Articles | Volume 70, issue 1
https://doi.org/10.5194/egqsj-70-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-70-1-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards timing and stratigraphy of the Bronze Age burial mound royal tomb (Königsgrab) of Seddin (Brandenburg, northeastern Germany)
Institute of Geographical Sciences, Freie Universität Berlin,
Berlin, Germany
Jacob Hardt
Institute of Geographical Sciences, Freie Universität Berlin,
Berlin, Germany
Philipp Hoelzmann
Institute of Geographical Sciences, Freie Universität Berlin,
Berlin, Germany
Jens May
Brandenburgisches Landesamt für Denkmalpflege und
Archäologisches Landesmuseum, OT Wünsdorf, Zossen, Germany
Tony Reimann
Soil Geography and Landscape group &
Netherlands Centre for Luminescence dating, Wageningen University, Wageningen, the Netherlands
Institute of Geography, University of Cologne, Cologne, Germany
Related authors
No articles found.
Linda Andrea Elisabeth Maßon, Svenja Riedesel, Stephan Opitz, Anja Zander, Anthony Bell, Hanna Cieszynski, and Tony Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-806, https://doi.org/10.5194/egusphere-2025-806, 2025
Short summary
Short summary
We evaluate different methods for the potassium (K) concentration determination in feldspars and the impact of the K-concentrations on dose rate calculations for feldspar luminescence dating. Our results show discrepancies between published and our measured K-concentrations. Therefore, we emphasise to measure K-concentrations via bulk measurements and single-grain techniques to obtain more accurate results.
W. Marijn van der Meij, Svenja Riedesel, and Tony Reimann
SOIL, 11, 51–66, https://doi.org/10.5194/soil-11-51-2025, https://doi.org/10.5194/soil-11-51-2025, 2025
Short summary
Short summary
Soil mixing (bioturbation) plays a key role in soil functions, but the underlying processes are poorly understood and difficult to quantify. In this study, we use luminescence, a light-sensitive soil mineral property, and numerical models to better understand different types of bioturbation. We provide a conceptual model that helps to determine which types of bioturbation processes occur in a soil and a numerical model that can derive quantitative process rates from luminescence measurements.
Jungyu Choi, Roy van Beek, Elizabeth L. Chamberlain, Tony Reimann, Harm Smeenge, Annika van Oorschot, and Jakob Wallinga
SOIL, 10, 567–586, https://doi.org/10.5194/soil-10-567-2024, https://doi.org/10.5194/soil-10-567-2024, 2024
Short summary
Short summary
This research applies luminescence dating methods to a plaggic anthrosol in the eastern Netherlands to understand the formation history of the soil. To achieve this, we combined both quartz and feldspar luminescence dating methods. We developed a new method for feldspar to largely avoid the problem occurring from poorly bleached grains by examining two different signals from a single grain. Through our research, we were able to reconstruct the timing and processes of plaggic anthrosol formation.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Anna-Maartje de Boer, Wolfgang Schwanghart, Jürgen Mey, Basanta Raj Adhikari, and Tony Reimann
Geochronology, 6, 53–70, https://doi.org/10.5194/gchron-6-53-2024, https://doi.org/10.5194/gchron-6-53-2024, 2024
Short summary
Short summary
This study tested the application of single-grain feldspar luminescence for dating and reconstructing sediment dynamics of an extreme mass movement event in the Himalayan mountain range. Our analysis revealed that feldspar signals can be used to estimate the age range of the deposits if the youngest subpopulation from a sample is retrieved. The absence of clear spatial relationships with our bleaching proxies suggests that sediments were transported under extremely limited light exposure.
Jürgen Mey, Wolfgang Schwanghart, Anna-Maartje de Boer, and Tony Reimann
Geochronology, 5, 377–389, https://doi.org/10.5194/gchron-5-377-2023, https://doi.org/10.5194/gchron-5-377-2023, 2023
Short summary
Short summary
This study presents the results of an outdoor flume experiment to evaluate the effect of turbidity on the bleaching of fluvially transported sediment. Our main conclusions are that even small amounts of sediment lead to a substantial change in the intensity and frequency distribution of light within the suspension and that flow turbulence is an important prerequisite for bleaching grains during transport.
Rodrigo Martínez-Abarca, Michelle Abstein, Frederik Schenk, David Hodell, Philipp Hoelzmann, Mark Brenner, Steffen Kutterolf, Sergio Cohuo, Laura Macario-González, Mona Stockhecke, Jason Curtis, Flavio S. Anselmetti, Daniel Ariztegui, Thomas Guilderson, Alexander Correa-Metrio, Thorsten Bauersachs, Liseth Pérez, and Antje Schwalb
Clim. Past, 19, 1409–1434, https://doi.org/10.5194/cp-19-1409-2023, https://doi.org/10.5194/cp-19-1409-2023, 2023
Short summary
Short summary
Lake Petén Itzá, northern Guatemala, is one of the oldest lakes in the northern Neotropics. In this study, we analyzed geochemical and mineralogical data to decipher the hydrological response of the lake to climate and environmental changes between 59 and 15 cal ka BP. We also compare the response of Petén Itzá with other regional records to discern the possible climate forcings that influenced them. Short-term climate oscillations such as Greenland interstadials and stadials are also detected.
W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
Short summary
Short summary
We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
Jacob Hardt, Nadav Nir, Christopher Lüthgens, Thomas M. Menn, and Brigitta Schütt
E&G Quaternary Sci. J., 72, 37–55, https://doi.org/10.5194/egqsj-72-37-2023, https://doi.org/10.5194/egqsj-72-37-2023, 2023
Short summary
Short summary
We investigated the geomorphological and geological characteristics of the archaeological sites Hawelti–Melazo and the surroundings. We performed sedimentological analyses, as well as direct (luminescence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions, which we integrated into the wider context of Tigray.
Christopher Lüthgens and Jacob Hardt
DEUQUA Spec. Pub., 4, 29–39, https://doi.org/10.5194/deuquasp-4-29-2022, https://doi.org/10.5194/deuquasp-4-29-2022, 2022
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Cited articles
Ad-Hoc-AG Boden: Bodenkundliche Kartieranleitung, Schweizerbart, Stuttgart,
2005 (in German).
Aitken, M. J.: Thermoluminescence Dating, Academic Press Inc. Ltd, London,
1985.
al Khasawneh, S., Murray, A., Kafafi, Z., and Petit, L.: Luminescence Dating
of the Iron Age Deposits from Tell Damiyah in the Jordan Valley,
Radiocarbon, 62, 1–12, 2020.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate
classification maps at 1-km resolution, Scientific Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Böse, M., Lüthgens, C., Lee, J. R., and Rose, J.: Quaternary
glaciations of northern Europe, Quatern. Sci. Rev., 44, 1–25, 2012.
Cunningham, A. C. and Wallinga, J.: Selection of integration time intervals
for quartz OSL decay curves, Quat. Geochronol., 5, 657–666, 2010.
Cunningham, A. C., DeVries, D. J., and Schaart, D. R.: Experimental and
computational simulation of beta-dose heterogeneity in sediment, Radiat.
Meas., 47, 1060–1067, 2012.
Doorenbosch, M.: Ancestral heaths: reconstructing the barrow landscape in
the Central and Southern Netherlands, Sidestone Press, Leiden, the Netherlands, 2013.
Dreibrodt, S., Nelle, O., Lütjens, I., Mitusov, A., Clausen, I., and
Bork, H.-R.: Investigations on buried soils and colluvial layers around
Bronze Age burial mounds at Bornhöved (northern Germany): an approach to
test the hypothesis of “landscape openness” by the incidence of
colluviation, Holocene, 19, 487–497, 2009.
DWD Climate Data Center: Annual mean of Station observations of air
temperature at 2 m above ground in ∘C for Germany, version
v19.3., available at: https://cdc.dwd.de/portal/ (last access: 15 July 2020), 2020a.
DWD Climate Data Center: Annual station observations of precipitation in mm
for Germany, version v19.3., available at: https://cdc.dwd.de/portal/
(last access: 15 July 2020), 2020b.
Ehlers, J., Grube, A., Stephan, H.-J., and Wansa, S.: Pleistocene
Glaciations of North Germany–New Results, in: Quaternary Glaciations –
Extent and Chronology. A Closer Look, Developments in Quaternary Science,
15, edited by: Ehlers, J., Gibbard, P. L., and Hughes, P. D., Elsevier,
Amsterdam, the Netherlands, 149–162, 2011.
European Environment Agency: Corine Land Cover (CLC) 2018, Version
2020_20u1, available at:
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018, last
access: 15 July 2020.
Feathers, J. K.: Luminescence dating of early mounds in Northeast Louisiana,
Quaternary Sci. Rev., 16, 333–340, 1997.
Füchtbauer, H. and Elrod, J. M.: Different sources contributing to a
beach sand, southeastern Bornholm (Denmark), Sedimentology, 17, 69–79, 1971.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.: Optical dating of single and multiple grains of quartz from Jinmium rock
shelter, Northern Australia: part 1, experimental details and statistical
models, Archaeometry, 41, 339–364, 1999.
GeoBasis-DE/LGB: Bodenübersichtskarte des Landes Brandenburg 1:300 000, available at: http://www.geo.brandenburg.de/boden/ (last access: 21 April 2020), 2012 (in German).
GeoBasis-DE/LGB: Digitales Geländemodell,
available at: https://data.geobasis-bb.de/geobasis/daten/dgm/xyz/, last access: 21 April 2020 (in German).
Geofabrik: Brandenburg (mit Berlin), available at: http://download.geofabrik.de/europe/germany.html, last access: 21 April
2020.
Guérin, G., Mercier, N., and Adamiec, G.: Dose rate conversion factors:
update, Ancient TL, 29, 5–8, 2011.
Haburaj, V., Nykamp, M., May, J., Hoelzmann, P., and Schütt, B.: On-Site
VIS-NIR Spectral Reflectance and Colour Measurements–A Fast and
Inexpensive Alternative for Delineating Sediment Layers Quantitatively? A
Case Study from a Monumental Bronze Age Burial Mound (Seddin, Germany),
Heritage, 3, 528–548, 2020.
Hannon, G. E., Bradshaw, R. H. W., Nord, J., and Gustafsson, M.: The Bronze Age landscape of the Bjäre peninsula, southern Sweden, and its relationship to burial mounds, J. Archaeol. Sci., 35, 623–632, 2008.
Harding, A.: The Tumulus in European Prehistory: Covering the Body, Housing
the Soul, in: Ancestral Landscape. Burial mounds in the Copper and Bronze
Ages, Proceedings of the International Conference, Udine, Italy,
15–18 May 2008, 21–30, 2012.
Holst, M. K. and Rasmussen, M.: Skelhøj and the Bronze Age barrows of
southern Scandinavia, Jut. Arch. Soc. Pub., 78, Aarhus University Press,
Aarhus, Denmark, 2015.
Holst, M. K., Breuning-Madsen, H., and Olsson, M.: Soil Forming Processes in
and below a Bronze Age Burial Mound at Lejrskov, Southern Jutland, Geogr.
Tidsskr., 98, 46–55, 1998.
Hornstrup, K. M., Olsen, J., Heinemeier, J., Thrane, H., and Bennike, P.: A
new absolute Danish Bronze Age chronology as based on radiocarbon dating of
cremated bone samples from burials, Acta Archaeol., 83, 5–53, 2012.
Huisman, H., de Kort, J.-W., Ketterer, M. E., Reimann, T., Schoorl, J. M., van der Heiden, M., van Soest, M., and van Egmond, F.: Erosion of archaeological sites: Quantifying the threat using optically stimulated luminescence and fallout isotopes, Geoarchaeology, 34, 478–494, 2019.
IUSS Working Group WRB: World Reference Base for Soil Resources 2006, World
Soil Resources Reports No. 103, FAO, Rome, Italy, 2006.
Jahns, S.: Bronze Age settlements reflected in pollen diagrams from
Brandenburg, Eastern Germany, in: The third food revolution? Setting the
Bronze Age table: common trends in economic and subsistance strategies in
Bronze Age Europe, edited by: Kneisel, J., Dal Corso, M., Kirleis, W.,
Scholz, H., Taylor, N., and Tiedtke, V., Habelt, Bonn, Germany, 237–248, 2015.
Jahns, S.: Pollenanalytische Untersuchungen zur Bronzezeit am Bergsoll bei
Helle, Lkr. Prignitz, in: Der Grabhügel von Seddin im norddeutschen und
südskandinavischen Kontext, Arbeitsberichte zur Bodendenkmalpflege in
Brandenburg, 33, edited by: Hansen, S. and Schopper, F., Brandenburgisches
Landesamt für Denkmalpflege und Archäologisches Landesmuseum,
Wünsdorf, Germany, 85–90, 2018 (in German).
Kaiser, K., Hilgers, A., Schlaak, N., Jankowski, M., Kühn, P., Bussemer,
S., and Przegiętka, K.: Palaeopedological marker horizons in northern
central Europe: characteristics of Lateglacial Usselo and Finow soils,
Boreas, 38, 591–609, 2009.
Kaiser, K., Schneider, T., Küster, M., Dietze, E., Fülling, A.,
Heinrich, S., Kappler, C., Nelle, O., Schult, M., Theuerkauf, M., Vogel, S.,
de Boer, A. M., Börner, A., Preusser, F., Schwabe, M., Ulrich, J.,
Wirner, M., and Bens, O.: Palaeosols and their cover sediments of a glacial
landscape in northern central Europe: Spatial distribution, pedostratigraphy
and evidence on landscape evolution, Catena, 193, 104647, https://doi.org/10.1016/j.catena.2020.104647, 2020.
Kalinìska, E., Hang, T., JoÞeleht, A., Olo, S., Nartis̆s, M., and Adamiec, G.: Macro- and micro-scale study and chronology of Late Weichselian aeolian sediments in Estonia, north-eastern European Sand Belt, Int. J. Earth Sci., 108, 2021–2035, 2019.
Kalinìska-Nartis̆a, E., Thiel, C., Nartis̆s, M., Buylaert, J.-P., and
Murray, A. S.: Age and sedimentary record of inland eolian sediments in
Lithuania, NE European Sand Belt, Quaternary Res., 84, 82–95, 2015.
Kappler, C., Kaiser, K., Küster, M., Nicolay, A., Fülling, A., Bens,
O., and Raab, T.: Late Pleistocene and Holocene terrestrial
geomorphodynamics and soil formation in northeastern Germany: a review of
geochronological data, Phys. Geogr., 40, 405–423, 2019.
Kasse, C.: Sandy aeolian deposits and environments and their relation to
climate during the Last Glacial Maximum and Lateglacial in northwest and
central Europe, Prog. Phys. Geog., 26, 507–532, 2002.
Kiekebusch, A.: Das Königsgrab von Seddin, Führer zur Urgeschichte,
Benno Filser, Augsburg, Germany, 1928 (in German).
Kossinna, G.: Ansprache über die ”Kulturgeschichtliche Stellung der
Prignitz in der Vorzeit”, Mannus Zeitschrift für Vorgeschichte, 2,
234–240, 1910 (in German).
Koster, E. A.: Recent Advances in Luminescence Dating of Late Pleistocene
(Cold-Climate) Aeolian and Loess Deposits in Western Europe, Permafrost
Periglac., 16, 131–143, 2005.
Kristiansen, S. M., Dalsgaard, K., Holst, M. K., Aaby, B., and Heinemeier, J.: Dating of prehistoric burial mounds by 14C analysis of soil organic matter fractions, Radiocarbon, 45, 101–112, 2003.
Kühn, P.: Micromorphology and Late Glacial/Holocene genesis of Luvisols
in Mecklenburg-Vorpommern (NE-Germany), Catena, 54, 537–555, 2003.
LBGR Brandenburg: Geologische Karte 1:25.000, available at: http://www.geo.brandenburg.de/gk25, last access: 16 July 2020 (in German).
Lippstreu, L., Hermsdorf, N., and Sonntag, A.: Geologische
Übersichtskarte des Landes Brandenburg 1:300 000, Landesamt für
Geowissenschaften und Rohstoffe Brandenburg, Potsdam, Germany, 1997 (in German).
Lippstreu, L., Hermsdorf, N., Sonntag, A., and Strahl, J.: Pleistozän,
in: Geologie von Brandenburg, edited by: Stackebrandt, W. and Franke, D.,
Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 333–419, 2015 (in German).
Litt, T., Behre, K.-E., Meyer, K.-D., Stephan, H.-J., and Wansa, S.:
Stratigraphical Terms for the Quaternary of the North German Glaciation
Area, E G Quaternary Sci. J., 56, 7–65, 2007.
Lüthgens, C., Böse, M., and Krbetschek, M.: On the age of the young
morainic morphology in the area ascribed to the maximum extent of the
Weichselian glaciation in north-eastern Germany, Quatern. Int., 222,
72–79, 2010.
Lüthgens, C., Böse, M., and Preusser, F.: Age of the Pomeranian ice marginal position in north-eastern Germany
determined by Optically Stimulated Luminescence (OSL) dating of
glaciofluvial (sandur) sediments, Boreas, 40, 598–615, 2011.
May, J.: Neue Forschungen am “Königsgrab” von Seddin, in: Der
Grabhügel von Seddin im norddeutschen und südskandinavischen
Kontext, Arbeitsberichte zur Bodendenkmalpflege in Brandenburg, 33, edited
by: Hansen, S. and Schopper, F., Brandenburgisches Landesamt für
Denkmalpflege und Archäologisches Landesmuseum, Wünsdorf, Germany, 9–35,
2018 (in German).
May, J. and Hauptmann, T.: Seddin, in: Reallexikon der Germanischen
Altertumskunde, 28, edited by: Beck, H., Steuer, H., and Timpe, D., De
Gruyter, Berlin, Germany, 1–6, 2005 (in German).
May, J. and Hauptmann, T.: Warum befindet sich das “Königsgrab” von Seddin am Mittellauf der Stepenitz?, Wasserwege und
archäologische Sachkultur der jüngeren Bronzezeit in der Prignitz,
Siedlungs- und Küstenforschung im südlichen Nordseegebiet, Verlag Marie Leidorf GmbH, Rahden/Westfalen, Germany, 34,
129–150, 2011 (in German).
May, J. and Hauptmann, T.: Das “Könisggrab” von Seddin und sein engeres
Umfeld im Spiegel neuer Feldforschungen, in: Gräberlandschaften der
Bronzezeit, Bodenaltertümer Westfalens, 51, edited by: Bérenger, D., Philipp von Zabern, Darmstadt, Germany 77–104, 2012 (in German).
Mejdahl, V.: Thermoluminescence dating: beta-dose attenuation in quartz
grains, Archaeometry, 21, 61–72, 1979.
MLUV (Ministerium für Ländliche Entwicklung, Umwelt und
Verbraucherschutz): Braunerde-Fahlerde. Steckbriefe Brandenburger Böden, available at: https://mluk.brandenburg.de/Steckbriefe-BB-Boeden/SB-5-3-Braunerde-Fahlerde.pdf, last access: 31 January 2020, 2005 (in German).
Montelius, O.: Om tidsbestämning inom bronzeålderen med
särskildt afseende på Skandinavien, in: Kungl. Vitterhets historie och
antikvitets akademiens handlingar, 30, Akademiens Förlag, Stockholm, Sweden, 1885 (in Swedish).
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose
protocol: potential for improvements in reliability, Radiat. Meas., 37, 377–381, 2003.
Nagel, D., Hermsdorf, N., Lippstreu, L., and Martiklos, G.: Geologische
Übersichtskarte 1:200 000, Bundesanstalt für Geowissenschaften und
Rohstoffe (BGR), Hannover, Blatt: CC 3134 Wittenberge, 2003 (in German).
Naturalearthdata: Internal administrative boundaries, available at: https://www.naturalearthdata.com/downloads/10m-cultural-vectors/, last
access: 21 April 2020.
Offenedaten: Brandenburg Landkreise,
available at: https://offenedaten.de/dataset/landkreise-brandenburg, last access: 21 April 2020.
Pluckhahn, T. J., Hodson, A. D., Rink, W. J., Thomson, V. D., Hendricks, R. R., Doran, G., Farr, G., Cherkinsky, A., and Norman, S. P.: Radiocarbon and
Luminescence Age Determinations on Mounds at Crystal River and Roberts
Island, Florida, USA, Geoarchaeology, 30, 238–260, 2015.
Porat, N., Duller, G. A. T., Roberts, H. M., Piasetzky, E., and Finkelstein,
I.: OSL dating in multi-strata Tel: Megiddo (Israel) as a case study, Quat.
Geochronol., 10, 359–366, 2012.
Prescott, J. R. and Hutton, J. T.: Cosmic ray distributions to dose rates for
luminescence and ESR dating: large depths and long-term variations,
Radiat. Meas., 23, 497–500, 1994.
Reimann, T., Naumann, M., Tsukamoto, S., and Frechen, M.: Luminescence
dating of coastal sediments from the Baltic Sea coastal barrier-spit
Darss-Zingst, NE Germany, Geomorphology, 122, 264–273, 2010.
Reimann, T., Lindhorst, S., Thomas, K. J., Murray, A. S., and Frechen, M.: OSL dating of mixed coastal sediment (Sylt, German Bight, North Sea), Quat.
Geochronol., 11, 52–67, 2012.
Reimann, T., Román-Sánchez, A., Vanwalleghem, T., and Wallinga, J.:
Getting a grip on soil reworking–Single-grain feldspar luminescence as a
novel tool to quantify soil reworking rates, Quat. Geochronol., 42, 1–14,
2017.
Saye, S. E. and Pye, K.: Variations in chemical composition and particle size
of dune sediments along the west coast of Jutland, Denmark, Sediment. Geol.,
183, 217–242, 2006.
Schoeneberger, P. J., Wysocki, D. A., and Benham, E. C.: Field book for
describing and sampling soils, Version 3.0., Natural Resources Conservation
Service, National Soil Survey Center, Lincoln, NE, USA, 2012.
Schulte, L. and Wahnschaffe, F.: Geognostisch Agronomische Karte 1:25,000,
Königliche Preussische Geologische Landesanstalt, Berlin, Blatt: 2837
Bäk (1900–1901), 1905.
van der Meij, W. M., Reimann, T., Vornehm, V. K., Temme, A. J. A. M., Wallinga, J., van Beek, R., and Sommer, M.: Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes, Earth Surf. Proc. Land., 44, 2408–2422, 2019.
Wüstemann, H.: Zur Sozialstruktur im Seddiner Kulturgebiet, Z.
Archäol., 8, 67–107, 1974 (in German).