R., Csillag, G., Fodor, L., Dunai, T.J., Bada, G., Bourlés, D., and Müller, P.: Dating Pleistocene aeolian landforms in Hungary, Central Europe, using in situ produced cosmogenic 10Be, Quat. Geochronol., 6, 515–529, https://doi.org/10.1016/j.quageo.2011.06.001, 2011.
Ruszkiczay-Rüdiger, Zs., Braucher, R., Novothny, Á., Csillag, G., Fodor, L., Molnár, G., Madarász, B., and ASTER Team.: Tectonic and climatic forcing on terrace formation: coupling in situ produced 10Be depth profiles and luminescence approach, Danube River, Hungary, Central Europe, Quaternary Sci. Rev., 131, 127–147, https://doi.org/10.1016/j.quascirev.2015.10.041, 2016.
Ruszkiczay-Rüdiger, Z., Balázs, A., Csillag, G., Drijkoningen, G., and Fodor, L.: Uplift of the Transdanubian Range, Pannonian Basin: How fast and why?, Global Planet. Change, 103263, 1–17, https://doi.org/10.1016/j.gloplacha.2020.103263, 2020.
Ruszkiczay-Rüdiger, Zs., Csillag, G., Fodor, L., Braucher, R., Novothny, Á., Thamó-Bozsó, E., Virág, A., Pazonyi, P., Timár, G., and ASTER Team.: Integration of new and revised chronological data to constrain the terrace evolution of the Danube River (Gerecse Hills, Pannonian Basin), Quat. Geochronol., 48, 148–170, https://doi.org/10.1016/j.quageo.2018.08.003, 2018.
Ruszkiczay-Rüdiger, Zs., Neuhuber, S., Braucher, R., Lachner, J., Steier, P., Wieser, A., Braun, M., and ASTER Team.: Comparison and performance of two cosmogenic nuclide sample preparation procedures of in situ produced 10Be and 26Al, J. Radioan. Nucl. Ch., 329, 1523–1536, https://doi.org/10.1007/s10967-021-07916-4, 2021.
Salcher, B. C., Meurers, B., Smit, J., Decker, K., Hölzel, M., and Wagreich, M.: Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives, Tectonics, 31, 1–20, https://doi.org/10.1029/2011TC002979, 2012.
Schaller, M., Ehlers, T. A., Stor, T., Torrent, J., Lobato, L., Christl, M., and Vockenhuber, C.: Timing of European fluvial terrace formation and incision rates constrained by cosmogenic nuclide dating, Earth Planet. Sci. Lett., 451, 221–231, https://doi.org/10.1016/j.epsl.2016.07.022, 2016.
Schnabel, W.: Geologische Karte von Niederösterreich. Geologie der österreichischen Bundesländer, Wien, Geologische Bundesanstalt, 2002.
Siame, L., Bellier, O., Braucher, R., Sebrier, M., Cushing, M., Bourles, D. L., Hamelin, B., Baroux, E., de Voogd, B., Raisbeck, G., and Yiou, F.: Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (South-East France), Earth Planet. Sci. Lett., 220, 345–364, https://doi.org/10.1016/s0012-821x(04)00061-5, 2004.
Siedl, W., Strauss, P., Sachsenhofer, R. F., Harzhauser, M., Kuffner, T., and Kranner, M.: Revised Badenian (middle Miocene) depositional systems of the Austrian Vienna Basin based on a new sequence stratigraphic framework, Austrian J. Earth Sc., 113, 87–110, https://doi.org/10.17738/ajes.2020.0006, 2020.
Sprafke, T.: Löss in Niederösterrich Archiv quartärer Klima- und Landschaftsveränderungen, Würzbug University Press, 253 pp. (PhD thesis), 2016.
Stone, J. O.: Air pressure and cosmogenic isotope production, J. Geophys. Res., 105, 23753, https://doi.org/10.1029/2000JB900181, 2000.
Stiny, J.: Zur Kenntnis jugendlicher Krustenbewegungen im Wiener Becken, Jahrbuch der Geologischen Bundesanstalt, 82, 75–102, 1932.
Štor, T., Schaller, M., Merchel, S., Martínek, K., Rittenour, T., Rugel, G., and Scharf, A.: Quaternary evolution of the Ploučnice River system (Bohemian Massif) based on fluvial deposits dated with optically stimulated luminescence and in situ produced cosmogenic nuclides, Geomorphology, 329, 152–169, https://doi.org/10.1016/j.geomorph.2018.12.019, 2019.
Šujan, M., Lačný, A., Braucher, R., Magdolen, P., and ASTER Team: Early Pleistocene age of fluvial sediment in the Stará Garda Cave revealed by 26Al/10Be burial dating: implications for geomorphic evolution of the Malé Karpaty Mts. (Western Carpathians), Acta Carsol., 46, 251–264, https://doi.org/10.3986/ac.v46i2-3.5157, 2017.
Šujan, M., Braucher, R., Šujan, M., Hók, J., Povinec, P. P., Šipka, F., ASTER Team, Rugel, G., and Scharf, A.: The tectono-sedimentary evolution of a major seismogenic zone with low slip rate activity: A geochronological and sedimentological investigation of the Dobrá Voda Depression (Western Carpathians), Sediment. Geol., 383, 248–267, https://doi.org/10.1016/j.sedgeo.2019.02.003, 2019.
Vandenberghe, J.: River terraces as a response to climatic forcing: formation processes, sedimentary characteristics and sites for human occupation, Quaternary Int., 370, 3–11, https://doi.org/10.1016/j.quaint.2014.05.046, 2015.
Vermeesch, P.: CosmoCalc: an Excel add-in for cosmogenic nuclide calculations, Geochem. Geophy. Geosy., 8, 1–14, https://doi.org/10.1029/2006GC001530Q08003, 2007.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front., 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Vlačiky, M., Šujan, M., Rybár, S., and Braucher, R.: Nová Vieska locality: fauna, sediments and their dating-new results, in: 15th Christmas Geological Workshop SGS-New Findings of the Structure and Evolution of the Western Carpathians, Mente et Malleo (MeM)-Newsl. Slovak Geol. Soc.(SGS), 2, 57, 2017.
Ward, G. K. and Wilson, S. R.: Procedures for comparing and combining radiocarbon age determinations: a critique, Archaeometry, 20, 19–31, 1978.
Wessely, G.: Structure and development of the Vienna Basin in Austria, in: The Pannonian Basin: A Study in Basin Evolution, edited by: Royden, L. H. and Horváth, F., AAPG Mem., 333–346, 1988.
Zámolyi, A., Salcher, B., Draganits, E., Exner, U., Wagreich, M. Gier, S. Fiebig, M., Lomax, J., Surányi, G., Diel, M., and Zámolyi, F.: Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data, Int. J. Earth Sci., 106, 1695–1721, https://doi.org/10.1007/s00531-016-1383-3, 2017.
Zhao, Z., Granger, D., Zhang, M., Kong, X., Yang, S., Chen, Y., and Hu, E.: A test of the isochron burial dating method on fluvial gravels within the Pulu volcanic sequence, West Kunlun Mountains, China, Quat. Geochronol., 34, 75–80, https://doi.org/10.1016/j.quageo.2016.04.003, 2016.
Short summary
Accurateness of dates and rates of landscape evolution depends on the precision of the geochronological data. This study offers a robust methodology of outlier identification for modelling the cosmogenic nuclide isochron burial age of fluvial sediments. The method is tested on a fluvial terrace of the Danube River in the Vienna Basin and provides novel information for the quantification of the uplift rate of the area. The presented methodology is applicable in other fluvial settings as well.
Accurateness of dates and rates of landscape evolution depends on the precision of the...