Articles | Volume 72, issue 2
https://doi.org/10.5194/egqsj-72-163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-72-163-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What do dust sinks tell us about their sources and past environmental dynamics? A case study for oxygen isotope stages 3–2 in the Middle Rhine Valley, Germany
Mathias Vinnepand
CORRESPONDING AUTHOR
Natural Hazard Research and Geoarchaeology, Institute for Geography, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
Natural Hazard Research and Geoarchaeology, Institute for Geography, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
Ulrich Hambach
BayCEER and Chair of Geomorphology, University of Bayreuth, 95440
Bayreuth, Germany
Emil Racovita Institute of Speleology (ERIS), Romanian Academy,
Cluj-Napoca branch, Clinicilor 5, 400006 Cluj-Napoca, Romania
Olaf Jöris
MONREPOS Archaeological
Research Centre and Museum for Human Behavioural Evolution, Leibniz-Zentrum für Archäologie, 56567 Neuwied,
Germany
Carol-Ann Craig
Environmental and Biogeochemical Sciences Group, The James Hutton
Institute, Aberdeen, AB15 8QH, Scotland, UK
Christian Zeeden
Rock Physics and Borehole Geophysics, LIAG – Leibniz Institute for
Applied Geophysics, 30655 Hanover, Germany
Barry Thornton
Environmental and Biogeochemical Sciences Group, The James Hutton
Institute, Aberdeen, AB15 8QH, Scotland, UK
Thomas Tütken
Applied and Analytical Paleontology, Institute of Geosciences, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
Charlotte Prud'homme
Institute of Earth Surface Dynamics, University of Lausanne, 1015
Lausanne, Switzerland
Philipp Schulte
Chair in Physical Geography and Geoecology, Department of Geography, RWTH Aachen, 52056 Aachen, Germany
Olivier Moine
Laboratoire de Géographie Physique, UMR 8591 CNRS Université Paris 1 UPEC, Thiais 94320, France
Kathryn E. Fitzsimmons
Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
Christian Laag
Department of Research and Development, Nolte Geoservices GmbH, 48301 Nottuln, Germany
Institut de Physique du Globe de Paris, CNRS, Université Paris Cité, 75238 Paris, France
Frank Lehmkuhl
Chair in Physical Geography and Geoecology, Department of Geography, RWTH Aachen, 52056 Aachen, Germany
Wolfgang Schirmer
independent researcher: Wolkenstein 24, 91320 Wolkenstein, Germany
Andreas Vött
Natural Hazard Research and Geoarchaeology, Institute for Geography, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
Related authors
Christian Zeeden, Jehangeer Ahmad Mir, Mathias Vinnepand, Christian Laag, Christian Rolf, and Reyaz Ahmad Dar
E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, https://doi.org/10.5194/egqsj-70-191-2021, 2021
Short summary
Short summary
We investigate two loess–palaeosol sequences in Kashmir. Magnetic enhancement of the loess was strong during stadial phases. Besides classical magnetic enhancement, wind vigour suggests partly strong winds. Grain sizes are dominantly in the silt range and comparable to data from central Asia, which do not suggest transport over high mountain ranges as required for non-local sources in Kashmir. Therefore, we suggest that the Kashmir loess is predominantly of local origin.
Martin Kehl, Katharina Seeger, Stephan Pötter, Philipp Schulte, Nicole Klasen, Mirijam Zickel, Andreas Pastoors, and Erich Claßen
E&G Quaternary Sci. J., 73, 41–67, https://doi.org/10.5194/egqsj-73-41-2024, https://doi.org/10.5194/egqsj-73-41-2024, 2024
Short summary
Short summary
The loess–palaeosol sequence (LPS) at Rheindahlen provides a detailed sedimentary archive of past climate change. Furthermore, it contains Palaeolithic find horizons indicating repeated occupations by Neanderthals. The age of loess layers and the timing of human occupation are a matter of strong scientific debate. We present new data to shed light on formation processes and deposition ages. Previous chronostratigraphic estimates are revised providing a reliable chronostratigraphic framework .
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Frank Lehmkuhl, Philipp Schulte, Wolfgang Römer, and Stephan Pötter
E&G Quaternary Sci. J., 72, 203–218, https://doi.org/10.5194/egqsj-72-203-2023, https://doi.org/10.5194/egqsj-72-203-2023, 2023
Short summary
Short summary
Research in loess landscapes provides evidence for the paleoenvironmental settings for past human societies and for the paleoclimate evolution of the past. Archeological and geoscientific investigations must consider different relief settings due to erosion, slope wash, accumulation of sediments and relocation of artifacts. The Lower Rhine Embayment can serve as a blueprint for such research as a typical loess landscape of Central Europe.
Julia Meister, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 72, 185–187, https://doi.org/10.5194/egqsj-72-185-2023, https://doi.org/10.5194/egqsj-72-185-2023, 2023
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Aditi Krishna Dave, Lenka Lisa, Giancarlo Scardia, Saida Nigmatova, and Kathryn Elizabeth Fitzsimmons
EGUsphere, https://doi.org/10.5194/egusphere-2022-309, https://doi.org/10.5194/egusphere-2022-309, 2022
Preprint archived
Short summary
Short summary
Mass accumulation rates (MAR’s) from wind blown dust (loess) archives are one of the primary tools to gauge past climate conditions in a region. However, many of these reconstructions are based on individual loess sites, which may not be representative of the regional climate. This study investigates the relationship between loess MAR’s and climate, in the context of topography, sediment availability and supply and past circulation in Central and East Asia.
Christian Zeeden, Jehangeer Ahmad Mir, Mathias Vinnepand, Christian Laag, Christian Rolf, and Reyaz Ahmad Dar
E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, https://doi.org/10.5194/egqsj-70-191-2021, 2021
Short summary
Short summary
We investigate two loess–palaeosol sequences in Kashmir. Magnetic enhancement of the loess was strong during stadial phases. Besides classical magnetic enhancement, wind vigour suggests partly strong winds. Grain sizes are dominantly in the silt range and comparable to data from central Asia, which do not suggest transport over high mountain ranges as required for non-local sources in Kashmir. Therefore, we suggest that the Kashmir loess is predominantly of local origin.
P. Oyunbat, O. Batkhishig, B. Batsaikhan, F. Lehmkuhl, M. Knippertz, and V. Nottebaum
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 123–133, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-123-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-123-2021, 2021
Leonie Peti, Kathryn E. Fitzsimmons, Jenni L. Hopkins, Andreas Nilsson, Toshiyuki Fujioka, David Fink, Charles Mifsud, Marcus Christl, Raimund Muscheler, and Paul C. Augustinus
Geochronology, 2, 367–410, https://doi.org/10.5194/gchron-2-367-2020, https://doi.org/10.5194/gchron-2-367-2020, 2020
Short summary
Short summary
Orakei Basin – a former maar lake in Auckland, New Zealand – provides an outstanding sediment record over the last ca. 130 000 years, but an age model is required to allow the reconstruction of climate change and volcanic eruptions contained in the sequence. To construct a relationship between depth in the sediment core and age of deposition, we combined tephrochronology, radiocarbon dating, luminescence dating, and the relative intensity of the paleomagnetic field in a Bayesian age–depth model.
D. Hoffmeister, M. Herbrecht, T. Kramm, and P. Schulte
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 25–28, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-25-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-25-2020, 2020
Denis-Didier Rousseau, Pierre Antoine, Niklas Boers, France Lagroix, Michael Ghil, Johanna Lomax, Markus Fuchs, Maxime Debret, Christine Hatté, Olivier Moine, Caroline Gauthier, Diana Jordanova, and Neli Jordanova
Clim. Past, 16, 713–727, https://doi.org/10.5194/cp-16-713-2020, https://doi.org/10.5194/cp-16-713-2020, 2020
Short summary
Short summary
New investigations of European loess records from MIS 6 reveal the occurrence of paleosols and horizon showing slight pedogenesis similar to those from the last climatic cycle. These units are correlated with interstadials described in various marine, continental, and ice Northern Hemisphere records. Therefore, these MIS 6 interstadials can confidently be interpreted as DO-like events of the penultimate climate cycle.
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Yue Li, Yougui Song, Kathryn E. Fitzsimmons, Hong Chang, Rustam Orozbaev, and Xinxin Li
Clim. Past, 14, 271–286, https://doi.org/10.5194/cp-14-271-2018, https://doi.org/10.5194/cp-14-271-2018, 2018
Short summary
Short summary
This paper finds a close tie between loess magnetic susceptibility and wind strength in the Ili Basin, eastern Central Asia, and identifies three distinct aerodynamic environments with end-member modeling analysis of grain size. The Siberian High is the dominant influence on wind dynamics, resulting in loess deposition, and acts as a teleconnection between the climatic systems of the North Atlantic and East Asia in the high northern latitudes, but not for the mid-latitude westerlies.
James Shulmeister, Justine Kemp, Kathryn E. Fitzsimmons, and Allen Gontz
Clim. Past, 12, 1435–1444, https://doi.org/10.5194/cp-12-1435-2016, https://doi.org/10.5194/cp-12-1435-2016, 2016
Short summary
Short summary
This paper highlights that small dunes (lunettes) formed on the eastern side of a lake in the Australian sub-tropics at the height of the last ice age (about 21,000 years ago) and in the early part of the current interglacial (9–6,000 years ago). This means that it was fairly wet at these times and also that there were strong westerly winds to form the dunes. Today strong westerly winds occur in winter, and we infer that the same was also true at those times, suggesting no change in circulation.
E. O. Walliser, B. R. Schöne, T. Tütken, J. Zirkel, K. I. Grimm, and J. Pross
Clim. Past, 11, 653–668, https://doi.org/10.5194/cp-11-653-2015, https://doi.org/10.5194/cp-11-653-2015, 2015
M. Kehl, E. Eckmeier, S. O. Franz, F. Lehmkuhl, J. Soler, N. Soler, K. Reicherter, and G.-C. Weniger
Clim. Past, 10, 1673–1692, https://doi.org/10.5194/cp-10-1673-2014, https://doi.org/10.5194/cp-10-1673-2014, 2014
N. J. de Winter, C. Zeeden, and F. J. Hilgen
Clim. Past, 10, 1001–1015, https://doi.org/10.5194/cp-10-1001-2014, https://doi.org/10.5194/cp-10-1001-2014, 2014
Y. Wang, U. Herzschuh, L. S. Shumilovskikh, S. Mischke, H. J. B. Birks, J. Wischnewski, J. Böhner, F. Schlütz, F. Lehmkuhl, B. Diekmann, B. Wünnemann, and C. Zhang
Clim. Past, 10, 21–39, https://doi.org/10.5194/cp-10-21-2014, https://doi.org/10.5194/cp-10-21-2014, 2014
D.-D. Rousseau, M. Ghil, G. Kukla, A. Sima, P. Antoine, M. Fuchs, C. Hatté, F. Lagroix, M. Debret, and O. Moine
Clim. Past, 9, 2213–2230, https://doi.org/10.5194/cp-9-2213-2013, https://doi.org/10.5194/cp-9-2213-2013, 2013
C. Hatté, C. Gauthier, D.-D. Rousseau, P. Antoine, M. Fuchs, F. Lagroix, S. B. Marković, O. Moine, and A. Sima
Clim. Past, 9, 1001–1014, https://doi.org/10.5194/cp-9-1001-2013, https://doi.org/10.5194/cp-9-1001-2013, 2013
Related subject area
Geomorphology
Pleniglacial dynamics in an oceanic central European loess landscape
On the expression and distribution of glacial trimlines: a case study of Little Ice Age trimlines on Svalbard
Late Quaternary landform evolution and sedimentary successions in the Miaoli Tableland, northwestern Taiwan
A tribute to Büdel (1951): The climatic zones of the ice age
A tribute to Louis (1952): On the theory of glacial erosion in valleys
A tribute to Woldstedt (1952): Problems of terrace formation
A tribute to Rohdenburg (1970): Morphodynamic activity and stability phases instead of pluvial and interpluvial times
A first outline of the Quaternary landscape evolution of the Kashaf Rud River basin in the drylands of northeastern Iran
Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating
Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany
Disestablishing “Glacial Lake Speight”, New Zealand? An example for the validity of detailed geomorphological assessment with the study of mountain glaciations
Reconsidering the origin of the Sedrun fans (Graubünden, Switzerland)
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Camilla M. Rootes and Christopher D. Clark
E&G Quaternary Sci. J., 71, 111–122, https://doi.org/10.5194/egqsj-71-111-2022, https://doi.org/10.5194/egqsj-71-111-2022, 2022
Short summary
Short summary
Glacial trimlines are visible breaks in vegetation or landforms that mark the former extent of glaciers. They are often observed as faint lines running across valley sides and are useful for mapping the three-dimensional shape of former glaciers or for assessing by how much present-day glaciers have thinned and retreated. Here we present the first application of a new trimline classification scheme to a case study location in central western Spitsbergen, Svalbard.
Shih-Hung Liu, Robert Hebenstreit, and Margot Böse
E&G Quaternary Sci. J., 71, 1–22, https://doi.org/10.5194/egqsj-71-1-2022, https://doi.org/10.5194/egqsj-71-1-2022, 2022
Short summary
Short summary
The Miaoli Tableland (northwestern Taiwan) consists of a sequence of fine-grained tidal to coarse fluvial late Quaternary sediments which underwent a spatially differentiated uplift and fluvial dissection. They reveal repeated rework processes of fluvial cobbles from the highlands to the coast. A new landform classification based on high-resolution 3D terrain analysis results in a new interpretation of the landform evolution. The results favour a local rarely used Quaternary stratigraphic code.
Jef Vandenberghe
E&G Quaternary Sci. J., 70, 205–207, https://doi.org/10.5194/egqsj-70-205-2021, https://doi.org/10.5194/egqsj-70-205-2021, 2021
Short summary
Short summary
A main element in Büdel's concept is his quite provocative link between climate zones and geomorphological processes, a strong relation which was frequently contested later. Büdel's contribution is still relevant in modern times as the present-day climatic change will probably also invoke a poleward shift of climatic zones, accompanied by associated shifts in geomorphological environments and ecosystems.
Pierre G. Valla
E&G Quaternary Sci. J., 70, 209–212, https://doi.org/10.5194/egqsj-70-209-2021, https://doi.org/10.5194/egqsj-70-209-2021, 2021
James Rose, David R. Bridgland, and Rob Westaway
E&G Quaternary Sci. J., 70, 217–220, https://doi.org/10.5194/egqsj-70-217-2021, https://doi.org/10.5194/egqsj-70-217-2021, 2021
Dominik Faust and Markus Fuchs
E&G Quaternary Sci. J., 70, 243–246, https://doi.org/10.5194/egqsj-70-243-2021, https://doi.org/10.5194/egqsj-70-243-2021, 2021
Azra Khosravichenar, Morteza Fattahi, Alireza Karimi, Hassan Fazeli Nashli, and Hans von Suchodoletz
E&G Quaternary Sci. J., 70, 145–150, https://doi.org/10.5194/egqsj-70-145-2021, https://doi.org/10.5194/egqsj-70-145-2021, 2021
Short summary
Short summary
This article discusses the first basic framework of Quaternary landscape evolution in a main large river valley of the drylands of northeastern Iran and the first geomorphic frame for human migrations in the important migration corridor of central Asia.
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Stefan Winkler, David Bell, Maree Hemmingsen, Kate Pedley, and Anna Schoch
E&G Quaternary Sci. J., 67, 25–31, https://doi.org/10.5194/egqsj-67-25-2018, https://doi.org/10.5194/egqsj-67-25-2018, 2018
Short summary
Short summary
Geomorphological mapping and analysis conducted as an initial step towards a future sediment budget study of the middle Waimakariri River (Southern Alps, New Zealand) reveals that the traditional concept of the temporary palaeolake
glacial Lake Speightis conflicting with our conclusions of realistic chronosequences and timescales of para- and postglacial landform development. Especially the temporal and causal relation to the last deglaciation needs to be questioned and will be discussed.
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Cited articles
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang,
A., Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition
during the Last Glacial in European loess: a high-resolution record from
Nussloch, Germany, Quaternary Sci. Rev., 28, 2955–2973,
https://doi.org/10.1016/j.quascirev.2009.08.001, 2009.
Antoine, P., Goval, E., Jamet, G., Coutard, S., Moine, O., Hérisson, D., Auguste, P., Guérin, G., Lagroix, F., Schmidt, E., Robert, V., Debenham, N., Meszner, S., and Bahain, J. J.: The upper pleistocene loess sequences of havrincourt
(Pas-de-Calais, France). Stratigraphy, palaeoenvironments, geochronology and human occupations, Quaternaire, 25, 321–368, https://doi.org/10.4000/quaternaire.7278, 2014.
Baykal, Y., Stevens, T., Bateman, M. D., Pfaff, K., Sechi, D., Banak, A.,
Šuica, S., Zhang, H., and Nie, J.: Eurasian Ice Sheet derived meltwater
pulses and their role in driving atmospheric dust activity: Late Quaternary
loess sources in SE England, Quaternary Sci. Rev., 296, 107804,
https://doi.org/10.1016/j.quascirev.2022.107804, 2022.
Blaauw, M. and Christeny, J. A.: Flexible paleoclimate age-depth models
using an autoregressive gamma process, Bayesian Anal., 6,
457–474, https://doi.org/10.1214/11-BA618, 2011.
Blott, S. J., Croft, D. J., Pye, K., Saye, S. E., and Wilson, H. E.:
Particle size analysis by laser diffraction, Geological Society, London,
Special Publications, 232, 63–73,
https://doi.org/10.1144/GSL.SP.2004.232.01.08, 2004.
Boenigk, W. and Frechen, M.: The Pliocene and Quaternary fluvial archives of
the Rhine system, Quaternary Sci. Rev., 25, 550–574,
https://doi.org/10.1016/j.quascirev.2005.01.018, 2006.
Bradák, B., Seto, Y., Chadima, M., Kovács, J., Tanos, P.,
Újvári, G., and Hyodo, M.: Magnetic fabric of loess and its
significance in Pleistocene environment reconstructions, Earth-Sci.
Rev., 210, 103385, https://doi.org/10.1016/j.earscirev.2020.103385, 2020.
Bradák, B., Seto, Y., Stevens, T., Újvári, G., Fehér, K.,
and Költringer, C.: Magnetic susceptibility in the European Loess Belt:
New and existing models of magnetic enhancement in loess, Palaeogeogr.
Palaeocl., 569, 110329,
https://doi.org/10.1016/j.palaeo.2021.110329, 2021.
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., and Marković, S.:
An evaluation of geochemical weathering indices in loess-paleosol studies,
Quaternary Int., 240, 12–21,
https://doi.org/10.1016/j.quaint.2010.07.019, 2011.
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S.
B., and Glaser, B.: Iron mineralogical proxies and quaternary climate change
in SE-european loess-paleosol sequences, Catena, 117, 4–22,
https://doi.org/10.1016/j.catena.2013.06.012, 2014.
Buhl, D., Neuser, R. D., Richter, D. K., Riedel, D., Roberts, B., Strauss,
H., and Veizer, J.: Nature and nurture: Environmental isotope story of the
River Rhine, Naturwissenschaften, 78, 337–346,
https://doi.org/10.1007/BF01131605, 1991.
Clauer, N. and Chaudhuri, S.: Clays in Crustal Environments, Springer,
Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-79085-0, 1995.
DePaolo, D. J. and Wasserburg, G. J.: Nd isotopic variations and
petrogenetic models, Geophys. Res. Lett., 3, 249–252,
https://doi.org/10.1029/GL003i005p00249, 1976.
Deutscher Wetterdienst: Deutscher Wetterdienst (German Meteorological
Service):
https://www.dwd.de/DE/leistungen/klimadatendeutschland/klimadatendeutschland.html,
(last access: 2 March 2022), 2023.
Drouet, Th., Herbauts, J., Gruber, W., and Demaiffe, D.: Natural strontium
isotope composition as a tracer of weathering patterns and of exchangeable
calcium sources in acid leached soils developed on loess of central Belgium,
Eur. J. Soil Sci., 58, 302–319,
https://doi.org/10.1111/j.1365-2389.2006.00840.x, 2007.
Evans, M. E. and Heller, F.: Magnetism of loess/palaeosol sequences: recent
developments, Earth-Sci. Rev., 54, 129–144,
https://doi.org/10.1016/S0012-8252(01)00044-7, 2001.
Evans, M. E. and Heller, F.: Environmental Magnetism: Principles and
Applications of Enviromagnetics, Elsevier, Amsterdam, 318 pp., ISBN 978-0-122-43851-6, 2003.
Faure, G. and Mensing, T. M.: Principles and applications, John Wiley &
Sons, Inc, New York, ISBN 978-0-471-38437-3, 2005.
Federal Institute for Geosciences and Natural Resources Germany: Federal
Institute for Geosciences and Natural Resources Germany, https://www.bgr.bund.de/DE/Home/homepage_node.html, last
access: 23 March 2022.
Feng, J.-L., Zhu, L.-P., Zhen, X.-L., and Hu, Z.-G.: Grain size effect on Sr
and Nd isotopic compositions in eolian dust: implications for tracing dust
provenance and Nd model age, Geochem. J., 43, 123–131,
https://doi.org/10.2343/geochemj.1.0007, 2009.
Fischer, P., Hambach, U., Klasen, N., Schulte, P., Zeeden, C., Steininger, F., Lehmkuhl, F., Gerlach, R., and Radtke, U.: Landscape instability at the end of MIS 3 in western Central Europe: evidence from a multi proxy study
on a Loess-Palaeosol-Sequence from the eastern Lower Rhine Embayment, Germany, Quaternary Int., 502, 119–136,
https://doi.org/10.1016/j.quaint.2017.09.008, 2019.
Fischer, P., Jöris, O., Fitzsimmons, K. E., Vinnepand, M., Prud'homme,
C., Schulte, P., Hatté, C., Hambach, U., Lindauer, S., Zeeden, C.,
Peric, Z., Lehmkuhl, F., Wunderlich, T., Wilken, D., Schirmer, W., and
Vött, A.: Millennial-scale terrestrial ecosystem responses to Upper
Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg
Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany), CATENA, 196,
104913, https://doi.org/10.1016/j.catena.2020.104913, 2021.
Fitzsimmons, K. E., Perić, Z., Nowatzki, M., Lindauer, S., Vinnepand,
M., Prud'homme, C., Dave, A. K., Vött, A., and Fischer, P.: Luminescence
Sensitivity of Rhine Valley Loess: Indicators of Source Variability?,
Quaternary, 5, 1, https://doi.org/10.3390/quat5010001, 2021.
Förster, M. W., Zemlitskaya, A., Otter, L. M., Buhre, S., and Sirocko,
F.: Late Pleistocene Eifel eruptions: insights from clinopyroxene and glass
geochemistry of tephra layers from Eifel Laminated Sediment Archive sediment
cores, J. Quaternary Sci., 35, 186–198,
https://doi.org/10.1002/jqs.3134, 2020.
Forster, Th., Evans, M. E., and Heller, F.: The frequency dependence of low
field susceptibility in loess sediments, Geophys. J. Int.,
118, 636–642, https://doi.org/10.1111/j.1365-246X.1994.tb03990.x, 1994.
Frechen, M., Oches, E., and Kohlfeld, K.: Loess in Europe – mass
accumulation rates during the Last Glacial Period, Quaternary Sci.
Rev., 22, 1835–1857, https://doi.org/10.1016/S0277-3791(03)00183-5,
2003.
Fuhrmann, F., Seelos, K., and Sirocko, F.: Eolian sedimentation in central
European Auel dry maar from 60 to 13 ka, Quaternary Res., 101, 4-12,
https://doi.org/10.1017/qua.2020.81, 2021.
Gallet, S., Jahn, B., Van Vliet Lanoë, B., Dia, A., and Rossello, E.:
Loess geochemistry and its implications for particle origin and composition
of the upper continental crust, Earth Planet. Sci. Lett., 156,
157–172, https://doi.org/10.1016/S0012-821X(97)00218-5, 1998.
Goldstein, S. J. and Jacobsen, S. B.: The Nd and Sr isotopic systematics of
river-water dissolved material: Implications for the sources of Nd and Sr in
seawater, Chem. Geol.: Isotope Geoscience section, 66, 245–272,
https://doi.org/10.1016/0168-9622(87)90045-5, 1987.
Goldstein, S. J. and Jacobsen, S. B.: Nd and Sr isotopic systematics of
river water suspended material: implications for crustal evolution, Earth
Planet. Sci. Lett., 87, 249–265,
https://doi.org/10.1016/0012-821X(88)90013-1, 1988.
Goldstein, S. L., O'Nions, R. K., and Hamilton, P. J.: A Sm-Nd isotopic
study of atmospheric dusts and particulates from major river systems, Earth
Planet. Sci. Lett., 70, 221–236,
https://doi.org/10.1016/0012-821X(84)90007-4, 1984.
Grousset, F. E. and Biscaye, P. E.: Nd and Sr Isotopes as Tracers of Wind
Transport: Atlantic Aerosols and Surface Sediments, in: Paleoclimatology and
Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport,
edited by: Leinen, M. and Sarnthein, M., Springer Netherlands, Dordrecht,
385–400, https://doi.org/10.1007/978-94-009-0995-3_16, 1989.
Grousset, F. E. and Biscaye, P. E.: Tracing dust sources and transport
patterns using Sr, Nd and Pb isotopes, Chem. Geol., 222, 149–167,
https://doi.org/10.1016/J.CHEMGEO.2005.05.006, 2005.
Hrouda, F.: Anisotropy of magnetic susceptibility of rocks in the Rayleigh
Law region: Modelling errors arising from linear fit to non-linear data,
Studia Geophyssica et Geodaetica, 51, 423–438,
https://doi.org/10.1007/s11200-007-0024-5, 2007.
Hülscher, J., Bahlburg, H., and Pfänder, J.: New geochemical results
indicate a non-alpine provenance for the Alpine Spectrum (epidote, garnet,
hornblende) in quaternary Upper Rhine sediment, Sediment. Geol., 375,
134–144, https://doi.org/10.1016/j.sedgeo.2018.02.010, 2018.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch,
M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial
cycle in the European Alps, J. Quaternary Sci., 23, 559–573,
https://doi.org/10.1002/jqs.1202, 2008.
Janus, U.: Löss der südlichen niederrheinischen Bucht, Kölner Geographische Arbeiten, 49,
ISSN 0454-1294. 1988.
Jones, R. M.: Particle size analysis by laser diffraction: ISO 13320,
standard operating procedures, and Mie theory, American Laboratory, Corpus ID 221270121, 2003.
Kämpf, L., Rius, D., Duprat-Oualid, F., Crouzet, C., and Millet, L.:
Evidence for wind patterns and associated landscape response in Western
Europe between 46 and 16 ka cal. BP, Quaternary Sci. Rev., 298,
107846, https://doi.org/10.1016/j.quascirev.2022.107846, 2022.
Klasen, N., Fischer, P., Lehmkuhl, F., and Hilgers, A.: Luminescence dating of loess deposits from the Remagen-Schwalbenberg site, Western Germany, Geochronometria, 42, 67–77, https://doi.org/10.1515/geochr-2015-0008, 2015.
Knippertz, P. and Stuut, J.-B. W. (Eds.): Mineral Dust, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/978-94-017-8978-3, 2014.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene,
P. Natl. Acad. Sci. USA, 111, 15296–15303,
https://doi.org/10.1073/pnas.1411762111, 2014.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary,
Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J.,
Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C.,
Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes
of Europe – Mapping, geomorphology, and zonal differentiation,
Earth-Sci. Rev., 215, 103496,
https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Liu, Q., Roberts, A. P., Larrasoaña, J. C., Banerjee, S. K., Guyodo, Y.,
Tauxe, L., and Oldfield, F.: Environmental magnetism: Principles and
applications, Rev. Geophys., 50, RG4002,
https://doi.org/10.1029/2012RG000393, 2012.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Marx, S. K., Kamber, B. S., McGowan, H. A., Petherick, L. M., McTainsh, G.
H., Stromsoe, N., Hooper, J. N., and May, J.-H.: Palaeo-dust records: A
window to understanding past environments, Global Planet. Change, 165,
13–43, https://doi.org/10.1016/j.gloplacha.2018.03.001, 2018.
McGee, D., Broecker, W. S., and Winckler, G.: Gustiness: The driver of
glacial dustiness?, Quaternary Sci. Rev., 29, 2340–2350,
https://doi.org/10.1016/j.quascirev.2010.06.009, 2010.
Meijs, E., Mücher, H., Ouwerkerk, G., Romein, A., and Stoltenberg, H.: Evidence of Presence of the Eltville Tuff Layer in Dutsch and Belgian Limbourg and the Consequences for the Loess Stratigraphy, E&G Quaternary Sci. J., 33, 59–78, https://doi.org/10.3285/eg.33.1.06, 1983.
Meschede, M.: Geologie Deutschlands: ein prozessorientierter Ansatz,
Springer Spektrum, Berlin, 252 pp., ISBN
978-3662452974, 2018.
Meyer, R., Nicoll, G. R., Hertogen, J., Troll, V. R., Ellam, R. M., and
Emeleus, C. H.: Trace element and isotope constraints on crustal anatexis by
upwelling mantle melts in the North Atlantic Igneous Province: an example
from the Isle of Rum, NW Scotland, Geol. Magazine, 146, 382–399,
https://doi.org/10.1017/S0016756809006244, 2009.
Meyer, W. and Stets, J.: Das Rheintal zwischen Bingen und Bonn, Borntraeger,
Berlin, 386 pp., ISBN 978-3-443-15069-3, 1996.
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud'homme,
C., and Rousseau, D. D.: The impact of Last Glacial climate variability in
west-European loess revealed by radiocarbon dating of fossil earthworm
granules, P. Natl. Acad. Sci. USA, 114, 209–214, https://doi.org/10.1073/pnas.1614751114,
2017.
Moragues-Quiroga, C., Juilleret, J., Gourdol, L., Pelt, E., Perrone, T.,
Aubert, A., Morvan, G., Chabaux, F., Legout, A., Stille, P., and Hissler,
C.: Genesis and evolution of regoliths: Evidence from trace and major
elements and Sr-Nd-Pb-U isotopes, CATENA, 149, 185–198,
https://doi.org/10.1016/j.catena.2016.09.015, 2017.
Mroczek, P.: Recycled loesses – A micromorphological approach to the
determination of local source areas of Weichselian loess, Quaternary
Int., 296, 241–250, https://doi.org/10.1016/j.quaint.2013.02.040,
2013.
Muhs, D. R.: The geologic records of dust in the quaternary, Aeolian
Res., 9, 3–48, https://doi.org/10.1016/j.aeolia.2012.08.001, 2013.
Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S. B.,
Bösken, J., Svirčev, Z., Bačević, N., Gavrilov, M. B., and
Lehmkuhl, F.: Tracing the influence of Mediterranean climate on Southeastern
Europe during the past 350,000 years, Sci. Rep., 6, 36334,
https://doi.org/10.1038/srep36334, 2016.
Ozer, M., Orhan, M., and Isik, N. S.: Effect of Particle Optical Properties
on Size Distribution of Soils Obtained by Laser Diffraction, Environ. Eng. Geosci., 16, 163–173,
https://doi.org/10.2113/gseegeosci.16.2.163, 2010.
Pinto, J. G. and Ludwig, P.: Extratropical cyclones over the North Atlantic and western Europe during the Last Glacial Maximum and implications for proxy interpretation, Clim. Past, 16, 611–626, https://doi.org/10.5194/cp-16-611-2020, 2020.
Pötter, S., Veres, D., Baykal, Y., Nett, J. J., Schulte, P., Hambach,
U., and Lehmkuhl, F.: Disentangling Sedimentary Pathways for the
Pleniglacial Lower Danube Loess Based on Geochemical Signatures, Front. Earth Sci., 9, 600010, https://doi.org/10.3389/feart.2021.600010,
2021.
Preusser, F., Büschelberger, M., Kemna, H. A., Miocic, J., Mueller, D.,
and May, J.-H.: Exploring possible links between Quaternary aggradation in
the Upper Rhine Graben and the glaciation history of northern Switzerland,
Int. J. Earth Sci. (Geol. Rundsch), 110, 1827–1846,
https://doi.org/10.1007/s00531-021-02043-7, 2021.
Profe, J., Zolitschka, B., Schirmer, W., Frechen, M., and Ohlendorf, C.:
Geochemistry unravels MIS 3/2 paleoenvironmental dynamics at the
loess–paleosol sequence Schwalbenberg II, Germany, Palaeogeogr.
Palaeoclim. Palaeoecol., 459, 537–551,
https://doi.org/10.1016/j.palaeo.2016.07.022, 2016.
Prud'homme, C., Lécuyer, C., Antoine, P., Hatté, C., Moine, O.,
Fourel, F., Amiot, R., Martineau, F., and Rousseau, D.-D.: δ 13 C
signal of earthworm calcite granules: A new proxy for palaeoprecipitation
reconstructions during the Last Glacial in western Europe, Quaternary
Sci. Rev., 179, 158–166,
https://doi.org/10.1016/j.quascirev.2017.11.017, 2018.
Prud'homme, C., Fischer, P., Jöris, O., Gromov, S., Vinnepand, M.,
Hatté, C., Vonhof, H., Moine, O., Vött, A., and Fitzsimmons, K. E.:
Millennial-timescale quantitative estimates of climate dynamics in central
Europe from earthworm calcite granules in loess deposits, Commun.
Earth Environ., 3, 1–14, https://doi.org/10.1038/s43247-022-00595-3,
2022.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J. B., Popp,
T., Seierstad, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106,
14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., Van Der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757,
https://doi.org/10.1017/RDC.2020.41, 2020.
Reutenauer, C., Landais, A., Blunier, T., Bréant, C., Kageyama, M., Woillez, M.-N., Risi, C., Mariotti, V., and Braconnot, P.: Quantifying molecular oxygen isotope variations during a Heinrich stadial, Clim. Past, 11, 1527–1551, https://doi.org/10.5194/cp-11-1527-2015, 2015.
Römer, W., Lehmkuhl, F., and Sirocko, F.: Late Pleistocene aeolian dust
provenances and wind direction changes reconstructed by heavy mineral
analysis of the sediments of the Dehner dry maar (Eifel, Germany), Global
Planet. Change, 147, 25–39,
https://doi.org/10.1016/j.gloplacha.2016.10.012, 2016.
Rousseau, D. D., Sima, A., Antoine, P., Hatté, C., Lang, A., and
Zöller, L.: Link between European and North Atlantic abrupt climate
changes over the last glaciation, Geophys. Res. Lett., 34, L22713,
https://doi.org/10.1029/2007GL031716, 2007.
Rousseau, D.-D., Derbyshire, E., Antoine, P., and Hatté, C.: European
Loess Records, Reference Module in Earth Systems and Environmental
Sciences, Elsevier, Amsterdam,
https://doi.org/10.1016/b978-0-12-409548-9.11136-4, 2018.
Sauer, D. and Felix-Henningsen, P.: Saprolite, soils, and sediments in the
Rhenish Massif as records of climate and landscape history, Quaternary
Int., 156–157, 4–12,
https://doi.org/10.1016/j.quaint.2006.05.001, 2006.
Schad, P., Van Huyssteen, M., Anjos, L., Gaistordo, C., Deckers, J.,
Dondeyne, S., Eberhardt, E., Gerasimova, M., Harms, B., Jones, A.,
Krasilnikov, P., Reinsch, T., Vargas, T., and Zhang, G.: World reference
base for soil resources 2014 International soil classification system for
naming soils and creating legends for soil maps, 3rd Ed., edited by: Peter
Schad, Cornie van Huyssteen, Erika Michéli, FAO, Rome (Italy), ISBN 978-92-5-108369-7, 2015.
Schaetzl, R. J., Bettis, E. A., Crouvi, O., Fitzsimmons, K. E., Grimley, D.
A., Hambach, U., Lehmkuhl, F., Marković, S. B., Mason, J. A., Owczarek,
P., Roberts, H. M., Rousseau, D.-D., Stevens, T., Vandenberghe, J.,
Zárate, M., Veres, D., Yang, S., Zech, M., Conroy, J. L., Dave, A. K.,
Faust, D., Hao, Q., Obreht, I., Prud'homme, C., Smalley, I., Tripaldi, A.,
Zeeden, C., and Zech, R.: Approaches and challenges to the study of
loess – Introduction to the LoessFest Special Issue, Quaternary Res.,
89, 563–618, https://doi.org/10.1017/qua.2018.15, 2018.
Schaffernicht, E. J., Ludwig, P., and Shao, Y.: Linkage between dust cycle and loess of the Last Glacial Maximum in Europe, Atmos. Chem. Phys., 20, 4969–4986, https://doi.org/10.5194/acp-20-4969-2020, 2020.
Schatz, A.-K., Qi, Y., Siebel, W., Wu, J., and Zöller, L.: Tracking
potential source areas of Central European loess: examples from Tokaj (HU),
Nussloch (D) and Grub (AT), Open Geosci., 7, 678–7,
https://doi.org/10.1515/geo-2015-0048, 2015.
Schirmer, W.: Eine Klimakurve des Oberpleistozäns aus dem rheinischen Löss, E&G Quaternary Sci. J., 50, 25–49, https://doi.org/10.3285/eg.50.1.02, 2000.
Schirmer, W.: Rhine loess at Schwalbenberg II — MIS 4 and 3, E&G Quaternary Sci. J., 61, 32–47, https://doi.org/10.3285/eg.61.1.03, 2011.
Schmidt, C., Zeeden, C., Krauß, L., Lehmkuhl, F., and Zöller, L.: A
chronological and palaeoenvironmental re-evaluation of two loess-palaeosol
records in the northern Harz foreland, Germany, based on innovative
modelling tools, Boreas, 50, 746–763, https://doi.org/10.1111/bor.12510,
2021.
Schubert, S., Jung, S., Pfänder, J. A., Hauff, F., and
Garbe-Schönberg, D.: Petrogenesis of Tertiary continental intra-plate
lavas between Siebengebirge and Westerwald, Germany: Constraints from trace
element systematics and Nd, Sr and Pb isotopes, J. Volcanol.
Geotherm. Res., 305, 84–99,
https://doi.org/10.1016/J.JVOLGEORES.2015.08.023, 2015.
Schulte, P. and Lehmkuhl, F.: The difference of two laser diffraction
patterns as an indicator for post-depositional grain size reduction in
loess-paleosol sequences, Palaeogeogr. Palaeoclim. Palaeoecol.,
509, 126–136, https://doi.org/10.1016/j.palaeo.2017.02.022, 2018.
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze,
J., Fischer, P., and Stauch, G.: Influence of HCl pretreatment and
organo-mineral complexes on laser diffraction measurement of
loess–paleosol-sequences, CATENA, 137, 392–405,
https://doi.org/10.1016/j.catena.2015.10.015, 2016.
Seelos, K., Sirocko, F., and Dietrich, S.: A continuous high-resolution dust
record for the reconstruction of wind systems in central Europe (Eifel,
Western Germany) over the past 133 ka, Geophys. Res. Lett., 36, L2072,
https://doi.org/10.1029/2009GL039716, 2009.
Sheldon, N. D. and Tabor, N. J.: Quantitative paleoenvironmental and
paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 95,
1–52, https://doi.org/10.1016/j.earscirev.2009.03.004, 2009.
Siebel, W., Eroğlu, S., Shang, C. K., and Rohrmüller, J.: Zircon
geochronology, elemental and Sr-Nd isotope geochemistry of two Variscan
granitoids from the Odenwald-Spessart crystalline complex (mid-German
crystalline rise), Mineral. Petrol., 105, 187–200,
https://doi.org/10.1007/s00710-012-0200-3, 2012.
Sirocko, F., Knapp, H., Dreher, F., Förster, M. W., Albert, J., Brunck,
H., Veres, D., Dietrich, S., Zech, M., Hambach, U., Röhner, M., Rudert,
S., Schwibus, K., Adams, C., and Sigl, P.: The ELSA-Vegetation-Stack:
Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar
sediments of the last 60,000 years, Global Planet. Change, 142,
108–135, https://doi.org/10.1016/j.gloplacha.2016.03.005, 2016.
Smalley, I., O'Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., and
Jefferson, I.: Rivers and loess: The significance of long river
transportation in the complex event-sequence approach to loess deposit
formation, Quaternary Int., 198, 7–18,
https://doi.org/10.1016/j.quaint.2008.06.009, 2009.
Tarling, D. H. and Hrouda, F.: The Magnetic Anisotropy of Rocks, Chapman & Hall, London, 1993.
Taylor, S. N. and Lagroix, F.: Magnetic anisotropy reveals the depositional
and postdepositional history of a loess-paleosol sequence at Nussloch
(Germany): AMS of the Nussloch Loess-Paleosol Sequence, J.
Geophys. Res.-Solid Earth, 120, 2859–2876,
https://doi.org/10.1002/2014JB011803, 2015.
Taylor, S. N., Lagroix, F., Rousseau, D. D., and Antoine, P.: Mineral
magnetic characterization of the upper pleniglacial nussloch loess sequence
(Germany): An insight into local environmental processes, Geophys.
J. Int., 199, 1463–1480, https://doi.org/10.1093/gji/ggu331,
2014.
Toucanne, S., Soulet, G., Freslon, N., Jacinto, R. S., Dennielou, B.,
Zaragosi, S., Eynaud, F., Bourillet, J.-F., and Bayon, G.: Millennial-scale
fluctuations of the European Ice Sheet at the end of the last glacial, and
their potential impact on global climate, Quaternary Sci. Rev., 123,
113–133, 2015.
Tricca, A., Stille, P., Steinmann, M., Kiefel, B., Samuel, J., and
Eikenberg, J.: Rare earth elements and Sr and Nd isotopic compositions of
dissolved and suspended loads from small river systems in the Vosges
mountains (France), the river Rhine and groundwater, Chem. Geol., 160,
139–158, https://doi.org/10.1016/S0009-2541(99)00065-0, 1999.
Újvári, G., Varga, A., Ramos, F. C., Kovács, J., Németh, T.,
and Stevens, T.: Evaluating the use of clay mineralogy, Sr–Nd isotopes and
zircon U–Pb ages in tracking dust provenance: An example from loess of the
Carpathian Basin, Chem. Geol., 304–305, 83–96,
https://doi.org/10.1016/j.chemgeo.2012.02.007, 2012.
Újvári, G., Kok, J. F., Varga, G., and Kovács, J.: The physics
of wind-blown loess: Implications for grain size proxy interpretations in
Quaternary paleoclimate studies, Earth-Sci. Rev., 154, 247–278,
https://doi.org/10.1016/j.earscirev.2016.01.006, 2016.
Újvári, G., Stevens, T., Molnár, M., Demény, A., Lambert,
F., Varga, G., Jull, A. J. T., Páll-Gergely, B., Buylaert, J.-P., and
Kovács, J.: Coupled European and Greenland last glacial dust activity
driven by North Atlantic climate, P. Natl. Acad.
Sci. USA, 114, E10632–E10638, https://doi.org/10.1073/pnas.1712651114,
2017.
Újvári, G., Klötzli, U., Stevens, T., Svensson, A., Ludwig, P.,
Vennemann, T., Gier, S., Horschinegg, M., Palcsu, L., Hippler, D.,
Kovács, J., Di Biagio, C., and Formenti, P.: Greenland Ice Core Record
of Last Glacial Dust Sources and Atmospheric Circulation, J.
Geophys. Res.-Atmos., 127, e2022JD036597,
https://doi.org/10.1029/2022JD036597, 2022.
Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful
proxy for process identification, Earth-Sci. Rev., 121, 18–30,
https://doi.org/10.1016/j.earscirev.2013.03.001, 2013.
Vandenberghe, J., Mücher, H., Roebroeks, W., and Gemke, D.:
Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at
Maastricht-Belvédère, southern Limburg, the Netherlands, Analecta
Praehistorica Leidensia 18-Maastricht-Belvédère:
Stratigraphy, palaeoenvironment and archaeology of the middle and late
pleistocene deposits, Analecta Praehist. Leiden, 18, 7–18, 1985.
Vandenberghe, J., Zhisheng, A., Nugteren, G., Huayu, L., and Van Huissteden,
K.: New absolute time scale for the Quaternary climate in the Chinese Loess
region by grain-size analysis, Geology, 25, 35–38,
https://doi.org/10.1130/0091-7613(1997)025<0035:NATSFT>2.3.CO;2, 1997.
Vinnepand, M., Fischer, P., Fitzsimmons, K., Thornton, B., Fiedler, S., and
Vött, A.: Combining Inorganic and Organic Carbon Stable Isotope
Signatures in the Schwalbenberg Loess-Palaeosol-Sequence Near Remagen
(Middle Rhine Valley, Germany), Front. Earth Sci., 8, 276,
https://doi.org/10.3389/feart.2020.00276, 2020.
von Suchodoletz, H., Kühn, P., Hambach, U., Dietze, M., Zöller, L.,
and Faust, D.: Loess-like and palaeosol sediments from Lanzarote (Canary
Islands/Spain) – Indicators of palaeoenvironmental change during the Late
Quaternary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 278, 71–87,
https://doi.org/10.1016/j.palaeo.2009.03.019, 2009.
Wang, Y.-X., Yang, J.-D., Chen, J., Zhang, K.-J., and Rao, W.-B.: The Sr and
Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma:
Implications for the East Asian winter monsoon and source areas of loess,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 249, 351–361,
https://doi.org/10.1016/j.palaeo.2007.02.010, 2007.
Weltje, G. J., Bloemsma, M. R., Tjallingii, R., Heslop, D., Röhl, U.,
and Croudace, I. W.: Prediction of Geochemical Composition from XRF Core
Scanner Data: A New Multivariate Approach Including Automatic Selection of
Calibration Samples and Quantification of Uncertainties, in: Micro-XRF
Studies of Sediment Cores: Applications of a non-destructive tool for the
environmental sciences, edited by: Croudace, I. W. and Rothwell, R. G.,
Springer Netherlands, Dordrecht, 507–534,
https://doi.org/10.1007/978-94-017-9849-5_21, 2015.
Wörner, G., Staudigel, H., and Zindler, A.: Isotopic constraints on open
system evolution of the Laacher See magma chamber (Eifel, West Germany),
Earth Planet. Sci. Lett., 75, 37–49,
https://doi.org/10.1016/0012-821X(85)90048-2, 1985.
Zech, M., Zech, R., Zech, W., Glaser, B., Brodowski, S., and Amelung, W.:
Characterisation and palaeoclimate of a loess-like permafrost palaeosol
sequence in NE Siberia, Geoderma, 143, 281–295,
https://doi.org/10.1016/j.geoderma.2007.11.012, 2008.
Zeeden, C. and Hambach, U.: Magnetic Susceptibility Properties of Loess From
the Willendorf Archaeological Site: Implications for the
Syn/Post-Depositional Interpretation of Magnetic Fabric, Front. Earth
Sci., 8, 599491, https://doi.org/10.3389/feart.2020.599491, 2021.
Zeeden, C., Hambach, U., and Händel, M.: Loess magnetic fabric of the
Krems-Wachtberg archaeological site, Quaternary Int., 372,
188–194, https://doi.org/10.1016/j.quaint.2014.11.001, 2015.
Zeeden, C., Hambach, U., Obreht, I., Hao, Q., Abels, H. A., Veres, D.,
Lehmkuhl, F., Gavrilov, M. B., and Marković, S. B.: Patterns and timing
of loess-paleosol transitions in Eurasia: Constraints for paleoclimate
studies, Global Planet. Change, 162, 1-7,
https://doi.org/10.1016/j.gloplacha.2017.12.021, 2018.
Zens, J., Zeeden, C., Römer, W., Fuchs, M., Klasen, N., and Lehmkuhl,
F.: The Eltville Tephra (Western Europe) age revised: Integrating
stratigraphic and dating information from different Last Glacial loess
localities, Palaeogeogr. Palaeoclimatol. Palaeoecol., 466,
240–251, https://doi.org/10.1016/j.palaeo.2016.11.033, 2017.
Zhang, Q., Appel, E., Stanjek, H., Byrne, J. M., Berthold, C., Sorwat, J.,
Rösler, W., and Seemann, T.: Humidity related magnetite alteration in an
experimental setup, Geophys. J. Int., 224, 69–85,
https://doi.org/10.1093/gji/ggaa394, 2021.
Zhang, R., Kravchinsky, V. A., Zhu, R., and Yue, L.: Paleomonsoon route
reconstruction along a W–E transect in the Chinese Loess Plateau using the
anisotropy of magnetic susceptibility: Summer monsoon model, Earth
Planet. Sci. Lett., 299, 436–446,
https://doi.org/10.1016/j.epsl.2010.09.026, 2010.
Zhu, X., Liu, L., Wang, X., and Ji, J.: The Sr-Nd isotope geochemical
tracing of Xiashu Loess and its implications for the material transport
mechanism of the Yangtze River, CATENA, 203, 105335,
https://doi.org/10.1016/j.catena.2021.105335, 2021.
Short summary
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing detailed information on Quaternary environmental and climate changes. We present an integrative approach combining sedimentological, rock magnetic, and bulk geochemical data, as well as information on Sr and Nd isotope composition. The approach adds to a comprehensive understanding of LPS formation including changes in dust composition and associated circulation patterns during Quaternary climate changes.
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing...