Articles | Volume 74, issue 1
https://doi.org/10.5194/egqsj-74-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-74-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting ice-marginal positions north-east of Feldberg, southern Black Forest, south-west Germany
Felix Martin Hofmann
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg, 79104 Freiburg, Germany
Frank Preusser
Institute of Earth and Environmental Sciences, University of Freiburg, 79104 Freiburg, Germany
Related authors
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Madhurima Marik, Elena Serra, Gilles Rixhon, and Frank Preusser
E&G Quaternary Sci. J., 74, 169–192, https://doi.org/10.5194/egqsj-74-169-2025, https://doi.org/10.5194/egqsj-74-169-2025, 2025
Short summary
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Felix Martin Hofmann
E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, https://doi.org/10.5194/egqsj-72-235-2023, 2023
Short summary
Short summary
This study aims to reconstruct the last glaciation of the southern Black Forest. Ice-marginal positions in this region were, for the first time, directly dated. Glacier retreat from the last glaciation maximum position was probably underway no later than 21 ka. Re-advances and/or standstills of glaciers (no later than 17–16 ka, 15–14 ka and 13 ka) punctuated the subsequent trend towards ice-free conditions.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Felix Martin Hofmann
Geochronology, 4, 691–712, https://doi.org/10.5194/gchron-4-691-2022, https://doi.org/10.5194/gchron-4-691-2022, 2022
Short summary
Short summary
If topographical obstructions are present in the surroundings of sampling sites, exposure ages of rock surfaces need to be corrected. A toolbox for the ESRI ArcGIS software allows for quantifying topographic shielding with a digital elevation model, but it has only been validated with few field data. In this study, the output of the toolbox is evaluated with a more extensive dataset. If suitable elevation data are chosen, the toolbox provides a sound approach to determine topographic shielding.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Cited articles
Agassiz, L.: Auszug aus dem Briefe des Herrn Dr. Schimper Ueber die Eiszeit, an Pr. Louis Agassiz, Präsident der Gesellschaft, Verhandlungen der Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften, 22, 38, https://doi.org/10.5169/seals-89706, 1837.
Altınay, O., Sarıkaya, M. A., Çiner, A., Žebre, M., Stepišnik, U., Yıldırım, C., Yetemen, Ö., and Wilcken, K. M.: Cosmogenic 36Cl surface exposure dating of glacial landforms on Mt. Barla (SW Turkey), Geomorphology, 416, 108424, https://doi.org/10.1016/j.geomorph.2022.108424, 2022.
Bangert, V.: Zum Pleistozän des Blattes Lenzkirch (Nr. 8115), Südschwarzwald, Jh. Geol. Landesamt Baden-Württemberg, 2, 209–218, 1957.
Bangert, V., Schreiner, A., and Etzold, A.: Geologische Karte von Baden-Württemberg 1:25000. Blatt 8115 Lenzkirch, Landesvermessungsamt Baden-Württemberg, Stuttgart, 132 pp., 1992.
Batchelor, C. L., Margold, M., Krapp, M., Della Murton, K., Dalton, A. S., Gibbard, P. L., Stokes, C. R., Murton, J. B., and Manica, A.: The configuration of Northern Hemisphere ice sheets through the Quaternary, Nat. Commun., 10, 3713, https://doi.org/10.1038/s41467-019-11601-2, 2019.
Benn, D. I. and Evans, D. J. A.: Glaciers & Glaciation, 2nd ed., Routledge, London, New York, 802 pp., https://doi.org/10.4324/9780203785010, 2010.
Bolland, A., Rey, F., Gobet, E., Tinner, W., and Heiri, O.: Summer temperature development 18,000–14,000 cal. BP recorded by a new chironomid record from Burgäschisee, Swiss Plateau, Quaternary Sci. Rev., 243, 106484, https://doi.org/10.1016/j.quascirev.2020.106484, 2020.
Chandler, B. M., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, Í. Ö., Benn, D. I., Clark, C. D., Darvill, C. M., Evans, D. J., Ewertowski, M. W., Loibl, D., Margold, M., Otto, J.-C., Roberts, D. H., Stokes, C. R., Storrar, R. D., and Stroeven, A. P.: Glacial geomorphological mapping: A review of approaches and frameworks for best practice, Earth-Sci. Rev., 185, 806–846, https://doi.org/10.1016/j.earscirev.2018.07.015, 2018.
Chandler, B. M. P. and Lukas, S.: Reconstruction of Loch Lomond Stadial (Younger Dryas) glaciers on Ben More Coigach, north-west Scotland, and implications for reconstructing palaeoclimate using small ice masses, J. Quaternary Sci., 32, 475–492, https://doi.org/10.1002/jqs.2941, 2017.
Chiba, T., Kaneta, S., and Suzuki, Y.: Red Relief Image Map: New Visualization Method for Three Dimensional Data, in: XXIst ISPRS Congress. Proceedings. Volume XXXVIII, Part B2, Commission II., Beijing, 1071–1076, https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/11_ThS-6/08.pdf (last access: 10 January 2025), 2008.
Clark, C. D., Ely, J. C., Hindmarsh, R. C. A., Bradley, S., Ignéczi, A., Fabel, D., Ó Cofaigh, C., Chiverrell, R. C., Scourse, J., Benetti, S., Bradwell, T., Evans, D. J. A., Roberts, D. H., Burke, M., Callard, S. L., Medialdea, A., Saher, M., Small, D., Smedley, R. K., Gasson, E., Gregoire, L., Gandy, N., Hughes, A. L. C., Ballantyne, C., Bateman, M. D., Bigg, G. R., Doole, J., Dove, D., Duller, G. A. T., Jenkins, G. T. H., Livingstone, S. L., McCarron, S., Moreton, S., Pollard, D., Praeg, D., Sejrup, H. P., van Landeghem, K. J. J., and Wilson, P.: Growth and retreat of the last British–Irish Ice Sheet, 31 000 to 15 000 years ago: the BRITICE-CHRONO reconstruction, Boreas, 51, 699–758, https://doi.org/10.1111/bor.12594, 2022.
Cohen, K. M. and Gibbard, P. L.: Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500, Quaternary Int., 500, 20–31, https://doi.org/10.1016/j.quaint.2019.03.009, 2019.
Davies, B.: Dating Glacial Landforms I: Archival, incremental, relative dating techniques and age-equivalent stratigraphic makers, in: Cryospheric Geomorphology, edited by: Haritashya, U., Elsevier, 225–248, https://doi.org/10.1016/B978-0-12-818234-5.00042-0, 2021.
Di Costanzo, H. and Hofmann, F. M.: Le retrait du glacier du Drac Blanc (massif des Écrins, Alpes françaises), Mediterranée, Paléo-environnements, géoarchéologie, géohistoire, 2016, https://doi.org/10.4000/mediterranee.7796, 2016.
DLR: TanDEM-X 30 m Edited DEM, DLR [data set], https://download.geoservice.dlr.de/TDM30_EDEM (last access: 12 December 2023), 2023.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary Glaciations – Extent and Chronology.: A Closer Look, Developments in Quaternary Sciences, 15, Elsevier, Amsterdam, Oxford, ISBN 978-0-444-53447-7, 2011.
Engel, Z., Traczyk, A., Braucher, R., Woronko, B., and Křížek, M.: Use of 10Be exposure ages and Schmidt hammer data for correlation of moraines in the Krkonoše Mountains, Poland/Czech Republic, Z. Geomorphol., 55, 175–196, https://doi.org/10.1127/0372-8854/2011/0055-0036, 2011.
Engel, Z., Braucher, R., Traczyk, A., Léanni, L., and ASTER Team: 10Be exposure age chronology of the last glaciation in the Krkonoše Mountains, Central Europe, Geomorphology, 206, 107–121, https://doi.org/10.1016/j.geomorph.2013.10.003, 2014.
Environmental Systems Research Institute: ArcGIS Desktop [software], Environmental Systems Research Institute, https://www.esri.com/de-de/arcgis/products/arcgis-desktop/overview (last access: 10 January 2025), 2020.
Erb, L.: Die Geologie des Feldbergs, in: Der Feldberg im Schwarzwald, edited by: Müller, K., L., Bielefelds Verlag KG, Freiburg i. Br., 22–96, 1948.
European Environment Agency: WISE Large rivers and lakes, European Environment Agency [data set], https://www.eea.europa.eu/data-and-maps/data/wise-viewer-data-2007/wise-large-rivers-and-lakes/wise-large-rivers-and-lakes/at_download/file (last access: 12 December 2023), 2008.
Geyer, M., Nitsch, E., and Simon, T.: O. F. Geyer/M. P. Gwinner: Geologie von Baden-Württemberg, 5nd Ed., Schweizerbart, Stuttgart, 627 pp., ISBN 978-3-510-65267-9, 2011.
Giermann, G.: Die würmeiszeitliche Vergletscherung des Schauinsland-Trubelsmattkopf-Knöpflesbrunnen-Massivs (südlicher Schwarzwald), Ber. Naturf. Ges. Freiburg i. Br., 54, 197–207, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_54_0197-0207.pdf (last access: 13 January 2025), 1964.
González, C., Bachmann, M., Bueso-Bello, J.-L., Rizzoli, P., and Zink, M.: A Fully Automatic Algorithm for Editing the TanDEM-X Global DEM, Remote Sens.-Basel, 12, 3961, https://doi.org/10.3390/rs12233961, 2020.
Graf, A., Akçar, N., Ivy-Ochs, S., Strasky, S., Kubik, P. W., Christl, M., Burkhard, M., Wieler, R., and Schlüchter, C.: Multiple advances of Alpine glaciers into the Jura Mountains in the Northwestern Switzerland, Swiss J. Geosci., 108, 225–238, https://doi.org/10.1007/s00015-015-0195-y, 2015.
Guiot, J., Pons, A., Beaulieu, J. L. de, and Reille, M.: A 140,000-year continental climate reconstruction from two European pollen records, Nature, 338, 309–313, https://doi.org/10.1038/338309a0, 1989.
Haase, E.: Der “Falkaustand” - ein Sonderfall oder eine gesetzmäßige Erscheinung im Bild der Südschwarzwälder Vergletscherung? Ber. Naturf. Ges. Freiburg i. Br., 58, 135–158, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_58_0135-0158.pdf (last access: 13 January 2025), 1968.
Hantke, R. and Rahm, G.: Das frühe Spätglazial in den Quellästen der Alb (Südlicher Schwarzwald), Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, 121, 293–299, 1976.
Hebestreit, C., Schiedek, T., Bauer, M., and Pfaffenberger, C.: Zeitmarken der Wutacheintiefung – Terrassenkorrelation, Terrassenstratigraphie und Kalktuffe, Jber. Mitt. Oberrhein. Geol. Ver., N.F., 75, 291–312, https://doi.org/10.1127/jmogv/75/1993/291, 1993.
Heiri, O. and Millet, L.: Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France), J. Quaternary Sci., 20, 33–44, https://doi.org/10.1002/jqs.895, 2005.
Heiri, O., Koinig, K. A., Spötl, C., Barrett, S., Brauer, A., Drescher-Schneider, R., Gaar, D., Ivy-Ochs, S., Kerschner, H., Luetscher, M., Moran, A., Nicolussi, K., Preusser, F., Schmidt, R., Schoeneich, P., Schwörer, C., Sprafke, T., Terhorst, B., and Tinner, W.: Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands, Quaternary Sci. Rev., 106, 186–205, https://doi.org/10.1016/j.quascirev.2014.05.021, 2014.
Hemmerle, H., May, J.-H., and Preusser, F.: Übersicht über die pleistozänen Vergletscherungen des Schwarzwaldes, Ber. Naturf. Ges. Freiburg i. Br., 106, 31–67, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_106_0031-0067.pdf (last access: 13 January 2025), 2016.
Hofmann, F. M.: Geometry, chronology and dynamics of the last Pleistocene glaciation of the Black Forest, E&G Quaternary Sci. J., 72, 235–237, https://doi.org/10.5194/egqsj-72-235-2023, 2023a.
Hofmann, F. M.: Geometry, Chronology and Dynamics of the last Pleistocene glaciation of the Black Forest, Doctoral thesis, Faculty of Environment and Natural Resources, University of Freiburg, Germany, https://doi.org/10.6094/UNIFR/241069, 2023b.
Hofmann, F. M. and Konold, W.: Landschaftsgeschichte des oberen Seebachtals, Südschwarzwald (Exkursion D am 14. September 2023), Jber. Mitt. Oberrhein. Geol. Ver., N.F., 105, 63–89, https://doi.org/10.1127/jmogv/105/0004, 2023.
Hofmann, F. M. and Preusser, F.: Glacial landforms NE of Feldberg (Black Forest, SW Germany), FreiDok plus, [data set], https://doi.org/10.6094/UNIFR/256998, 2024.
Hofmann, F. M., Rambeau, C., Gegg, L., Schulz, M., Steiner, M., Fülling, A., Léanni, L., Preusser, F., and ASTER Team: Regional beryllium-10 production rate for the mid-elevation mountainous regions in central Europe, deduced from a multi-method study of moraines and lake sediments in the Black Forest, Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, 2024a.
Hofmann, F. M., Steiner, M., Hergarten, S., ASTER Team, and Preusser, F.: Limitations of precipitation reconstructions using equilibrium line altitudes exemplified for former glaciers in the Southern Black Forest, Central Europe, Quaternary Res., 117, 135–159, https://doi.org/10.1017/qua.2023.53, 2024b.
Hofmann, F. M., Preusser, F., Schimmelpfennig, I., Léanni, L., and ASTER Team: Late Pleistocene glaciation history of the southern Black Forest, Germany: 10Be cosmic-ray exposure dating and equilibrium line altitude reconstructions in Sankt Wilhelmer Tal, J. Quaternary Sci., 37, 688–706, https://doi.org/10.1002/jqs.3407, 2022.
Hofmann, F. M., Fülling, A., and Preusser, F.: Challenges in luminescence dating of the last glaciation maximum in the southern Black Forest, Germany, Ancient TL, 39, P.5-7, https://doi.org/10.6094/UNIFR/242353, 2021.
Hofmann, F. M., Rauscher, F., McCreary, W., Bischoff, J.-P., and Preusser, F.: Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany, E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, 2020.
Hofmann, F. M., Alexanderson, H., Schoeneich, P., Mertes, J. R., Léanni, L., and ASTER Team: Post-Last Glacial Maximum glacier fluctuations in the southern Écrins massif (westernmost Alps): insights from 10Be cosmic ray exposure dating, Boreas, 48, 1019–1041, https://doi.org/10.1111/bor.12405, 2019.
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen, J. I.: The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1, Boreas, 45, 1–45, https://doi.org/10.1111/bor.12142, 2016.
Hughes, P. D. and Gibbard, P. L.: A stratigraphical basis for the Last Glacial Maximum (LGM), Quaternary Intern., 383, 174–185, https://doi.org/10.1016/j.quaint.2014.06.006, 2015.
Hughes, P. D., Gibbard, P. L., and Woodward, J. C.: Quaternary glacial records in mountain regions: A formal stratigraphical approach, Episodes, 28, 85–92, https://doi.org/10.18814/epiiugs/2005/v28i2/002, 2005.
Ivy-Ochs, S.: Glacier variations in the European Alps at the end of the last glaciation, Cuadernos de Investigación Geográfica, 41, 295–315, https://doi.org/10.18172/cig.2750, 2015.
Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch, M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial cycle in the European Alps, J. Quaternary Sci., 23, 559–573, https://doi.org/10.1002/jqs.1202, 2008.
Klute, F.: Die Schneereste des Schwarzwaldes im Frühsommer und die Beziehungen ihrer Lage zu den Stellen ehemaliger Vergletscherung, Ber. Naturf. Ges. Freiburg i. Br., 19, 61–116, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_19_0061-0116.pdf (last access: 13 January 2025), 1911.
Kokalj, Ž. and Somrak, M.: Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping, Remote Sens.-Basel, 11, 747, https://doi.org/10.3390/rs11070747, 2019.
Köse, O., Sarıkaya, M. A., Çiner, A., and Yıldırım, C.: Glacial geomorphology of the Aladağlar, central Taurus Mountains, Turkey, J. Maps, 17, 101–113, https://doi.org/10.1080/17445647.2021.1883137, 2021.
Köse, O., Sarıkaya, M. A., Çiner, A., Candaş, A., Yıldırım, C., and Wilcken, K. M.: Reconstruction of Last Glacial Maximum glaciers and palaeoclimate in the central Taurus Range, Mt. Karanfil, of the Eastern Mediterranean, Quaternary Sci. Rev., 291, 107656, https://doi.org/10.1016/j.quascirev.2022.107656, 2022.
Krause, D. and Margold, M.: Glacial geomorphology of the Šumava / Bayerischer Wald mountains, Central Europe, J. Maps, 15, 719–725, https://doi.org/10.1080/17445647.2019.1661881, 2019.
Lang, G.: Seen und Moore des Schwarzwaldes als Zeugen spätglazialen und holozänen Vegetationswandels. Stratigraphische, pollenanalytische und großrestanalytische Untersuchungen, Andrias, 16, Karlsruhe, 160 pp., https://www.zobodat.at/pdf/Andrias_16_0003-0160.pdf (last access: 10 January 2025), 2005.
Lang, G., Merkt, J., and Streif, H.: Spätglazialer Gletscherrückzug und See- und Moorentwicklung im Südschwarzwald, Südwestdeutschland, Dissertationes Botanicae, 72 (Festschrift Welten), 213–234, 1984.
Leser, H. and Metz, B.: Vergletscherungen im Hochschwarzwald, Berliner Geogr. Abh., 47, 155–175, 1988.
Levy, F.: Das System des Feldberggletschers im hohen Schwarzwald, Mitteilungen der Geographischen Gesellschaft in München, 7, 133–137, 1912.
LGL: DGM aus ALS_1, LGL, https://opengeodata.lgl-bw.de/#/(sidenav:product/3) (last access: 10 January 2025), 2015.
LGL: Open GeoData Portal, LGL, https://opengeodata.lgl-bw.de/#/ (last access: 10 January 2025), 2024.
LGRB (Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg): Geologische Karte von Baden-Württemberg 1 50 000 (GeoLa), LGRB, Freiburg, https://maps.lgrb-bw.de/?view=lgrb_geola_geo (last access: 10 January 2025), 2013.
LGRB: Geologische Karte von Baden-Württemberg (GK-BW). Geologische Generallegendeneinheiten. Jüngere Schwarzwald-Glazialsedimente (qpSj), https://media.lgrb-bw.de/link/geo/geo_gle_548.pdf (last access: 14 July 2023), 2022a.
LGRB: Geologische Karte von Baden-Württemberg (GK-BW). Geologische Generallegendeneinheiten. Ältere Schwarzwald-Glazialsedimente (qpSa), https://media.lgrb-bw.de/link/geo/geo_gle_555.pdf (last access: 15 July 2023), 2022b.
Liehl, E.: Exkursion ins Höllentalgebiet, Breitnau und Hinterzarten, Mitteilungen der Geographischen Fachschaft der Universität Freiburg i. Br., 2, 134–142, 1970.
Liehl, E.: Geländeformen des Feldberggebiets, in: Landformen im Kartenbild. Topographisch-Geomorphologische Kartenproben 1: 25 000. Gruppe II: Mittelgebirge. Gefalteter Unterbau, stellenweise überlagert. Kartenprobe 6: Kristalliner Schwarzwald mit Karen und Moränen, Feldberg, edited by: Hofmann, W. and Louis, H., Westermann, Braunschweig, 8–16, 1975.
Liehl, E.: Der Schwarzwald in der letzten Eiszeit. Ein wissenschaftsgeschichtlicher Rückblick, in: Der Schwarzwald. Beiträge zur Landeskunde, edited by: Liehl, E. and Sick, W.-D., Konkordia, Bühl, 9–35 pp., 1980.
Liehl, E.: Landschaftsgeschichte des Feldberggebietes, in: Der Feldberg im Schwarzwald: subalpine Insel im Mittelgebirge, edited by: Landesanstalt für Umweltschutz Baden-Württemberg and Institut für Ökologie und Naturschutz, Karlsruhe, 13–147, 1982.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071, 2005.
Lotter, A. F., Heiri, O., Brooks, S., van Leeuwen, J. F., Eicher, U., and Ammann, B.: Rapid summer temperature changes during Termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland), Quaternary Sci. Rev., 36, 103–113, https://doi.org/10.1016/j.quascirev.2010.06.022, 2012.
LUBW: Eschengrundmoos, LUBW, http://www2.lubw.baden-wuerttemberg.de/public/abt2/dokablage/oac_77/moore01/412.htm (last access: 16 January 2024), 2006a.
LUBW: Hinterzartener Moor, LUBW, http://www2.lubw.baden-wuerttemberg.de/public/abt2/dokablage/oac_77/moore01/450.htm (last access: 16 January 2024), 2006b.
LUBW: Fließgewässer (AWGN), LUBW [data set], https://rips-datenlink.lubw.de/UDO_download/Fliessgewaessernetz.zip (last access: 8 September 2023), 2022a.
LUBW: Stehendes Gewässer (AWGN), LUBW [data set], https://rips-datenlink.lubw.de/UDO_download/StehendeGewaesser.zip (last access: 8 September 2023), 2022b.
Magny, M., Aalbersberg, G., Bégeot, C., Benoit-Ruffaldi, P., Bossuet, G., Disnar, J.-R., Heiri, O., Laggoun-Defarge, F., Mazier, F., Millet, L., Peyron, O., Vannière, B., and Walter-Simmonet, V.: Environmental and climatic changes in the Jura mountains (eastern France) during the Lateglacial–Holocene transition: a multi-proxy record from Lake Lautrey, Quaternary Sci. Rev., 25, 414–445, https://doi.org/10.1016/j.quascirev.2005.02.005, 2006.
Magny, M., Guiot, J., and Schoellammer, P.: Quantitative Reconstruction of Younger Dryas to Mid-Holocene Paleoclimates at Le Locle, Swiss Jura, Using Pollen and Lake-Level Data, Quaternary Res., 56, 170–180, https://doi.org/10.1006/qres.2001.2257, 2001.
Meinig, R.: Untersuchung der glazialgeologischen Verhältnisse im Raum Breitnau – Steig – Löffeltal (Südschwarzwald), Unpublished diploma thesis, Institute of Geology and Palaeontology, University of Freiburg, Freiburg, 78 pp., 1962.
Meinig, R.: Die würmeiszeitliche Vergletscherung im Gebiet Breitnau-Hinterzarten-Neustadt (Schwarzwald), Dissertation, Institute of Geology and Palaeontology, University of Freiburg, Freiburg, 166 pp., 1966.
Meinig, R.: Die würmeiszeitlichen Moränen in Alpersbach und im Bistental westlich von Hinterzarten/Südschwarzwald, Ber. Naturf. Ges. Freiburg i. Br., 67, 189–201, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_67_0189-0201.pdf (last access: 10 January 2025), 1977.
Meinig, R.: Halte und Eisrandbildungen des würmzeitlichen Bärental-Gletschers, Südschwarzwald, in: Spätglaziale und Postglaziale Gletscherschwankungen: Glazial- und Periglazialformen, Trier, 1980, 257–282, 1980.
Mentlík, P., Engel, Z., Braucher, R., and Léanni, L.: Chronology of the Late Weichselian glaciation in the Bohemian Forest in Central Europe, Quaternary Sci. Rev., 65, 120–128, https://doi.org/10.1016/j.quascirev.2013.01.020, 2013.
Mercier, J.-L., Bourlès, D. L., Kalvoda, J., Braucher, R., and Paschen, A.: Deglaciation of the Vosges dated using 10Be, Acta Universitatis Carolinae Geographica, 2, 139–155, 1999.
Mercier, J.-L., Kalvoda, J., Bourlès, D. L., Braucher, R., and Engel, Z.: Preliminary results of 10Be dating of glacial landscape in the Giant Mountains, Acta Universitatis Carolinae Geographica, Supplementum, 35, 157–170, 2000.
Merkt, J.: Exkursionspunkt: “Feldsee”. Bohrung Feldsee-Mitte, in: Deutsche Quartärvereinigung. 22. wissenschaftliche Tagung in Freiburg i. Br.: Exkursionsführer I Südschwarzwald, Oberschwaben/Bodensee, südliches Oberrheingebiet, edited by: Schreiner, A. and Metz, B., Deutsche Quartärvereinigung, Hannover, 39–41, 1985.
Metz, B.: Geomorphologische Karte 1:25 000 der Bundesrepublik Deutschland. GMK 25 Blatt 21. 8114 Feldberg, Geo Center, Stuttgart, 1985.
Metz, B. and Saurer, H.: Geomorphologie und Landschaftsentwicklung, in: Der Feldberg: subalpine Insel im Schwarzwald, edited by: Regierungspräsidium Freiburg, Jan Thorbecke Verlag der Schwabenverlag AG, Ostfildern, 14–62, 2012.
Neuschel, P.: Geologische Untersuchung des Spriegelsbachtales und der Umgebung (westlich Neustadt/ Schwarzwald), Unpublished diploma thesis, University of Freiburg, 65 pp., https://doi.org/10.1016/B978-0-323-91899-2.00002-4, 1987.
Palacios, D., Hughes, P. D., Sánchez-Goñi, M. F., García Ruiz, J. M., and Andrés, N.: The terminations of the glacial cycles, in: European Glacial Landscapes. The last deglaciation, edited by: Palacios, D., Hughes, P. D., García Ruiz, J. M., and Andrés, N., Elsevier, Amsterdam, Oxford, Cambridge, 11–24, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_53_0005-0061.pdf (last access: 10 January 2025), 2023.
Peyron, O., Bégeot, C., Brewer, S., Heiri, O., Magny, M., Millet, L., Ruffaldi, P., van Campo, E., and Yu, G.: Late-Glacial climatic changes in Eastern France (Lake Lautrey) from pollen, lake-levels, and chironomids, Quaternary Res., 64, 197–211, https://doi.org/10.1016/j.yqres.2005.01.006, 2005.
Pfannenstiel, M. and Rahm, G.: Die Vergletscherung des Wutachtales während der Rißeiszeit, Ber. Naturf. Ges. Freiburg i. Br., 53, 5–61, QGIS Development Team, https://www.zobodat.at/pdf/Berichte-naturf-Ges-Freiburg-Br_53_0005-0061.pdf (last access: 13 January 2025), 1963.
Platz, P.: Die Glazialbildungen des Schwarzwaldes, Mitt. d. Bad. Geol. Landesanst., 2, 837–924, 1893.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
QGIS Development Team: QGIS Geographic Information System, [software], https://www.qgis.org/ (last access: 10 January 2025), 2023.
Raab, T. and Völkel, J.: Late Pleistocene glaciation of the Kleiner Arbersee area in the Bavarian Forest, south Germany, Quaternary Sci. Rev., 22, 581–593, https://doi.org/10.1016/S0277-3791(02)00090-2, 2003.
Rades, E. F., Sohbati, R., Lüthgens, C., Jain, M., and Murray, A. S.: First luminescence-depth profiles from boulders from moraine deposits: Insights into glaciation chronology and transport dynamics in Malta valley, Austria, Radiat. Meas., 120, 281–289, https://doi.org/10.1016/j.radmeas.2018.08.011, 2018.
Rades, E. F., Sohbati, R., Alexanderson, H., Jain, M., and Murray, A. S.: Exploring the potential of rock surface luminescence from glacial sediments: dating and transport history, Boreas, https://doi.org/10.1111/bor.12648, 2024.
Rahm, G.: Die Vergletscherung des Belchengebietes (Südschwarzwald) zur Würmeiszeit, E&G Quaternary Sci. J., 37, 31–40, https://doi.org/10.3285/eg.37.1.03, 1987.
Ramsay, A. C.: On the Glacial Origin of certain Lakes in Switzerland, the Black Forest, Great Britain, Sweden, North America, and elsewhere, Q. J. Geol. Soc. London, 18, 185–204, 1862.
Rea, B. R., Pellitero, R., Spagnolo, M., Hughes, P., Ivy-Ochs, S., Renssen, H., Ribolini, A., Bakke, J., Lukas, S., and Braithwaite, R. J.: Atmospheric circulation over Europe during the Younger Dryas, Sci. Adv., 6, eaba4844, https://doi.org/10.1126/sciadv.aba4844, 2020.
Reinig, F., Wacker, L., Jöris, O., Oppenheimer, C., Guidobaldi, G., Nievergelt, D., Adolphi, F., Cherubini, P., Engels, S., Esper, J., Land, A., Lane, C., Pfanz, H., Remmele, S., Sigl, M., Sookdeo, A., and Büntgen, U.: Precise date for the Laacher See eruption synchronizes the Younger Dryas, Nature, 595, 66–69, https://doi.org/10.1038/s41586-021-03608-x, 2021.
Reuther, A. U.: Surface exposure dating of glacial deposits from the last glacial cycle. Evidence from the Eastern Alps, the Bavarian Forest, the Southern Carpathians and the Altai Mountains, Relief, Boden, Paläoklima, 21, Borntraeger, Berlin, Stuttgart, 213 pp., ISBN 978-3-443-09021-0, 2007.
Sawatzki, G.: Geologische Karte 1:25 000 von Baden-Württemberg. Erläuterungen zu Blatt 8214 St. Blasien, Landesvermessungsamt Baden-Württemberg, Stuttgart, 1992.
Schalch, F.: Geologische Specialkarte des Grossherzogtums Baden. Blatt 119 Neustadt., Großherzogliche Badische Geologische Landesanstalt, Heidelberg, 1903.
Schiedek, T. and Pfaffenberger, C.: Akkumulations- und Erosionsphasen im Niederterrassen-Kieskörper des Gutachtales, in: Eintiefungsgeschichte und Stoffaustrag im Wutachgebiet (SW-Deutschland), edited by: Einsele, G. and Ricken, W., Institut für Geowissenschaften der Universität Tübingen, Tübingen, 58–65, 1993.
Schreiner, A.: Quartär, in: Geologische Karte von Baden-Württemberg 1:25 000. Erläuterungen zu Blatt 8114 Feldberg, edited by: Geologisches Landesamt Baden-Württemberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 67–95, 1981.
Schreiner, A.: Neuere Untersuchungen zur Rißeiszeit im Wutachgebiet (Südostschwarzwald), Jh. Geol. Landesamt Baden-Württemberg, 28, 221–244, 1986.
Schreiner, A.: Quartär, in: Geologische Karte 1:25 000 von Baden-Württemberg. Erläuterungen zu Blatt 8114 Feldberg, 2nd ed., edited by: Geologisches Landesamt Baden-Württemberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 67–95, 1990.
Schreiner, A.: Quartär, in: Geologische Karte von Baden-Württemberg 1:25 000. Erläuterungen zum Blatt 8014 Hinterzarten, edited by: Wimmenauer, W. and Schreiner, A., Landesvermessungsamt Baden-Württemberg, Stuttgart, 97–141, https://doi.org/10.1016/S0277-3791(02)00090-2, 1999a.
Schreiner, A.: Schichtenverzeichnisse, in: Geologische Karte von Baden-Württemberg 1:25 000. Erläuterungen zum Blatt 8014 Hinterzarten, edited by: Wimmenauer, W. and Schreiner, A., Landesvermessungsamt Baden-Württemberg, Stuttgart, 172–177, 1999b.
Schreiner, A. and Wimmenauer, W.: Geologische Karte von Baden-Württemberg 1:25 000. Blatt 8014 Hinterzarten, Landesamt für Geologie, Rohstoffe und Bergbau, Freiburg im Breisgau, 189 pp., 1999.
Schrepfer, H.: Zur Kenntnis der Eiszeit im Wutachgebiet, Mitteilungen des Badischen Landesvereins für Naturkunde und Naturschutz in Freiburg i. Br., 1, 469–473, https://www.zobodat.at/pdf/Mitt-Bad-Landesver-Natkde-Natschutz-Freiburg_NF_1_0469-0473.pdf (last access: 10 January 2025), 1925.
Steinmann, G.: Die Spuren der letzten Eiszeit im hohen Schwarzwalde, in: Festprogramm seiner Königlichen Hoheit Großherzog Friedrich zur Feier des siebzigsten Geburtstages, edited by: Albrecht-Ludwigs-Universität zu Freiburg, J. C. B. Mohr (Paul Siebeck), Freiburg, Leipzig, 187–226, https://doi.org/10.11588/diglit.49386{#}0201, 1896.
Steinmann, G.: Die Bildungen der letzten Eiszeit im Bereiche des alten Wutachgebiets, Jber. Mitt. oberrhein. geol. Ver., 35, 16–23, 1902.
Tielidze, L. G., Charton, J., Jomelli, V., and Solomina, O. N.: Glacial geomorphology of the Notsarula and Chanchakhi river valleys, Georgian Caucasus. J. Maps, 19, 2261490, https://doi.org/10.1080/17445647.2023.2261490, 2023.
Valenti, C., Rinterknecht, V., Koehler, H., Griselin, S., Audouard, L., Gehres, B., Couette, P.-O., and Équipe ASTER: Déglaciation des Vosges gréseuses et reconstructions paléoclimatiques à partir de datations par le béryllium-10 produit in situ, Quaternaire, 35, https://doi.org/10.4000/quaternaire.19147, 2024.
Walchner, F. A.: Handbuch der Geognosie zum Gebrauche bei seinen Vorlesungen und zum Selbststudium mit besonderer Berücksichtigung der geognostischen Verhältnisse des Grossherzogtums Baden, Christian Theodor Groos, Karlsruhe, 1120 pp., 1846.
Wimmenauer, W. and Hüttner, R.: Geologische Karte von Baden-Württemberg 1:25000. Blatt 8013 Freiburg., Geologisches Landesamt in Baden-Württemberg, Stuttgart, 159 pp., 1968.
Wimmenauer, W., Liehl, E., and Schreiner, A.: Geologische Karte von Baden-Württemberg 1:25 000. Blatt 8114 Feldberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 1981.
Wimmenauer, W., Liehl, E., and Schreiner, A.: Geologische Karte von Baden-Württemberg 1:25 000. Blatt 8114 Feldberg, Landesvermessungsamt Baden-Württemberg, Stuttgart, 1990.
Winkler, S.: Investigating Holocene mountain glaciations: a plea for the supremacy of glacial geomorphology when reconstructing glacier chronologies, Erdkunde, 72, 215–234, https://doi.org/10.3112/erdkunde.2018.03.04, 2018.
Yokoyama, R., Shirasawa, M., and Pike, R. J.: Visualizing topography by openness: A new application of image processing to digital elevation models, Photogramm. Eng. Rem. S., 68, 257–266, 2002.
Ziegler, P. A.: European Cenozoic rift system, Tectonophysics, 208, 91–111, https://doi.org/10.1016/0040-1951(92)90338-7, 1992.
Zienert, A.: Die Würm-Vereisung und ihre Rückzugsstadien im Westteil des Hochschwarzwaldes, Z. Geomorphol., 17, 359–366, https://doi.org/10.1127/zfg/17/1973/359, 1973.
Short summary
Previous reconstructions conclude that the southern Black Forest, south-west Germany, temporarily hosted four ice caps during the Late Pleistocene (129 000–11 700 years before present). This work reviews existing studies on glacial landforms north-east of its highest summit, Feldberg (1493 m above sea level), in the light of new observations. Whilst this study largely confirms previous work, we reject and newly describe several glacial landforms.
Previous reconstructions conclude that the southern Black Forest, south-west Germany,...