Articles | Volume 72, issue 1
https://doi.org/10.5194/egqsj-72-57-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-72-57-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chronological and sedimentological investigations of the Late Pleistocene succession in Osterbylund (Schleswig-Holstein, Germany)
Christine Thiel
CORRESPONDING AUTHOR
B4.3 Federal Seismological Survey and Nuclear Test Ban, Federal
Institute for Geosciences and Natural Resources, Stilleweg 2, 30655
Hanover, Germany
Michael Kenzler
Institute of Geography and Geology, University of Greifswald, F.-L.
Jahn-Straße 17a, 17487 Greifswald, Germany
Hans-Jürgen Stephan
independent researcher: Köhlstr. 3, 24159 Kiel, Germany
Manfred Frechen
Section S3: Geochronology, Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Brigitte Urban
Institute of Ecology, Leuphana University Lüneburg,
Universitätsallee 1, 21339 Lüneburg, Germany
Melanie Sierralta
Section S3: Geochronology, Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Related authors
Tobias Sprafke, Robert Peticzka, Christine Thiel, and Birgit Terhorst
DEUQUA Spec. Pub., 5, 41–54, https://doi.org/10.5194/deuquasp-5-41-2024, https://doi.org/10.5194/deuquasp-5-41-2024, 2024
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Neda Rahimzadeh, Tobias Sprafke, Christine Thiel, Birgit Terhorst, and Manfred Frechen
E&G Quaternary Sci. J., 70, 53–71, https://doi.org/10.5194/egqsj-70-53-2021, https://doi.org/10.5194/egqsj-70-53-2021, 2021
Tobias Sprafke, Robert Peticzka, Christine Thiel, and Birgit Terhorst
DEUQUA Spec. Pub., 5, 41–54, https://doi.org/10.5194/deuquasp-5-41-2024, https://doi.org/10.5194/deuquasp-5-41-2024, 2024
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Neda Rahimzadeh, Tobias Sprafke, Christine Thiel, Birgit Terhorst, and Manfred Frechen
E&G Quaternary Sci. J., 70, 53–71, https://doi.org/10.5194/egqsj-70-53-2021, https://doi.org/10.5194/egqsj-70-53-2021, 2021
Andreas Börner, Anna Gehrmann, Heiko Hüneke, Michael Kenzler, and Sebastian Lorenz
DEUQUA Spec. Pub., 2, 1–10, https://doi.org/10.5194/deuquasp-2-1-2019, https://doi.org/10.5194/deuquasp-2-1-2019, 2019
Paul Mehlhorn, Laura Winkler, Franziska-Charlotte Grabbe, Michael Kenzler, Anna Gehrmann, Heiko Hüneke, and Henrik Rother
DEUQUA Spec. Pub., 2, 35–41, https://doi.org/10.5194/deuquasp-2-35-2019, https://doi.org/10.5194/deuquasp-2-35-2019, 2019
Michael Kenzler and Heiko Hüneke
DEUQUA Spec. Pub., 2, 43–50, https://doi.org/10.5194/deuquasp-2-43-2019, https://doi.org/10.5194/deuquasp-2-43-2019, 2019
Małgorzata Pisarska-Jamroży, Szymon Belzyt, Andreas Börner, Gösta Hoffmann, Heiko Hüneke, Michael Kenzler, Karsten Obst, Henrik Rother, Holger Steffen, Rebekka Steffen, and Tom van Loon
DEUQUA Spec. Pub., 2, 61–67, https://doi.org/10.5194/deuquasp-2-61-2019, https://doi.org/10.5194/deuquasp-2-61-2019, 2019
Sebastian Lorenz, Henrik Rother, Michael Kenzler, and Sara Kaphengst
DEUQUA Spec. Pub., 2, 83–88, https://doi.org/10.5194/deuquasp-2-83-2019, https://doi.org/10.5194/deuquasp-2-83-2019, 2019
Related subject area
Geochronology
Older than expected: fluvial aggradation of the Rhine's main terrace at Kärlich dated around 1.5 Ma by electron spin resonance
Geometry, chronology and dynamics of the last Pleistocene glaciation of the Black Forest
Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages
A comparison of polymineral and K-feldspar post-infrared infrared stimulated luminescence ages of loess from Franconia, southern Germany
Luminescence dating of eolian and fluvial archives in the middle and lower Danube catchment and the paleoenvironmental implications
10Be-based exploration of the timing of deglaciation in two selected areas of southern Norway
New chronological constraints on the timing of Late Pleistocene glacier advances in northern Switzerland
Melanie Bartz, Mathieu Duval, María Jesús Alonso Escarza, and Gilles Rixhon
E&G Quaternary Sci. J., 73, 139–144, https://doi.org/10.5194/egqsj-73-139-2024, https://doi.org/10.5194/egqsj-73-139-2024, 2024
Short summary
Short summary
The chronostratigraphy of the Rhine’s main terrace along the Middle Rhine Valley (MRV) is poorly constrained. This study fills this gap by using electron spin resonance (ESR) dating of quartz grains collected from the famous Kärlich site. Consistent ESR results date this terrace to ~1.5 Ma and have far-reaching implications as they numerically constrain, for the first time, the aggradation time of key terrace deposits along the MRV, providing new insights into the Rhine’s Quaternary evolution.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Ludwig Zöller, Manfred Fischer, Zdzisław Jary, Pierre Antoine, and Marcin Krawczyk
E&G Quaternary Sci. J., 71, 59–81, https://doi.org/10.5194/egqsj-71-59-2022, https://doi.org/10.5194/egqsj-71-59-2022, 2022
Short summary
Short summary
Comparing quartz optically stimulated luminescence (OSL) and fine-grain post-infrared infrared stimulated luminescence (pIRIR) ages, agreement was largely found, e.g. the bracketing of the L1SS1 pedocomplex to ca. 30–40 ka. Nevertheless some age differences between the Bayreuth (OSL) and the Gliwice (pIRIR) data invite further discussion. Exact dating using various protocols and grain sizes remains challenging, in particular for a periglacial environment with strong heterogeneity of material.
Neda Rahimzadeh, Tobias Sprafke, Christine Thiel, Birgit Terhorst, and Manfred Frechen
E&G Quaternary Sci. J., 70, 53–71, https://doi.org/10.5194/egqsj-70-53-2021, https://doi.org/10.5194/egqsj-70-53-2021, 2021
Janina Johanna Bösken
E&G Quaternary Sci. J., 69, 89–92, https://doi.org/10.5194/egqsj-69-89-2020, https://doi.org/10.5194/egqsj-69-89-2020, 2020
Short summary
Short summary
The presented doctoral dissertation uses luminescence dating techniques to reconstruct the past environmental and climatic conditions in the middle and lower Danube basin during the period of Homo sapiens' emergence in Europe. The methodological approach focused on optically stimulated luminescence dating of loess deposits, but for some the sections the geochronological methods were combined with physical, biological and geochemical proxy data to reconstruct the paleoenvironmental conditions.
Philipp Marr, Stefan Winkler, Steven A. Binnie, and Jörg Löffler
E&G Quaternary Sci. J., 68, 165–176, https://doi.org/10.5194/egqsj-68-165-2019, https://doi.org/10.5194/egqsj-68-165-2019, 2019
Short summary
Short summary
This paper is about deglaciation history in two areas of southern Norway. By dating rock surfaces we can estimate a minimum ice sheet thickness of 1476 m a.s.l. and a timing of deglaciation around 13 000 years ago in the western study area. In the eastern study area the deglaciation history is complex as the bedrock age most likely has inheritance from earlier ice-free periods. Comparing both study areas demonstrates the complex dynamics of the deglaciation in different areas in southern Norway.
Dorian Gaar, Hans Rudolf Graf, and Frank Preusser
E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, https://doi.org/10.5194/egqsj-68-53-2019, 2019
Short summary
Short summary
Deposits related to the last advance of Reuss Glacier are dated using a luminescence methodology. An age of 25 ka for sediment directly overlying the lodgement till corresponds with existing age constraints for the last maximal position of glaciers. Luminescence dating further implies an earlier advance of Reuss Glacier into the lowlands during Marine Isotope Stage 4. The data are discussed regarding potential changes in the source of precipitation during the Late Pleistocene.
Cited articles
Ad-hoc-Arbeitsgruppe Boden (AG Boden): Bodenkundliche Kartieranleitung,
edited by: Bundesanstalt für Geowissenschaften und Rohstoffe in
Zusammenarbeit mit den Staatlichen Geologischen Diensten, Hannover, 5th edn., 438 pp., ISBN 9783510959204, 2005.
Aitken, M. J.: Thermoluminescence Dating, Academic Press, London, 351 pp., 1985.
Behre, K.-E.: Pollen- und diatomeenanalytische Untersuchungen an
letztinterglazialen Kieselgurlagern der Lüneburger Heide, Flora, 152,
325–370, https://doi.org/10.1016/S0367-1615(17)32595-8, 1962.
Behre, K.-E. and Lade, U.: Eine Folge von Eem und 4 Weichsel-Interstadialen in Oerel/Niedersachsen und ihr Vegetationsablauf, E&G Quaternary Sci. J., 36, 11–36, https://doi.org/10.3285/eg.36.1.02, 1986.
Behre, K.-E., Hölzer, A., and Lemdahl, G.: Botanical macro-remains and
insects from the Eemian and Weichselian site of Oerel (northwest Germany)
and their evidence for the history of climate, Veget. Hist. Archaeobot. 14,
31–53, 2005.
Beug, H. J.: Leitfaden der Pollenbestimmung für Mitteleuropa und
angrenzende Gebiete, Verlag Dr. Friedrich Pfeil, München, Germany, 542 pp., 2004.
Blair, T. C. and McPherson, J. G.: Processes and forms of alluvial fans, in: Geomorphology of desert environments, edited by: Parsons, A. J. and Abrahams, A. D., 413–467, https://doi.org/10.1007/978-1-4020-5719-9_14, 2009.
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., and
Sohbati, R.: A robust feldspar luminescence dating method for Middle and
Late Pleistocene sediments, Boreas, 41, 435–451, 2012.
Duller, G. A. T.: Distinguishing quartz and feldspar in single grain
luminescence measurements, Rad. Measure., 37, 161–165, 2003.
Duller, G. A. T.: Single-grain optical dating of Quaternary sediments: why
aliquot size matters in luminescence dating, Boreas, 37, 589–612, 2008.
Dupal, T. A., Andrenko, O. V., and Vinogradov, V. V.: Mammals of the Periglacial
Hyperzone of the End of the Pleistocene and Formation of the Modern Rodent
Fauna in the Mountains, Contemp. Prob. Ecol., 6, 94–104,
2013.
Evans, D. J. A., Phillips, E. R., Hiemstra, J. F., and Auton, C. A.: Subglacial
till: Formation, sedimentary characteristics and classification,
Earth-Sci. Rev,. 78, 115–176, 2006.
Faegri, K. and Iversen, J.: Textbook of Pollen Analysis, edited by: Faegri, K., Kaland,
P. E., and Krzywinski, K., 4th Edn., John Wiley and Sons, Chichester,
328 pp., 1989.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J. M.:
Optical dating of single and multiple grains of quartz from Jinmium rock
shelter, Northern Australia: Part I: experimental design and statistical
models, Archaeometry, 41, 339–364, 1999.
Geyh, M. A.: 230Th/U-dating of intergarcial and interstadial fen peat and lignite: Potential limits, E&G Quaternary Sci. J., 57, 77–94, https://doi.org/10.3285/eg.57.1-2.4, 2008.
Grimm, E. C.: TILIA and TILIA. GRAPH: PC spreadsheet and graphics software
for pollen data (Version 2.0.b.4), INQUA – Commission for the Study of the
Holocene, Working-Group on Data-Handling Methods, Newsletter 4, 5–7, 1990.
Gripp, K., Dücker, A., and Johannsen, A.: Ekskursion til Sild, Slesvig og
Øst-Holstein, Meddelelser fra Dansk Geologisk Forening, 15, 603–617, 1965.
Grüger, E.: Spätriss, Riss/Würm und Frühwürm am Samerberg
in Oberbayern – ein vegetationsgeschichtlicher Beitrag zur Gliederung des
Jungpleistozäns, Geol. Bavarica, 80, 5–64, 1979.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors:
update, Ancient TL, 29, 5–8, 2011.
Guerra, A. J. T., Fullen, M. A., Jorge, M. C. O., Bezerra, J. F. R., and Shokr,
M. S.: Slope Processes, Mass Movement and Soil Erosion: A Review, Pedosphere,
27, 27–41, 2017.
Hein, M., Urban, B., Tanner, D. C., Buness, A. H., Tucci, M., Hoelzmann, P.,
Dietel, S., Kaniecki, M., Schultz, J., Kasper, T., von Suchodoletz, H.,
Schwalb, A., Weiss, M., and Lauer, T.: Eemian landscape response to climatic
shifts and evidence for northerly Neanderthal occupation at a palaeolake
margin in Northern Germany, Earth Surf. Process. Landf., 2021, 2884–2901,
https://doi.org/10.1002/esp.5219, 2021.
Houmark-Nielsen, M.: Extent and age of Middle and Late Pleistocene
glaciations and periglacial episodes in southern Jylland, Denmark. DGF,
B. Geol. Soc. Denmark, 50, 9–35, 2007.
Houmark-Nielsen, M.: Extent, age and dynamics of Marine Isotope Stage 3
glaciations in the southwestern Baltic Basin, Boreas, 39, 343–359, 2010.
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen,
J. I.: The last Eurasian ice sheets – a chronological database and time-slice
reconstruction, DATED-1, Boreas, 45, 1–45, 2016.
Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R.,
Mackay, A., Mitchell, P., Vogelsang, R., and Wadley, L.: Ages for the Middle
Stone Age of southern Africa: implications for human behavior and dispersal,
Science, 322, 733–735, 2008.
Kenzler, M., Tsukamoto, S., Meng, S., Frechen, M., and Hüneke, H.: New
age constraints from the SW Baltic Sea area – implications for Scandinavian
Ice Sheet dynamics and palaeo-environmental conditions during MIS 3 and
early MIS 2, Boreas, 46, 34–52, 2017.
Kenzler, M., Rother, H., Hüneke, H., Frenzel, P., Strahl, J., Tsukamoto,
S., Li, Y., Meng, S., Gallas, J., and Frechen, M.: A multi-proxy
palaeoenvironmental and geochronological reconstruction of the
Saalian-Eemian-Weichselian succession at Klein Klütz Höved, NE
Germany, Boreas, 47, 114–136, https://doi.org/10.1111/bor.12255, 2018.
King, G. E., Robinson, R. A. J., and Finch, A. A.: Towards successful OSL
sampling strategies in glacial environments: deciphering the influence of
depositional processes on bleaching of modern glacial sediments from
Jostedalen, Southern Norway, Quaternary Sci. Rev., 89, 94–107, 2014.
Kühl, N. and Litt, T.: Quantitative Time-Series Reconstruction of
Holsteinian and Eemian Temperatures Using Botanical Data, in: The Climate of
Past Interglacials, edited by: Sirocko, F., Litt, T., Claussen, M., and Sanchez-Goni, M. F., 239–254, https://doi.org/10.1016/S1571-0866(07)80041-8, 2007.
Litt, T.: Paläoökologie, Paläobotanik und Stratigraphie des
Jungquartärs im nordmitteleuropäischen Tiefland, Dissertationes
Botanicae 227, Cramer, Berlin-Stuttgart, 185 pp., ISBN 978-3-443-64139-9, 1994.
Litt, T., Junge, F. W., and Böttger, T.: Climate during the Eemian in
north-central Europe – a critical review of the palaeobotanical and stable
isotope data from central Germany, Veg. Histor. Archaeob., 5,
247–256, 1996.
Lukas, S. and Rother, H.: Moränen versus Till: Empfehlungen für die Beschreibung, Interpretation und Klassifikation glazialer Landformen und Sedimente, E&G Quaternary Sci. J., 65, 95–112, https://doi.org/10.3285/eg.65.2.01, 2016.
Lüthgens, C., Böse, M., and Preusser, F.: Age of the Pomeranian
ice-marginal position in northeastern Germany determined by Optically
Stimulated Luminescence (OSL) dating of glaciofluvial sediments, Boreas, 40,
598–615, 2011.
Lüthgens, C., Hardt, J., and Böse, M.: Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating, E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, 2020.
Mangerud, J., Sonstegaard, E., and Sejrup, H. P.: Correlation of the Eemian
(interglacial) stage and the deep-sea oxygen-isotope stratigraphy, Nature,
277, 189–192, 1979.
Menke, B. and Tynni, R.: Das Eeminterglazial und das Weichselfrühglazial
von Rederstall/Dithmarschen und ihre Bedeutung für die
mitteleuropäische Jungpleistozän-Gliederung, Geologisches Jahrbuch
A, 7, 1–120, 1984.
Millar, S.: Mass movement processes in the periglacial environment, in: Treatise on Geomorphology, edited by:
Shroder, J., Giardino, R., and Harbor, J.,
Academic Press, San Diego, CA, Vol. 8, Glacial and Periglacial Geomorphology,
374–391, https://doi.org/10.1016/B978-0-12-374739-6.00217-7, 2013.
Moore P. D., Webb J. A., and Collins, M. E.: Pollen analysis, Oxford, 216 pp., 1991.
Müller, H.: Pollenanalytische Untersuchungen und
Jahresschichtenzählungen an der eem-zeitlichen Kieselgur von
Bispingen/Luhe, Geologisches Jahrbuch A, 21, 149–169, 1974.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an
improved single-aliquot regenerative-dose protocol, Rad. Measure.,
32, 57–73, 2000.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose
protocol: potential for improvements in reliability, Rad. Measure.,
37, 377–381, 2003.
Murray, A. S., Wintle, A. G., and Wallinga, J.: Dose estimation in using quartz
OSL in the nonlinear region of the growth curve, Rad. Protect.
Dosim., 101, 371–374, 2002.
Murray, A. S., Thomsen, K. J., Masuda, N., Buylaert, J.-P., and Jain, M.:
Identifying well-bleached quartz using the different bleaching rates of
quartz and feldspar luminescence signals, Rad. Measure., 47,
688–695, 2012.
NGRIP Community Members: High-resolution record of Northern Hemisphere
climate extending into the last interglacial period, Nature, 431, 147–151,
2004.
Osmond, J. K. and Ivanovich, M.: Uranium-series mobilization and surface
hydrology, in: Uranium-series
disequilibrium, edited by: Ivanovich, M. and Harmon, R. S., 2nd ed. Oxford Science Publications, 259–289, RN:25066325, 1992.
Osmond, J. K., May, J. P., and Tanner, W. F.: Age of the Cape Kennedy
barrier-and-lagoon complex, J. Geophys. Res., 75, 5459–5468,
1970.
Pisarska-Jamroży, M., Belzyt, S., Börner, A., Hoffmann, G.,
Hüneke, H., Kenzler, M., Obst, K., Rother, H., and Van Loon, A. T.:
Evidence from seismites for glacioisostatically induced crustal faulting in
front of an advancing land-ice mass (Rügen Island, SW Baltic Sea),
Tectonophysics, 745, 338–348, 2018.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates for
luminescence and ESR dating: large depths and long-term variations,
Rad. Measure., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Rinterknecht, V., Börner, A., Bourlès, D., and Braucher, R.:
Cosmogenic 10Be dating of ice sheet marginal belts in
Mecklenburg-Vorpommern, Western Pomerania (northeast Germany), Quat. Geochronol., 19, 42–51, 2014.
Roberts, H. M.: The development and application of luminescence dating to
loess deposits: a perspective on the past, present and future, Boreas, 37,
483–507, 2008.
Schwarcz, H. P. and Latham, A. G.: Dirty calcites: 1. uranium series dating of
contaminated calcite using leachates alone, Chem. Geol. (Isotope
Geoscience Letters), 80, 35–43, 1989.
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J., Brook,
E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D.,
Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J.,
Rasmussen, S. O., Severinghaus, J. P., and Vinther, B. M.: Consistently dated
records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104
ka reveal regional millennial-scale δ18O gradients with
possible Heinrich event imprint, Quaternary Sci. Rev., 106, 29–46,
2014.
Shackleton, N. J.: The last interglacial in the marine and terrestrial
records, P. Roy. Soc. London 174, 134–154, 1969.
Sierralta, M., Urban, B., and Frechen, M.: dating results from
opencast mine Schöningen. Forschungen zur Urgeschichte aus dem Tagebau
von Schöningen, Band 1, 143–154, https://doi.org/10.11588/propylaeum.465, 2012.
Stephan, H. J.: Osterbylund – Aufschlusskurzbericht 1121/33-I, 2 p., Flintbek
(Geologisches Landesarchiv, LLUR), https://doi.org/10.1016/S1571-0866(07)80053-4, 1988.
Stephan, H.-J., Burbaum, B., Frechen, M., Kenzler, M, Krienke, K., Thiel,
C., Lungershausen, U., Tummuscheit, A., Urban, B., and Sierralta, M.:
Exkursion E2: Quartärgeologie und Archäologie im Norden
Schleswig-Holsteins. Tagungsband und Exkursionsführer – 80. Tagung der
Arbeitsgemeinschaft Norddeutscher Geologen, 6–9 June 2017, Rendsburg,
123–150, 2017.
Stremme, H. E.: Quartär-Exkursionen in Schleswig-Holstein zur 7th Session
of the International Geological Correlation Programme, Project 24,
Quaternary Glaciations in the Northern Hemisphere Schleswig-Holstein,
Germany (21–23 September 1980), 1981.
Stremme, H. E.: Die Korrelation quartärer Paläoböden in
Nordwest-Deutschland, Zeitschrift für Geomorphologie, Suppl.-Vol. 61,
89-100, ISBN 978-3-443-21061-8, 1986.
Stremme, H. E. and Weinhold, H.: Böxlund (westlich von Flensburg),
fossile Böden der Treene-Warmzeit mit Stauchung durch Warthe-Gletscher
und fossile Böden der Eem-Warmzeit, mit einem Beitrag von S.
Christensen, in: Quartär-Exkursionen/
Quaternary-Excursions in Schleswig-Holstein, edited by: Stremme, H. E. and Menke, B., 79–89 pp., 1980.
Stremme, H. E., Felix-Henningsen, P., Weinhold, H., and Christensen, S.:
Paläoböden in Schleswig-Holstein, Geologisches Jahrbuch F14,
311–361, 1982.
Thomsen, K. J., Bøtter-Jensen, L., Denby, P. M., Moska, P., and Murray,
A. S.: Developments in luminescence measurement techniques, Rad.
Measure., 41, 768–773, 2006.
Turner, C.: Problems of the Duration of the Eemian Interglacial in Europe
North of the Alps, Quaternary Res., 58, 45–48, 2002.
Urban, B.: Interglacial pollen records from schöningen, North Germany, in: The Climate of the Past Interglacials, edited by: Sirocko, F., Litt,
T., Claussen, M., and Sanchez-Goni, M. F., 417–444, 2007.
Urban, B., Elsner, H., Hölzer, A., Mania, D., and Albrecht, B.: Eine eem-
und frühweichselzeitliche Abfolge im Tagebau Schöningen, Landkreis
Helmstedt, Eiszeitalter und Gegenwart (E&G) 41, 85–99, 1991.
Veil, S., Breest, K., Höfle, H.-C., Meyer, H.-H., Plisson, H.,
Urban-Küttel, B., Wagner, G., and Zöller, L.: Ein
mittelpaläolithischer Fundplatz aus der Weichsel-Kaltzeit bei
Lichtenberg, Lkr. Lüchow-Dannenberg, Germania, 72, 1–66, 1994.
Waas, D., Kleinmann, A., and Lepper, J.: Uranium-series dating of fen peat
horizons from pit Nachtigall in northern Germany, Quaternary Int.,
241, 111–124, 2011.
Wintle, A. G. and Murray, A. S.: A review of quartz optically stimulated
luminescence characteristics and their relevance in single-aliquot
regeneration dating protocols, Rad. Measure., 41, 369–391, 2006.
Zagwijn, W. H.: Vegetation, climate and radiocarbon datings in the Late
Pleistocene of the Netherlands, Part I,: Eemian and Early Weichselian.
Mededelingen van de Geologische Stichting Nieuwe Series 14, 15–45, 1961.
Zagwijn, W. H.: Vegetation and climate during warmer intervals in the Late
Pleistocene of Western and Central Europe, Quaternary Int., 3/4,
57–67, 1989.
Zagwijn, W. H.: An analysis of Eemian climate in western and central Europe,
Quaternary Sci. Rev., 15, 451–469, 1996.
Ziemus, H.: Waldentwicklung der Eem-Warmzeit im südwestlichen
Schleswig-Holstein am Beispiel einer Kernbohrung, Schr. Naturwiss. Ver.
Schlesw.-Holst., 59, 1–17, 1989.
Zöller, L.: Zur Gliederung von Warthe-Vereisung und Treene-Warmzeit im
Aufschluss Böxlund – neue Beobachtungen, Z.
Geomorphol., Suppl. Vol. 61, 101–108, 1986.
Short summary
Geological glacial features such as moraines can be used to construct the environment of former times. While sands may indicate colder phases, soils and peat preserved witness warm phases. Using various dating techniques, the ages of such features can be obtained. This is important in order to get an understanding of the climate of the past, in this study on the extent of the ice marginal position in Schleswig-Holstein.
Geological glacial features such as moraines can be used to construct the environment of former...