Articles | Volume 72, issue 1
https://doi.org/10.5194/egqsj-72-23-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-72-23-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of overdeepened structures in formerly glaciated areas of the northern Alpine foreland and northern central Europe
Lukas Gegg
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Related authors
Lukas Gegg
E&G Quaternary Sci. J., 74, 125–127, https://doi.org/10.5194/egqsj-74-125-2025, https://doi.org/10.5194/egqsj-74-125-2025, 2025
Short summary
Short summary
Drillings, outcrops, and seismic data provide insights into a glacial basin and a former river channel in northern Switzerland. Both are infilled with diverse (glacial, lacustrine, fluvial, colluvial) sediments attributed to three separate glaciations. The depth of the glacial basin depends strongly on the underlying rock type, which together with (hydro)fractures provides evidence on the conditions and erosion processes at the ice–rock interface.
Lukas Gegg, Felicitas A. Griebling, Nicole Jentz, and Ulrike Wielandt-Schuster
E&G Quaternary Sci. J., 73, 239–249, https://doi.org/10.5194/egqsj-73-239-2024, https://doi.org/10.5194/egqsj-73-239-2024, 2024
Short summary
Short summary
The subdivision and distinction of gravel units is an important tool in terrestrial Quaternary stratigraphy but can be challenging. Here, we investigate the glaciofluvial infill of the Upper Rhine Graben as an archive of recurring Alpine glaciations. With the help of statistical approaches, we identify differences in petrographic compositions, thereby differentiating two units that are likely representative of the last and penultimate glaciation, which have previously been difficult to pinpoint.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Madhurima Marik, Elena Serra, Gilles Rixhon, and Frank Preusser
E&G Quaternary Sci. J., 74, 169–192, https://doi.org/10.5194/egqsj-74-169-2025, https://doi.org/10.5194/egqsj-74-169-2025, 2025
Short summary
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
Lukas Gegg
E&G Quaternary Sci. J., 74, 125–127, https://doi.org/10.5194/egqsj-74-125-2025, https://doi.org/10.5194/egqsj-74-125-2025, 2025
Short summary
Short summary
Drillings, outcrops, and seismic data provide insights into a glacial basin and a former river channel in northern Switzerland. Both are infilled with diverse (glacial, lacustrine, fluvial, colluvial) sediments attributed to three separate glaciations. The depth of the glacial basin depends strongly on the underlying rock type, which together with (hydro)fractures provides evidence on the conditions and erosion processes at the ice–rock interface.
Felix Martin Hofmann and Frank Preusser
E&G Quaternary Sci. J., 74, 1–35, https://doi.org/10.5194/egqsj-74-1-2025, https://doi.org/10.5194/egqsj-74-1-2025, 2025
Short summary
Short summary
Previous reconstructions conclude that the southern Black Forest, south-west Germany, temporarily hosted four ice caps during the Late Pleistocene (129 000–11 700 years before present). This work reviews existing studies on glacial landforms north-east of its highest summit, Feldberg (1493 m above sea level), in the light of new observations. Whilst this study largely confirms previous work, we reject and newly describe several glacial landforms.
Lukas Gegg, Felicitas A. Griebling, Nicole Jentz, and Ulrike Wielandt-Schuster
E&G Quaternary Sci. J., 73, 239–249, https://doi.org/10.5194/egqsj-73-239-2024, https://doi.org/10.5194/egqsj-73-239-2024, 2024
Short summary
Short summary
The subdivision and distinction of gravel units is an important tool in terrestrial Quaternary stratigraphy but can be challenging. Here, we investigate the glaciofluvial infill of the Upper Rhine Graben as an archive of recurring Alpine glaciations. With the help of statistical approaches, we identify differences in petrographic compositions, thereby differentiating two units that are likely representative of the last and penultimate glaciation, which have previously been difficult to pinpoint.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Cited articles
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E.,
and Larson, G. J.: How glaciers entrain and transport basal sediment:
physical constraints, Quaternary Sci. Rev., 16, 1017–1038, https://doi.org/10.1016/S0277-3791(97)00034-6, 1997.
Alley, R. B., Cuffey, K. M., and Zoet, L. K.: Glacial erosion: status and
outlook, Ann. Glaciol., 60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019.
Andersen, T. R., Huuse, M., Jørgensen, F., and Christensen, S.: Seismic
investigations of buried tunnel valleys on-and offshore Denmark, Geol. Soc.
Spec. Publ., 368, 129–144, https://doi.org/10.1144/SP368.14, 2012.
Andrews, J. T., Hardardóttir, J., Helgadóttir, G., Jennings, A. E., Geirsdóttir, Á., Sveinbjörnsdóttir, Á. E., Schoolfield, S., Kristjánsdóttir, G. B., Smith, L. M., Thorse, K., and Syvitski, J. P. M.: The N and W Iceland Shelf: insights into Last Glacial Maximum ice extent and deglaciation based on acoustic stratigraphy and basal radiocarbon AMS dates, Quaternary Sci. Rev., 19, 619–631, https://doi.org/10.1016/S0277-3791(99)00036-0, 2000.
Anselmetti, F. S., Drescher-Schneider, R., Furrer, H., Graf, H. R., Lowick,
S. E., Preusser, F., and Riedi, M. A.: A ∼ 180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland), Swiss J. Geosci., 103, 345–361, https://doi.org/10.1007/s00015-010-0041-1, 2010.
Anselmetti, F. S., Bavec, M., Crouzet, C., Fiebig, M., Gabriel, G., Preusser, F., Ravazzi, C., and DOVE scientific team: Drilling Overdeepened Alpine Valleys (ICDP-DOVE): quantifying the age, extent, and environmental impact of Alpine glaciations, Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, 2022.
Atkinson, N., Andriashek, L. D., and Slattery, S. R.: Morphological analysis
and evolution of buried tunnel valleys in northeast Alberta, Canada, Quaternary Sci. Rev., 65, 53–72, https://doi.org/10.1016/j.quascirev.2012.11.031, 2013.
BAFU: Faktenblätter Zustand bezüglich Wasserqualität,
https://www.bafu.admin.ch/bafu/de/home/themen/wasser/fachinformationen/zustand-der-gewaesser/zustand-der-seen/wasserqualitaet-der-seen.html
(last access: 10 November 2022), 2016.
Bandou, D., Schlunegger, F., Kissling, E., Marti, U., Schwenk, M.,
Schläfli, P., Douillet, G., and Mair, D.: Three-dimensional gravity
modelling of a Quaternary overdeepening fill in the Bern area of Switzerland
discloses two stages of glacial carving, Sci. Rep., 12, 1–14, https://doi.org/10.1038/s41598-022-04830-x, 2022.
Barker, R. D. and Harker, D.: The location of the Stour buried tunnel-valley using geophysical techniques, Q. J. Eng. Geol., 17, 103–115, https://doi.org/10.1144/GSL.QJEG.1984.017.02.03, 1984.
Beiwl, C. and Mühlmann, H.: Atlas der natürlichen Seen Österreichs mit einer Fläche ≥50 ha Morphometrie – Typisierung
– Trophie Stand 2005, Schriftenreihe des Bundesamtes für
Wasserwirtschaft, Band 29, 147 pp., ISBN: 3-901605-29-0, 2008.
Benvenuti, A. and Moscariello, A.: High-resolution seismic geomorphology
and stratigraphy of a tunnel valley confined ice-margin fan (Elsterian
glaciation, Southern North Sea), Interpretation, 4, T461–T483, https://doi.org/10.1190/INT-2016-0026.1, 2016.
Benvenuti, A., Šegvić, B., and Moscariello, A.: Tunnel valley
deposits from the southern North Sea – material provenance and depositional
processes, Boreas, 47, 625–642, https://doi.org/10.1111/bor.12292, 2018.
Bertrand, S., Lange, C. B., Pantoja, S., Hughen, K., Van Tornhout, E., and
Wellner, J. S.: Postglacial fluctuations of Cordillera Darwin glaciers
(southernmost Patagonia) reconstructed from Almirantazgo fjord sediments.
Quaternary Sci. Rev., 177, 265–275, https://doi.org/10.1016/j.quascirev.2017.10.029, 2017.
Bini, A., Buoncristiani, J. F., Couterrand, S., Ellwanger, D., Felber, M.,
Florineth, D., Graf, H. R., Keller, O., Kelly, M., and Schlüchter, C.:
Die Schweiz während des letzteiszeitlichen Maximums (LGM) 1:500.000, Bundesamt für Landestopographie swisstopo, Wabern, Switzerland
https://opendata.swiss/de/dataset/die-schweiz-
wahrend-des-letzteiszeitlichen-maximums-lgm-1-500000 (last access: 10 January 2023), 2009.
Bosch, J. A., Bakker, M. A., Gunnink, J. L., and Paap, B. F.: Airborne
electromagnetic measurements as basis for a 3D geological model of an
Elsterian incision, Z. Dtsch. Ges. Geowiss., 160, 249–258, https://doi.org/10.1127/1860-1804/2009/0160-0258, 2009.
Boulton, G. S., Hagdorn, M., Maillot, P. B., and Zatsepin, S.: Drainage
beneath ice sheets: groundwater–channel coupling, and the origin of esker
systems from former ice sheets, Quaternary Sci. Rev., 28, 621–638, https://doi.org/10.1016/j.quascirev.2008.05.009, 2009.
Boyd, B. L., Anderson, J. B., Wellner, J. S., and Fernandez, R. A.: The
sedimentary record of glacial retreat, Marinelli Fjord, Patagonia: Regional
correlations and climate ties, Mar. Geol., 255, 165–178, https://doi.org/10.1016/j.margeo.2008.09.001, 2008.
Boyd, R., Scott, D. B., and Douma, M.: Glacial tunnel valleys and Quaternary
history of the outer Scotian shelf, Nature, 333, 61–64, https://doi.org/10.1038/333061a0, 1988.
Bradwell, T., Stoker, M. S., Golledge, N. R., Wilson, C. K., Merritt, J. W.,
Long, D., Everest, J. D., Hestvik, O. B., Stevenson, A. G., and Hubbard, A.
L.: The northern sector of the last British Ice Sheet: maximum extent and
demise, Earth-Sci. Rev., 88, 207–226, https://doi.org/10.1016/J.EARSCIREV.2008.01.008,
2008.
Brandt, A. C.: Erkundung des alpinen, glazial-übertieften
Basadingen-Beckens mithilfe von P-Wellen-Seismik, Bachelor thesis, Leibniz
University Hannover, 2020.
Buechi, M. W., Frank, S. M., Graf, H. R., Menzies, J., and Anselmetti, F. S.: Subglacial emplacement of tills and meltwater deposits at the base of overdeepened bedrock troughs, Sedimentology, 64, 658–685, https://doi.org/10.1111/sed.12319, 2017.
Buechi, M. W., Graf, H. R., Haldimann, P., Lowick, S. E., and Anselmetti, F.
S.: Multiple Quaternary erosion and infill cycles in overdeepened basins of
the northern Alpine foreland, Swiss J. Geosci., 111, 1–34, https://doi.org/10.1007/s00015-017-0289-9, 2018.
Burschil, T., Buness, H., Tanner, D. C., Wielandt-Schuster, U., Ellwanger,
D., and Gabriel, G.: High-resolution reflection seismics reveal the
structure and the evolution of the Quaternary glacial Tannwald Basin, Near
Surf. Geophys., 16, 593–610, https://doi.org/10.1002/nsg.12011, 2018.
Burschil, T., Buness, H., Gabriel, G., Tanner, D. C., and Reitner, J. M.:
Unravelling the shape and stratigraphy of a glacially-overdeepened valley
with reflection seismic: the Lienz Basin (Austria), Swiss J. Geosci., 112,
341–355, https://doi.org/10.1007/s00015-019-00339-0, 2019.
Cameron, T. D. J., Stoker, M. S., and Long, D.: The history of Quaternary
sedimentation in the UK sector of the North Sea Basin, J. Geol. Soc., 144,
43–58, https://doi.org/10.1144/gsjgs.144.1.0043, 1987.
Carrivick, J. L., Davies, B. J., James, W. H. M., Quincey, D. J., and
Glasser, N. F.: Distributed ice thickness and glacier volume in southern
South America, Global Planet. Change, 146, 122–132, https://doi.org/10.1016/j.gloplacha.2016.09.010, 2016.
Clark, P. U. and Walder, J. S.: Subglacial drainage, eskers, and deforming
beds beneath the Laurentide and Eurasian ice sheets, Geol. Soc. Am. Bull.,
106, 304–314, https://doi.org/10.1130/0016-7606(1994)106<0304:SDEADB>2.3.CO;2, 1994.
Clerc, S., Buoncristiani, J. F., Guiraud, M., Vennin, E., Desaubliaux, G.,
and Portier, E.: Subglacial to proglacial depositional environments in an
Ordovician glacial tunnel valley, Alnif, Morocco, Palaeogeogr. Palaeocl., 370, 127–144, https://doi.org/10.1016/j.palaeo.2012.12.002, 2013.
Cofaigh, C. Ó.: Tunnel valley genesis, Prog. Phys. Geogr., 20, 1–19,
https://doi.org/10.1177/030913339602000101, 1996.
Cohen, K. M. and Gibbard, P. L.: Global chronostrati-graphical correlation
table for the last 2.7 million years, version 2019 QI-500, Quatern. Int., 500, 20–31, https://doi.org/10.1016/j.quaint.2019.03.009, 2019.
Cook, S. J. and Swift, D. A.: Subglacial basins: Their origin and importance
in glacial systems and landscapes, Earth-Sci. Rev., 115, 332–372, https://doi.org/10.1016/j.earscirev.2012.09.009, 2012.
Coughlan, M., Tóth, Z., Van Landeghem, K. J. J., Mccarron, S., Wheeler,
A. J.: Formational history of the Wicklow Trough: a marine-transgressed
tunnel valley revealing ice flow velocity and retreat rates for the largest
ice stream draining the late-Devensian British–Irish Ice Sheet, J. Quateranry Sci., 35, 907–919, https://doi.org/10.1002/jqs.3234, 2020.
Cummings, D. I., Russell, H. A. J., and Sharpe, D. R.: Buried-valley
aquifers in the Canadian Prairies: geology, hydrogeology, and origin, Can.
J. Earth Sci., 49, 987–1004, https://doi.org/10.1139/e2012-041, 2012.
Czerniejewski, P., Filipiak, J., Poleszczuk, G., and Wawrzyniak, W.: Selected biological characteristics of the catch-available part of population of vendace, Coregonus albula (L.) from Lake Miedwie, Poland, Acta Ichthyologica et Piscatoria, 34, 219–233, https://doi.org/10.3750/AIP2004.34.2.09, 2004.
Dehnert, A., Lowick, S. E., Preusser, F., Anselmetti, F. S.,
Drescher-Schneider, R., Graf, H. R., Heller, F., Horstmeyer, H., Kemna, H.
A., and Nowaczyk, N. R.: Evolution of an overdeepened trough in the northern
Alpine Foreland at Niederweningen, Switzerland, Quaternary Sci. Rev., 34,
127–145, https://doi.org/10.1016/j.quascirev.2011.12.015, 2012.
Destombes, J.-P., Shephard-Thorn, E. R., Redding, J. H., and
Morzadec-Kerfourn, M. T.: A buried valley system in the Strait of Dover,
Philos. T. Roy. Soc. A, 279, 243–253, https://doi.org/10.1098/rsta.1975.0056, 1975.
Dürst Stucki, M. and Schlunegger, F.: Identification of erosional
mechanisms during past glaciations based on a bedrock surface model of the
central European Alps, Earth Planet. Sc. Lett., 384, 57–70, https://doi.org/10.1016/j.epsl.2013.10.009, 2013.
Dürst Stucki, M., Reber, R., and Schlunegger, F.: Subglacial tunnel
valleys in the Alpine foreland: an example from Bern, Switzerland, Swiss J.
Geosci., 103, 363–374, https://doi.org/10.1007/s00015-010-0042-0, 2010.
Egholm, D. L., Pedersen, V. K., Knudsen, M. F., and Larsen, N. K.: Coupling
the flow of ice, water, and sediment in a glacial landscape evolution model,
Geomorphology, 141, 47–66, https://doi.org/10.1016/j.geomorph.2011.12.019, 2012.
Ellwanger, D., Wielandt-Schuster, U., Franz, M., and Simon, T.: The Quaternary of the southwest German Alpine Foreland (Bodensee-Oberschwaben, Baden-Württemberg, Southwest Germany), E&G Quaternary Sci. J., 60, 22, https://doi.org/10.3285/eg.60.2-3.07, 2011.
Evans, D. J. A.: Glacial landforms, sediments – Tills, Encyclopedia of
Quaternary Science, 959–975, https://doi.org/10.1016/B0-44-452747-8/00092-2, 2007.
Eyles, N. and McCabe, A. M.: Glaciomarine facies within subglacial tunnel
valleys: the sedimentary record of glacioisostatic downwarping in the Irish
Sea Basin, Sedimentology, 36, 431–448, https://doi.org/10.1111/j.1365-3091.1989.tb00618.x, 1989.
Fiebig, M., Herbst, P., Drescher-Schneider, R., Lüthgens, C., Lomax, J.,
and Doppler, G.: Some remarks about a new Last Glacial record from the
western Salzach foreland glacier basin (Southern Germany), Quatern. Int., 328, 107–119, https://doi.org/10.1016/j.quaint.2013.12.048, 2014.
Finckh, P., Kelts, K., and Lambert, A.: Seismic stratigraphy and bedrock
forms in perialpine lakes, Geol. Soc. Am. Bull., 95, 1118–1128, https://doi.org/10.1130/0016-7606(1984)95<1118:SSABFI>2.0.CO;2, 1984.
Gao, C.: Buried bedrock valleys and glacial and subglacial meltwater erosion
in southern Ontario, Canada, Can. J. Earth Sci., 48, 801–818, https://doi.org/10.1139/e10-104, 2011.
Gegg, L., Buechi, M. W., Ebert, A., Deplazes, G., Madritsch, H., and Anselmetti, F. S.: Brecciation of glacially overridden palaeokarst (Lower
Aare Valley, northern Switzerland): result of subglacial water-pressure peaks?, Boreas, 49, 813–827, https://doi.org/10.1111/bor.12457, 2020.
Gegg, L., Deplazes, G., Keller, L., Madritsch, H., Spillmann, T., Anselmetti, F. S., and Buechi, M. W.: 3D morphology of a glacially overdeepened trough controlled by underlying bedrock geology, Geomorphology, 394, 107950, https://doi.org/10.1016/j.geomorph.2021.107950, 2021.
Giglio, C., Benetti, S., Sacchetti, F., Lockhart, E., Hughes Clarke, J., Plets, R., van Landeghem, K., Ó Cofaigh, C., Scourse, J., and Dunlop, P.: A Late Pleistocene channelized subglacial meltwater system on the Atlantic continental shelf south of Ireland, Boreas, 51, 118–135, https://doi.org/10.1111/bor.12536, 2022.
Götze, H. J. G., Giszas, V., Hese, F., Kirsch, R. K., and Schmidt, S.: The ice age paleo-channel Ellerbeker Rinne an integrated 3D gravity study, Z. Dtsch. Ges. Geowiss., 160, 279–293, https://doi.org/10.1127/1860-1804/2009/0160-0279, 2009.
Graf, H. R.: Stratigraphie von Mittel- und Spätpleistozän in der
Nordschweiz, Beiträge zur Geologischen Karte der Schweiz, NF-168, 198 pp., 2009.
Gregory, A. R.: The formation and development of proglacial overdeepenings
at a contemporary Piedmont lobe glacier: Skeiðarárjökull, South
East Iceland, PhD thesis, Newcastle University, http://theses.ncl.ac.uk/jspui/handle/10443/1704 (last access: 4 December 2022), 2012.
Haeberli, W., Linsbauer, A., Cochachin, A., Salazar, C., and Fischer, U.: On
the morphological characteristics of overdeepenings in high-mountain glacier
beds, Earth Surf. Proc. Land., 41, 1980–1990, https://doi.org/10.1002/esp.3966, 2016.
Hahne, J., Ellwanger, D., Franz, M., Stritzke, R., and Wielandt-Schuster, U.: Pollenanalytische Untersuchungsergebnisse aus dem Baden-Württembergischen Rheinsystem Oberrheingraben, Hochrhein, Oberschwaben – eine Zusammenfassung des aktuellen Kenntnisstandes, LGRB Informationen, 26, 119–154, 2012.
Heim, A.: Handbuch der Gletscherkunde, J. Engelhorn, 1885.
Hepp, D. A., Hebbeln, D., Kreiter, S., Keil, H., Bathmann, C., Ehlers, J.,
and Tobias Mörz, T.: An east–west-trending Quaternary tunnel valley in
the south-eastern North Sea and its seismic–sedimentological interpretation, J. Quaternary Sci., 27, 844–853, https://doi.org/10.1002/jqs.2599, 2012.
Herman, F., Beaud, F., Champagnac, J.-D., Lemieux, J.-M., and Sternai, P.:
Glacial hydrology and erosion patterns: a mechanism for carving glacial
valleys, Earth Planet. Sc. Lett., 310, 498–508, https://doi.org/10.1016/j.epsl.2011.08.022, 2011.
Herman, F., Beyssac, O., Brughelli, M., Lane, S. N., Leprince, S., Adatte,
T., Lin, J. Y. Y., Avouac, J.-P., and Cox, S. C.: Erosion by an Alpine
glacier, Science, 350, 193–195, https://doi.org/10.1126/science.aab2386, 2015.
Hsü, K. J. and Kelts, K. R. (Eds.): Quaternary geology of Lake Zurich, Contributions to Sedimentary Geology, 13, 210 pp., ISBN: 978-3-510-57013-3, 1984.
Huuse, M. and Lykke-Andersen, H.: Overdeepened Quaternary valleys in the
eastern Danish North Sea: morphology and origin, Quaternary Sci. Rev., 19,
1233–1253, https://doi.org/10.1016/S0277-3791(99)00103-1, 2000.
James, W. H. M., Carrivick, J. L., Quincey, D. J., and Glasser, N. F.: A
geomorphology based reconstruction of ice volume distribution at the Last
Glacial Maximum across the Southern Alps of New Zealand, Quaternary Sci. Rev., 219, 20–35, https://doi.org/10.1016/j.quascirev.2019.06.035, 2019.
Janszen, A., Spaak, M., and Moscariello, A.: Effects of the substratum on
the formation of glacial tunnel valleys: an example from the Middle
Pleistocene of the southern North Sea Basin, Boreas, 41, 629–643, https://doi.org/10.1111/j.1502-3885.2012.00260.x, 2012.
Janszen, A., Moreau, J., Moscariello, A., Ehlers, J., and Kröger, J.:
Time-transgressive tunnel-valley infill revealed by a threedimensional
sedimentary model, Hamburg, north-west Germany, Sedimentology, 60, 693–719,
https://doi.org/10.1111/j.1365-3091.2012.01357.x, 2013.
Jennings, C. E.: Terrestrial ice streams – a view from the lobe,
Geomorphology, 75, 100–124, https://doi.org/10.1016/j.geomorph.2005.05.016, 2006.
Jentzsch, A.: Über die Bildung der Preussischen Seen, Z. Dtsch. Ges. Geowiss., 36, 699–702, 1884.
Jerz, H.: Das Wolfratshausener Becken: seine glaziale Anlage und
Übertiefung, E&G Quaternary Sci. J., 29, 63–70, https://doi.org/10.23689/fidgeo-1646, 1979.
Jordan, P.: Analysis of overdeepened valleys using the digital elevation
model of the bedrock surface of Northern Switzerland, Swiss J. Geosci., 103,
375–384, https://doi.org/10.1007/s00015-010-0043-z, 2010.
Jørgensen, F. and Sandersen, P. B. E.: Buried and open tunnel valleys in
Denmark–erosion beneath multiple ice sheets, Quaternary Sci. Rev., 25,
1339–1363, https://doi.org/10.1016/j.quascirev.2005.11.006, 2006.
Kearsey, T. I., Lee, J. R., Finlayson, A., Garcia-Bajo, M., and Irving, A.
A. M.: Examining the geometry, age and genesis of buried Quaternary valley
systems in the Midland Valley of Scotland, UK, Boreas, 48, 658–677, https://doi.org/10.1111/bor.12364, 2019.
Kehew, A. E., Piotrowski, J. A., and Jørgensen, F.: Tunnel valleys:
Concepts and controversies – A review, Earth-Sci. Rev., 113, 33–58, https://doi.org/10.1016/j.earscirev.2012.02.002, 2012.
Kirkham, J. D., Hogan, K. A., Larter, R. D., Self, E., Games, K., Huuse, M.,
Stewart, M. A., Ottesen, D., Arnold, N. S., and Dowdeswell, J. A.: Tunnel
valley infill and genesis revealed by high-resolution 3-D seismic data,
Geology, 49, 1516–1520, https://doi.org/10.1130/G49048.1, 2021.
Kristensen, T. B., Piotrowski, J. A., Huuse, M., Clausen, O. R., and
Hamberg, L.: Time-transgressive tunnel valley formation indicated by infill
sediment structure, North Sea – the role of glaciohydraulic supercooling,
Earth Surf. Proc. Land., 33, 546–559, https://doi.org/10.1002/esp.1668, 2008.
Kühni, A. and Pfiffner, O.-A.: The relief of the Swiss Alps and adjacent
areas and its relation to lithology and structure: topographic analysis from
a 250-m DEM, Geomorphology, 41, 285–307, https://doi.org/10.1016/S0169-555X(01)00060-5, 2001.
Kunst, F. and Deze, J. F.: The case history of a high-resolution seismic
survey in the central North Sea, in: Offshore Tech. Conf., Houston, Texas, 6–9 May 1985, https://doi.org/10.4043/4968-MS, 1985.
Kuster, H. and Meyer, K.-D.: Glaziäre Rinnen im mittleren und nördlichen Niedersachsen, E&G Quaternary Sci. J., 29, 135–156, https://doi.org/10.3285/eg.29.1.12, 1979.
Lang, J., Böhner, U., Polom, U., Serangeli, J., and Winsemann, J.: The
Middle Pleistocene tunnel valley at Schöningen as a Paleolithic archive,
J. Hum. Evol., 89, 18–26, https://doi.org/10.1016/j.jhevol.2015.02.004, 2015.
Lelandais, T., Ravier, É., Pochat, S., Bourgeois, O., Clark, C., Mourgues, R., and Strzerzynski, P.: Modelled subglacial floods and tunnel valleys control the life cycle of transitory ice streams, The Cryosphere, 12, 2759–2772, https://doi.org/10.5194/tc-12-2759-2018, 2018.
LGRB: Lithostratigraphische Entwicklung des Baden-Württembergischen
Rheingletschergebiets: Übertiefste Becken- und Moränen-Landschaft,
LGRB-Fachbericht 2015/4, 86 pp., https://produkte.lgrb-bw.de/schriftensuche/sonstige-produkte/?aid=9 (last access: 10 January 2023), 2015.
Lister, G. S.: Lithostratigraphy of Zübo sediments, Contributions to sedimentology, 13, 31–58, 1984a.
Lister, G. S.: Deglaciation of the Lake Zurich area: a model based on the
sedimentological record, Contributions to sedimentology, 13, 177–185, 1984b.
Livingstone, S. J. and Clark, C. D.: Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation, Earth Surf. Dynam., 4, 567–589, https://doi.org/10.5194/esurf-4-567-2016, 2016.
Lohrberg, A., Schwarzer, K., Unverricht, D., Omlin, A., and Krastel, S.:
Architecture of tunnel valleys in the southeastern North Sea: new insights
from high-resolution seismic imaging, J. Quaternary Sci., 35, 892–906, https://doi.org/10.1002/jqs.3244, 2020.
Lutz, R., Kalka, S., Gaedicke, C., Reinhardt, L., and Winsemann, J.:
Pleistocene tunnel valleys in the German North Sea: spatial distribution and
morphology, Z. Dtsch. Ges. Geowiss., 160, 225–235, https://doi.org/10.1127/1860-1804/2009/0160-0225, 2009.
Madsen, V.: Terrainformerne paa Skovbjerg Bakkeø, Danmarks Geologiske Undersøgelse, IV. Række, 1, 1–24, https://doi.org/10.34194/raekke4.v1.6971, 1921.
Magnússon, E., Pálsson, F., Björnsson, H., and Guðmundsson,
S.: Removing the ice cap of Öræfajökull central volcano,
SE-Iceland: mapping and interpretation of bedrock topography, ice volumes,
subglacial troughs and implications for hazards assessments, Jökull, 62,
131–150, 2012.
Magrani, F., Valla, P. G., Gribenski, N., and Serra, E.: Glacial overdeepenings in the Swiss Alps and foreland: Spatial distribution and
morphometrics, Quaternary Sci. Rev., 243, 106483, https://doi.org/10.1016/j.quascirev.2020.106483, 2020 (data available at: https://www.sciencedirect.com/science/article/pii/S0277379120304455, last access: 13 January 2023).
Margold, M., Stokes, C. R., and Clark, C. D.: Ice streams in the Laurentide
Ice Sheet: Identification, characteristics and comparison to modern ice
sheets, Earth-Sci. Rev., 143, 117–146, https://doi.org/10.1016/j.earscirev.2015.01.011, 2015.
Moernaut, J., De Batist, M., Heirman, K., Van Daele, M., Pino, M.,
Brümmer, R., and Urrutia, R.: Fluidization of buried mass-wasting
deposits in lake sediments and its relevance for paleoseismology: results
from a reflection seismic study of lakes Villarrica and Calafquén
(South-Central Chile), Sediment. Geol., 213, 121–135, https://doi.org/10.1016/j.sedgeo.2008.12.002, 2009.
Moreau, J. and Huuse, M.: Infill of tunnel valleys associated with
landward-flowing ice sheets: The missing Middle Pleistocene record of the NW
European rivers?, Geochem. Geophy. Geosy., 15, 1–9, https://doi.org/10.1002/2013GC005007, 2014.
Nitsche, F. O., Monin, G., Marillier, F., Graf, H., and Ansorge, J.:
Reflection seismic study of Cenozoic sediments in an overdeepened valley of
northern Switzerland: the Birrfeld area, Eclogae Geol. Helv., 94, 363–371,
https://doi.org/10.5169/seals-168901, 2001.
Nixdorf, B., Hemm, M., Hoffmann, A., and Richter, P.: Dokumentation von
Zustand und Entwicklung der wichtigsten Seen Deutschlands, Umweltbundesamt
Forschungsbericht 299 24 274, 274 pp., 2004.
Ottesen, D., Stewart, M., Brönner, M., and Batchelor, C. L.: Tunnel
valleys of the central and northern North Sea (56∘ N to
62∘ N): Distribution and characteristics, Mar. Geol., 425, 106199,
https://doi.org/10.1016/j.margeo.2020.106199, 2020.
Patton, H., Swift, D. A., Clark, C. D., Livingstone, S. J., and Cook, S. J.:
Distribution and characteristics of overdeepenings beneath the Greenland and
Antarctic ice sheets: Implications for overdeepening origin and evolution,
Quaternary Sci. Rev., 148, 128–145, https://doi.org/10.1016/j.quascirev.2016.07.012, 2016.
Penck, A. and Brückner, E.: Die Alpen im Eiszeitalter, Tauchnitz,
Leipzig, 1909.
Pietsch, J. and Jordan, P.: Digitales Höhenmodell Basis Quartär der
Nordschweiz – Version 2014 und ausgewählte Auswertungen, Nagra
Arbeitsbericht NAB 14-02, 69 pp., https://nagra.ch/downloads/arbeitsbericht-nab-14-02/ (last access: 10 January 2023), 2014.
Piotrowski, J. A.: Tunnel-valley formation in northwest Germany—geology,
mechanisms of formation and subglacial bed conditions for the Bornhöved
tunnel valley, Sediment. Geol., 89, 107–141, https://doi.org/10.1016/0037-0738(94)90086-8, 1994.
Pomper, J., Salcher, B. C., Eichkitz, C., Prasicek, G., Lang, A., Lindner,
M., and Götz, J.: The glacially overdeepened trough of the Salzach
Valley, Austria: Bedrock geometry and sedimentary fill of a major Alpine
subglacial basin, Geomorphology, 295, 147–158, https://doi.org/10.1016/j.geomorph.2017.07.009, 2017.
Praeg, D.: Buried fluvial channels: 3D-seismic geomorphology, in: Glaciated
Continental Margins, Springer, 162–163, https://doi.org/10.1007/978-94-011-5820-6_65, 1997.
Preusser, F., Drescher-Schneider, R., Fiebig, M., and Schlüchter, C.:
Re-interpretation of the Meikirch pollen record, Swiss Alpine Foreland, and
implications for Middle Pleistocene chrono-stratigraphy, J. Quaternary Sci., 20, 607–620, https://doi.org/10.1002/jqs.930, 2005.
Preusser, F., Reitner, J. M., and Schlüchter, C.: Distribution,
geometry, age and origin of overdeepened valleys and basins in the Alps and
their foreland, Swiss J. Geosci., 103, 407–426, https://doi.org/10.1007/s00015-010-0044-y, 2010.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Quillmann, U., Jennings, A., and Andrews, J.: Reconstructing Holocene
palaeoclimate and palaeoceanography in Ìsafjarðardjúp, northwest
Iceland, from two fjord records overprinted by relative sea-level and local
hydrographic changes, J. Quaternary Sci., 25, 1144–1159, https://doi.org/10.1002/jqs.1395, 2010.
Reitner, J. M., Gruber, W., Römer, A., and Morawetz, R.: Alpine
overdeepenings and paleo-ice flow changes: an integrated geophysical-sedimentological case study from Tyrol (Austria), Swiss J. Geosci., 103, 385–405, https://doi.org/10.1007/s00015-010-0046-9, 2010.
Riemann, B. and Hoffmann, E.: Ecological consequences of dredging and
bottom trawling in the Limfjord, Denmark, Mar. Ecol. Prog. Ser., 69,
171–178, https://doi.org/10.3354/meps069171, 1991.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice
sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011.
Robbins, J. A. and Jasinski, A. W.: Chernobyl fallout radionuclides in lake
Sniardwy, Poland, J. Environ. Radioactiv., 26, 157–184, https://doi.org/10.1016/0265-931X(94)00005-H, 1995.
Russell, H. A. J., Arnott, R. W. C., and Sharpe, D. R.: Evidence for rapid
sedimentation in a tunnel channel, Oak Ridges Moraine, southern Ontario,
Canada, Sediment. Geol., 160, 33–55, https://doi.org/10.1016/S0037-0738(02)00335-4, 2003.
Salamon, T. and Mendecki, M.: A rare signature of subglacial outburst floods
developed along structural ice weaknesses in the southern sector of the
Scandinavian Ice Sheet during the Drenthian Glaciation, S Poland,
Geomorphology, 378, 107593, https://doi.org/10.1016/j.geomorph.2021.107593, 2021.
Sandersen, P. B. E., Jørgensen, F., Larsen, N. K., Westergaard, J. H.,
and Auken, E.: Rapid tunnel valley formation beneath the receding Late
Weichselian ice sheet in Vendsyssel, Denmark, Boreas, 38, 834–851, https://doi.org/10.1111/j.1502-3885.2009.00105.x, 2009.
Schaller, S., Böttcher, M. E., Buechi, M. W., Epp, L. S., Fabbri, S. C.,
Gribenski, N., Harms, U., Krastel, S., Liebezeit, A., Lindhorst, K., Marxen,
H., Raschke, U., Schleheck, D., Schmiedinger, I., Schwalb, A., Vogel, H.,
Wessels, M., and Anselmetti, F. S.: Postglacial evolution of Lake Constance: sedimentological and geochemical evidence from a deep-basin sediment core, Swiss J. Geosci., 115, 7, https://doi.org/10.1186/s00015-022-00412-1, 2022.
Schlüchter, C.: Übertiefte Talabschnitte im Berner Mittelland zwischen Alpen und Jura (Schweiz), E&G Quaternary Sci. J., 29, 101—113, https://doi.org/10.23689/fidgeo-921, 1979.
Schlüchter, C.: The most complete Quaternary record of the Swiss Alpine
Foreland, Palaeogeogr. Palaeocl., 72, 141–146, https://doi.org/10.1016/0031-0182(89)90138-7, 1989.
Schoof, C. and Hewitt, I.: Ice-sheet dynamics, Annu. Rev. Fluid Mech., 45,
217–239, https://doi.org/10.1146/annurev-fluid-011212-140632, 2013.
Schwenk, M. A., Schläfli, P., Bandou, D., Gribenski, N., Douillet, G. A., and Schlunegger, F.: From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland, Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, 2022.
Smith, L. N.: Late Pleistocene stratigraphy and implications for
deglaciation and subglacial processes of the Flathead Lobe of the
Cordilleran Ice Sheet, Flathead Valley, Montana, USA, Sediment. Geol., 165,
295–332, https://doi.org/10.1016/j.sedgeo.2003.11.013, 2004.
Stackebrandt, W., Ludwig, A. O., and Ostaficzuk, S.: Base of Quaternary
deposits of the Baltic Sea depression and adjacent areas (map 2),
Brandenburgische Geowiss. Beitr., 8, 13–19, 2001.
Steinmetz, D., Winsemann, J., Brandes, C., Siemon, B., Ullmann, A.,
Wiederhold, H., and Meyer, U.: Towards an improved geological interpretation
of airborne electromagnetic data: a case study from the Cuxhaven tunnel
valley and its Neogene host sediments (northwest Germany), Neth. J. Geosci.,
94, 201–227, https://doi.org/10.1017/njg.2014.39, 2015.
Stewart, M. A. and Lonergan, L.: Seven glacial cycles in the middle-late
Pleistocene of northwest Europe: Geomorphic evidence from buried tunnel
valleys, Geology, 39, 283–286, https://doi.org/10.1130/G31631.1, 2011.
Stewart, M. A., Lonergan, L., and Hampson, G.: 3D seismic analysis of buried
tunnel valleys in the central North Sea: morphology, cross-cutting
generations and glacial history, Quaternary Sci. Rev., 72, 1–17, https://doi.org/10.1016/j.quascirev.2013.03.016, 2013.
Streuff, K. T., Ó Cofaigh, C., and Wintersteller, P.: A GIS Database of Submarine Glacial Landforms and Sediments on Arctic Continental Shelves, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937782, 2021.
Streuff, K. T., Ó Cofaigh, C., and Wintersteller, P.: GlaciDat – a GIS
database of submarine glacial landforms and sediments in the Arctic, Boreas,
51, 517–531, https://doi.org/10.1111/bor.12577, 2022.
Tezkan, B. M., Helwig, S. L., and Bergers, R.: Time domain electromagnetic
(TEM) measurements on a buried subglacial valley in Northern Germany by
using a large transmitter size and a high current, Z. Dtsch. Ges. Geowiss.,
160, 271–278, https://doi.org/10.1127/1860-1804/2009/0160-0271, 2009.
Ugelvig, S. V., Egholm, D. L., and Iverson, N. R.: Glacial landscape
evolution by subglacial quarrying: A multiscale computational approach, J.
Geophys. Res.-Earth, 121, 2042–2068, https://doi.org/10.1002/2016JF003960, 2016.
Ussing, N. V.: Danmarks Geologi i almenfatteligt Omrids. Anden udgave, Danmarks Geologiske Undersøgelse III. Række, 2, 358 pp., https://doi.org/10.34194/raekke3.v2.6907, 1904.
van der Vegt, P., Janszen, A., and Moscariello, A.: Tunnel valleys: current
knowledge and future perspectives, Geol. Soc. Spec. Publ., 368, 75–97, https://doi.org/10.1144/SP368.13, 2012.
Van Husen, D.: Verbreitung, Ursachen und Füllung glazial übertiefter Talabschnitte an Beispielen aus den Ostalpen, E&G Quaternary Sci. J., 29, 9–22, https://doi.org/10.3285/eg.29.1.02, 1979.
Vesely, F. F., Assine, M. L., França, A. B., Paim, P. S., and Rostirolla, S. P.: Tunnel-valley fills in the Paraná Basin and their implications for the extent of late Paleozoic glaciation in SW Gondwana, J. S. Am. Earth Sci., 106, 102969, https://doi.org/10.1016/j.jsames.2020.102969, 2021.
Waltham, T.: Lötschberg tunnel disaster, 100 years ago, Q. J. Eng. Geol.
Hydroge., 41, 131–136, https://doi.org/10.1144/1470-9236/06-033, 2008.
Welten, M.: Pollenanalytische Untersuchungen im Jüngeren Quartär des
nördlichen Alpenvorlandes der Schweiz, Beiträge zur Geologischen
Karte der Schweiz, NF-156, 174 pp., 1982.
Welten, M.: Neue pollenanalytische Ergebnisse über das Jüngere
Quartär des nördlichen Alpenvorlandes der Schweiz (Mittel- und
Jungpleistozän), Beiträge zur Geologischen Karte der Schweiz, NF-162, 40 pp., 1988.
Wildi, W.: Isohypsenkarte der quartären Felstäler in der Nord-und
Ostschweiz, mit kurzen Erläuterungen, Eclogae Geol. Helv., 77, 541–551,
https://doi.org/10.5169/seals-165521, 1984.
Woodland, A. W.: The buried tunnel-valleys of East Anglia, P. Yorks. Geol. Soc., 37, 521–578, https://doi.org/10.1144/pygs.37.4.521, 1970.
Wright, H. E.: Tunnel valleys, glacial surges, and subglacial hydrology of
the Superior Lobe, Minnesota, Geol. Soc. Mem., 136, 251–276, https://doi.org/10.1130/MEM136-p251, 1973.
Wyssling, G.: Die Ur-Sihl floss einst ins Reusstal, Zur Geologie des Sihltales zwischen Schindellegi und Sihlbrugg, Verein Pro Sihltal, 52,
1–14, 2002.
Wyssling, L. and Wyssling, G.: Interglaziale Seeablagerungen in einer
Bohrung bei Uster (Kt. Zürich), Eclogae Geol. Helv., 71, 357–375, https://doi.org/10.5169/seals-164737, 1978.
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Erosion processes below glacier ice have carved large and deep basins in the landscapes...