Articles | Volume 69, issue 2
https://doi.org/10.5194/egqsj-69-121-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-69-121-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anthropogenic and climate signals in late-Holocene peat layers of an ombrotrophic bog in the Styrian Enns valley (Austrian Alps)
Wolfgang Knierzinger
CORRESPONDING AUTHOR
Department of Geodynamics and Sedimentology, University of Vienna,
Althanstraße 14, 1090 Vienna, Austria
Ruth Drescher-Schneider
Schillingsdorfer Straße 27, 8010 Kainbach bei Graz, Austria
Klaus-Holger Knorr
Ecohydrology and Biogeochemistry Group, Institute of Landscape Ecology, University of Münster,
Heisenbergstraße 2, 48149 Münster, Germany
Simon Drollinger
Department of Physical Geography, University of Göttingen, Goldschmidtstraße 5, 37077 Göttingen, Germany
Andreas Limbeck
Institute of Chemical Technologies and Analytics, Technical University Vienna, Getreidemarkt 9, 1060 Vienna, Austria
Lukas Brunnbauer
Institute of Chemical Technologies and Analytics, Technical University Vienna, Getreidemarkt 9, 1060 Vienna, Austria
Felix Horak
Institute of Chemical Technologies and Analytics, Technical University Vienna, Getreidemarkt 9, 1060 Vienna, Austria
Daniela Festi
Institute for Interdisciplinary Mountain Research, Austrian
Academy of Sciences, Technikerstraße 21a, 6020 Innsbruck, Austria
Michael Wagreich
Department of Geodynamics and Sedimentology, University of Vienna,
Althanstraße 14, 1090 Vienna, Austria
Related authors
No articles found.
Luca Carturan, Alexander C. Ihle, Federico Cazorzi, Tiziana Lazzarina Zendrini, Fabrizio De Blasi, Giancarlo Dalla Fontana, Giuliano Dreossi, Daniela Festi, Bryan Mark, Klaus Dieter Oeggl, Roberto Seppi, Barbara Stenni, and Paolo Gabrielli
The Cryosphere, 19, 3443–3458, https://doi.org/10.5194/tc-19-3443-2025, https://doi.org/10.5194/tc-19-3443-2025, 2025
Short summary
Short summary
Paleoclimatic glacial archives in low-latitude mountains are increasingly affected by melt, causing heavy percolation and removing snow and firn accumulated across months, seasons, or even years. Here we present a proxy system model that explicitly accounts for melt in ice and firn cores. Compared to traditional annual layer counting, the model significantly improved the interpretation and annual dating of the Mt Ortles firn core, in the Italian Alps, which includes the very warm summer of 2003.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Earth Syst. Dynam., 16, 891–914, https://doi.org/10.5194/esd-16-891-2025, https://doi.org/10.5194/esd-16-891-2025, 2025
Short summary
Short summary
The Holocene Peatland Model (HPM) is a widely used peatland model to understand and predict long-term peatland dynamics. Here, we test whether the HPM can predict Sphagnum litterbag decomposition rates from oxic to anoxic conditions. Our results indicate that decomposition rates change more gradually from oxic to anoxic conditions and may be underestimated under anoxic conditions, possibly because the effect of water table fluctuations on decomposition rates is not considered.
Paolo Gabrielli, Theo M. Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2025-2174, https://doi.org/10.5194/egusphere-2025-2174, 2025
Short summary
Short summary
A low latitude-high altitude Alpine ice core record was obtained in 2011 from the glacier Alto dell’Ortles (Eastern Alps, Italy) and provided evidence of one of the oldest Alpine ice core records spanning the last ~7000 years, back to the last Northern Hemisphere Climatic Optimum. Here we provide a new Alto dell’Ortles chronology of improved accuracy that will allow to constrain Holocene climatic and environmental histories emerging from this high-altitude glacial archive of Central Europe.
Henning Teickner, Edzer Pebesma, and Klaus-Holger Knorr
Biogeosciences, 22, 417–433, https://doi.org/10.5194/bg-22-417-2025, https://doi.org/10.5194/bg-22-417-2025, 2025
Short summary
Short summary
Decomposition rates for Sphagnum mosses, the main peat-forming plants in northern peatlands, are often derived from litterbag experiments. Here, we estimate initial leaching losses from available Sphagnum litterbag experiments and analyze how decomposition rates are biased when initial leaching losses are ignored. Our analyses indicate that initial leaching losses range between 3 to 18 mass-% and that this may result in overestimated mass losses when extrapolated to several decades.
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary
Short summary
This work employs innovative spatiotemporal modeling to predict soil moisture, with implications for sustainable forest management. By correlating predicted soil moisture with rut depth, it addresses a critical concern of soil damage and ecological impact – and its prevention through adequate planning of forest operations.
Carrie L. Thomas, Boris Jansen, Sambor Czerwiński, Mariusz Gałka, Klaus-Holger Knorr, E. Emiel van Loon, Markus Egli, and Guido L. B. Wiesenberg
Biogeosciences, 20, 4893–4914, https://doi.org/10.5194/bg-20-4893-2023, https://doi.org/10.5194/bg-20-4893-2023, 2023
Short summary
Short summary
Peatlands are vital terrestrial ecosystems that can serve as archives, preserving records of past vegetation and climate. We reconstructed the vegetation history over the last 2600 years of the Beerberg peatland and surrounding area in the Thuringian Forest in Germany using multiple analyses. We found that, although the forest composition transitioned and human influence increased, the peatland remained relatively stable until more recent times, when drainage and dust deposition had an impact.
Azzurra Spagnesi, Pascal Bohleber, Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Giuliano Dreossi, Martin Stocker-Waldhuber, Daniela Festi, Jacopo Gabrieli, Andrea Gambaro, Andrea Fischer, and Carlo Barbante
EGUsphere, https://doi.org/10.5194/egusphere-2023-1625, https://doi.org/10.5194/egusphere-2023-1625, 2023
Preprint archived
Short summary
Short summary
We present new data from a 10 m ice core drilled in 2019 and a 8.4 m parallel ice core drilled in 2021 at the summit of Weißseespitze glacier. In a new combination of proxies, we discuss profiles of stable water isotopes, major ion chemistry as well as a full profile of microcharcoal and levoglucosan. We find that the chemical and isotopic signals are preserved, despite the ongoing surface mass loss. This is not be to expected considering what has been found at other glaciers at similar locations.
Laura Clark, Ian B. Strachan, Maria Strack, Nigel T. Roulet, Klaus-Holger Knorr, and Henning Teickner
Biogeosciences, 20, 737–751, https://doi.org/10.5194/bg-20-737-2023, https://doi.org/10.5194/bg-20-737-2023, 2023
Short summary
Short summary
We determine the effect that duration of extraction has on CO2 and CH4 emissions from an actively extracted peatland. Peat fields had high net C emissions in the first years after opening, and these then declined to half the initial value for several decades. Findings contribute to knowledge on the atmospheric burden that results from these activities and are of use to industry in their life cycle reporting and government agencies responsible for greenhouse gas accounting and policy.
Niccolò Maffezzoli, Eliza Cook, Willem G. M. van der Bilt, Eivind N. Støren, Daniela Festi, Florian Muthreich, Alistair W. R. Seddon, François Burgay, Giovanni Baccolo, Amalie R. F. Mygind, Troels Petersen, Andrea Spolaor, Sebastiano Vascon, Marcello Pelillo, Patrizia Ferretti, Rafael S. dos Reis, Jefferson C. Simões, Yuval Ronen, Barbara Delmonte, Marco Viccaro, Jørgen Peder Steffensen, Dorthe Dahl-Jensen, Kerim H. Nisancioglu, and Carlo Barbante
The Cryosphere, 17, 539–565, https://doi.org/10.5194/tc-17-539-2023, https://doi.org/10.5194/tc-17-539-2023, 2023
Short summary
Short summary
Multiple lines of research in ice core science are limited by manually intensive and time-consuming optical microscopy investigations for the detection of insoluble particles, from pollen grains to volcanic shards. To help overcome these limitations and support researchers, we present a novel methodology for the identification and autonomous classification of ice core insoluble particles based on flow image microscopy and neural networks.
Matthias Koschorreck, Klaus Holger Knorr, and Lelaina Teichert
Biogeosciences, 19, 5221–5236, https://doi.org/10.5194/bg-19-5221-2022, https://doi.org/10.5194/bg-19-5221-2022, 2022
Short summary
Short summary
At low water levels, parts of the bottom of rivers fall dry. These beaches or mudflats emit the greenhouse gas carbon dioxide (CO2) to the atmosphere. We found that those emissions are caused by microbial reactions in the sediment and that they change with time. Emissions were influenced by many factors like temperature, water level, rain, plants, and light.
Henning Teickner and Klaus-Holger Knorr
SOIL, 8, 699–715, https://doi.org/10.5194/soil-8-699-2022, https://doi.org/10.5194/soil-8-699-2022, 2022
Short summary
Short summary
The chemical quality of biomass can be described with holocellulose (relatively easily decomposable by microorganisms) and Klason lignin (relatively recalcitrant) contents. Measuring both is laborious. In a recent study, models have been proposed which can predict both quicker from mid-infrared spectra. However, it has not been analyzed if these models make correct predictions for biomass in soils and how to improve them. We provide such a validation and a strategy for their improvement.
Daniela Kau, Marion Greilinger, Bernadette Kirchsteiger, Aron Göndör, Christopher Herzig, Andreas Limbeck, Elisabeth Eitenberger, and Anne Kasper-Giebl
Atmos. Meas. Tech., 15, 5207–5217, https://doi.org/10.5194/amt-15-5207-2022, https://doi.org/10.5194/amt-15-5207-2022, 2022
Short summary
Short summary
The use of thermal–optical analysis for the determination of elemental carbon (EC) and organic carbon (OC) can be biased by mineral dust (MD). We present a method that utilizes this interference to quantify iron contained in MD in snow samples. Possibilities and limitations of applying this method to particulate matter samples are presented. The influence of light-absorbing iron compounds in MD on the transmittance signal can be used to identify samples experiencing a bias of the OC / EC split.
Cordula Nina Gutekunst, Susanne Liebner, Anna-Kathrina Jenner, Klaus-Holger Knorr, Viktoria Unger, Franziska Koebsch, Erwin Don Racasa, Sizhong Yang, Michael Ernst Böttcher, Manon Janssen, Jens Kallmeyer, Denise Otto, Iris Schmiedinger, Lucas Winski, and Gerald Jurasinski
Biogeosciences, 19, 3625–3648, https://doi.org/10.5194/bg-19-3625-2022, https://doi.org/10.5194/bg-19-3625-2022, 2022
Short summary
Short summary
Methane emissions decreased after a seawater inflow and a preceding drought in freshwater rewetted coastal peatland. However, our microbial and greenhouse gas measurements did not indicate that methane consumers increased. Rather, methane producers co-existed in high numbers with their usual competitors, the sulfate-cycling bacteria. We studied the peat soil and aimed to cover the soil–atmosphere continuum to better understand the sources of methane production and consumption.
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Paolo Gabrielli, Theo Manuel Jenk, Michele Bertó, Giuliano Dreossi, Daniela Festi, Werner Kofler, Mai Winstrup, Klaus Oeggl, Margit Schwikowski, Barbara Stenni, and Carlo Barbante
Clim. Past Discuss., https://doi.org/10.5194/cp-2022-20, https://doi.org/10.5194/cp-2022-20, 2022
Revised manuscript not accepted
Short summary
Short summary
We present a methodology that reduces the chronological uncertainty of an Alpine ice core record from the glacier Alto dell’Ortles, Italy. This chronology will allow the constraint of the Holocene climatic and environmental histories emerging from this archive of Central Europe. This method will allow to obtain accurate chronologies also from other ice cores from-low latitude/high-altitude glaciers that typically suffer from larger dating uncertainties compared with well dated polar records.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Leandra Stephanie Emilia Praetzel, Nora Plenter, Sabrina Schilling, Marcel Schmiedeskamp, Gabriele Broll, and Klaus-Holger Knorr
Biogeosciences, 17, 5057–5078, https://doi.org/10.5194/bg-17-5057-2020, https://doi.org/10.5194/bg-17-5057-2020, 2020
Short summary
Short summary
Small lakes are important but variable sources of greenhouse gas emissions. We performed lab experiments to determine spatial patterns and drivers of CO2 and CH4 emission and sediment gas production within a lake. The observed high spatial variability of emissions and production could be explained by the degradability of the sediment organic matter. We did not see correlations between production and emissions and suggest on-site flux measurements as the most accurate way for determing emissions.
Cited articles
Abouchami, W. and Zabel, M.: Climate forcing of the Pb isotope record of
terrigenous input into the Equatorial Atlantic, Earth Planet. Sci. Lett.,
21, 221–234, 2003.
Allan, M., Pinti, D. L., Ghaleb, B., Verheyden, S., Mattielli, N., and Fagel,
N.: Reconstruction of Atmospheric Lead Pollution During the Roman Period
Recorded in Belgian Ombrotrophic Peatlands Cores, Atmosphere, 9, 1–18,
https://doi.org/10.3390/atmos9070253, 2018.
Artz, R. R. E., Chapman, S. J., Robertson, A. H. J., Potts, J. M.,
Laggoun-Défarge, F., Gogo, S., Comont, L., Disnar, J. R., and Francez,
A. J.: FTIR spectroscopy can be used as a screening tool for organic matter
quality in regenerating cutover peatlands, Soil Biol. Biochem., 40,
515–527, 2008.
Babayemi, J. O., Dauda, K. T., Nwude, D. O., and Kayode, A. A. A.: Evaluation
of the Composition and Chemistry of Ash and Potash from Various Plant
Materials-A Review, J. App. Sci., 10, 1820–1824, 2010.
Behre, K. E.: The interpretation of anthropogenic indicators in pollen
diagrams, Pollen Spores, 23, 225–245, 1981.
Behre, K. E.: The role of man in European vegetation history, in: Vegetation
history, edited by: Huntley, B. W. and Webb III, T., Kluwer, Dordrecht,
633–672, Kluwer, Dordrecht, 1988.
Bell, M. C., Riton, J. P., Verhoef, A., Brazier, R. E., Templeton, M. R.,
Graham, N. J. D., Freeman, C., and Clark, J. M.: Sensitivty of peatland litter
decomposition to changes in temperature and Rainfall, Geoderma, 331, 29–37,
2018.
Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen
diagrams, in: Handbook of the Holocene Palaeoecology and Palaeohydrology,
edited by: Berglund, B. E. and Ralska-Jasiewiczowa, M., John Wiley &
Sons, Chichester, 455–484, 1986.
Beug, H. J.: Leitfaden der Pollenbestimmung für Mitteleuropa and
angrenzende Gebiete, Pfeil, Munich, 2004.
Biester, H., Hermanns, Y. M., and Cortizas, A. M.: The influence of organic
matter decay on the distribution of major and trace elements in the
ombrotrophic mires – a case study from the Harz Mountains, Geochim.
Cosmochim. Acta, 84, 126–136, 2012.
Biester, H., Knorr, K.-H., Schellekens, J., Basler, A., and Hermanns, Y.-M.: Comparison of different methods to determine the degree of peat decomposition in peat bogs, Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014, 2014
Bindler, R.: Estimating the natural background atmospheric deposition rate
of mercury utilizing ombrotrophic bogs in southern Sweden, Environ. Sci.
Technol., 37, 40–46, 2003.
Birker, R.: Zur Ökologie und Torfstratigraphie des Pürgschachen
Moores, PhD. thesis, University of Graz, Graz, 251 pp., 1979.
Blaauw, M. and Christen, A. J.: Flexible Paleoclimate Age-Depth Models Using
an Autoregressive Gamma Process, Bayesian Anal., 6, 457–474, 2011.
Bobrov, V. A., Bogush, A. A., Lenova, G. A., Krasnobaev, V. A., and Anoshin,
G. N.: Anomalous Concentrations of Zinc and Copper in Highmoor Peat Bog,
Southeast Coast of Lake Baikal, Doklady Earth Sci., 439, 784–788, 2011.
Boch, R., Spötl, C., and Kramers, J.: High-resolution isotope records
of early Holocene rapid climate change from two coeval stalagmites of
Katerloch Cave, Austria
Quaternary Sci. Rev., 28, 2527–2538, 2009.
Bodí, M. B., Martin, D. A., Balfour, V. N., Santín, C.,
Doerr, S. H., Pereira, P., Cerdà, A., and Mataix-Solera, J.:
Wildland fire ash: Production, composition and eco-hydro-geomorphic effects,
Earth Sci. Rev., 130, 103–127, 2014.
Boelter, D. H.: Physical properties of peats as related to degree of
decomposition, Soil Sci. Soc. Am. Proc., 33, 606–609, 1969.
Boës, X., Rydberg, J., Martínez-Cortizas, A., Bindler, R., and Renberg, I.: Evaluation of conservative lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake sediments, J. Paleolimn., 46, 75–87, 2011.
Bränvall, M. L., Bindler, R., Emteryd, O., and Renberg, I.: For thousand
years of atmospheric lead pollution in northern Europe: a summary from
Swedish lake sediments, J. Paleolimnol., 25, 421–435, 2001.
Breitenlechner, E., Stöllner, T., Thomas, P., Lutz, J., and Oeggl, K.:
An interdisciplinary study on the environmental reflection of prehistoric
mining activities at the Mitterberg main lode (Salzburg, Austria),
Archaeometry, 56, 102–128, 2014.
Broder, T., Blodau, C., Biester, H., and Knorr, K. H.: Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia, Biogeosciences, 9, 1479–1491, https://doi.org/10.5194/bg-9-1479-2012, 2012.
Büntgen, U., Esper, J., Frank, D. C., Nicolussi, K., and Schmidhalter, M.
A.: 1052-year tree-ring proxy for Alpine summer temperatures, Clim. Dynam., 25,
141–153, 2005.
Bunting, M. J., Tipping, R., and Downes, J.: “Anthropogenic” Pollen
Assemblages form the Bronze Age Cemetery at Linga Fiold, West Mainland,
Orkney, J. Archaeol. Sci., 28, 487–500, 2001.
Cloy, J. M., Farmer, J. G., Graham, M. C., MacKenzie, A. B., and Cook, G.
T.: A comparison of antimony and lead profiles over the past 2500 years in
Flanders Moss ombrotrophic peat bog, Scotland, J. Environ. Monit., 7,
1137–1147, 2005.
Cloy, J. M., Farmer, J. G., Graham, M. C., MacKenzie, A. B., and Cook, G.
T.: Historical records of atmospheric Pb deposition in four Scottish
ombrotrophic peat bogs: An isotopic comparison with other records from
western Europe and Greenland, Global Biogeochem. Cy., 22,
1–16, 2008.
Cloy, J., Farmer, J. G., Graham, M., and Mackenzie, A. B.: Rentention of As
and Sb in Ombrotrophic Peat Bogs: Records of As, Sb, and Pb Deposition at
Four Scottish Sites, Environ. Sci. Technol., 43, 1756–1762, 2009.
Czernik, J. and Goslar, T.: Preparation of graphite targets in the Gliwice
Radiocarbon Laboratory for AMS 14C dating, Radiocarbon, 43, 283–291, 2001.
De Vleeschouwer, F.: Peat as an archive of atmospheric pollution and
environmental change: A case study of lead in Europe, PAGES Mag., 18, 20–22,
2010.
De Vleeschouwer, F., Gerard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., and Fagel, N.: Atmospheric lead and heavy metal pollution records from
a Belgian peat bog spanning the last two millenia: human impact on a
regional to global scale, Sci. Total Environ., 377, 282–295, 2007.
De Vleeschouwer, F., Piotrowska, N., Sikorski, J., Pawlyta, J., Cheburkin,
A., Le Roux, G., Lamentowicz, M., Fagel, N., and Mauquoy, D.: Multiproxy
evidence of `Little Ice Age` palaeoenvironmental changes in a peat bog from
northern Poland, Holocene, 19, 625–637, 2009.
Díaz-Somoano, M., Kylander, M. E., López-Antón, M. A.,
Suárez-Ruiz, I., Martínez-Tarazona, M. R., Ferrat, M., Kober, B.,
and Weiss, D. J.: Stable lead isotope compositions in selected coals from
around the world and implications for present day aerosol source tracing,
Environ. Sci. Technol., 43, 1078–1085, 2009.
Drescher-Schneider, R.: Die Vegetations- und Besiedelungsgeschichte der
Region Eisenerz auf der Basis pollenanalytischer Untersuchungen im
Leopoldsteiner See und in der Eisenerzer Ramsau., in: Montanarchäologie
in den Eisenerzer Alpen, Steiermark. Archäologische und
naturwissenschaftliche Untersuchungen zum prähistorischen Kupferbergbau
in der Eisenerzer Ramsau, edited by: Klemm, S., Verlag der
Österreichischen Akademie der Wissenschaften, Vienna, 174–197, 2003.
Drexler, J. Z., Alpers, C. N., Neymark, L. A., Paces, J. B., Taylor, H. E., and
Fuller, C. C.: A millennial-scale record of Pb and Hg contamination in
peatlands of the Sacramento-San Joaquin Delta of California, USA, Sci. Total
Environ., 551–552, 738–751, 2016.
Drollinger, S., Kuzyakov, Y., and Glatzel, S.: Effects of peat decomposition
on δ13C and δ15N depth profiles Alpine bogs, Catena, 178,
1–10, 2019.
Drollinger, S., Knorr, K. H., Knierzinger, W., and Glatzel, S.: Peat
decomposition proxies of Alpine bogs along a degradation gradient, Geoderma
369, 1–12, https://doi.org/10.1016/j.geoderma.2020.114331, 2020.
Drzymulska, D.: Peat decomposition – shaping factors, significance in
environmental studies and methods of determination; a literature review,
Geologos, 22, 61–69, 2016.
Engel, Z., Skrzypek, G., Paul, D., Drzewicki, W., and Nývlt, D.:
Sediment lithology and stable isotope composition of organic matter in a
core from a cirque in the Krkonoše Mountains, Czech Republic, J.
Paleolim., 43, 609–624, 2010.
Ettler, V.: Soil contamination near non-ferrous metal smelters: A review,
App. Geochem., 64, 56–74, 2016.
Festi, D., Putzer, A., and Oeggl, K.: Mid and late Holocene land-use changes
in the Ötztal Alps, territory of the Neolithic Iceman “Ötzi”,
Quaternary Int., 353, 17–33, 2014.
Finsinger, W., Tinner, W., van der Knaap, W. O., and Ammann, B.: The
expansion of hazel (Corylus avellana L.) in the southern Alps: a key for
understanding its early Holocene history in Europe?, Qaternary Sci. Rev., 25,
612–631, 2006.
Flament, P., Bertho, M. L., Deboudt, K., Véron, A., and Puskaric, E.:
European isotopic signatures for lead in atmospheric aerosols: a source
appointment based upon 206Pb/207Pb ratios, Sci. Total Environ., 296, 35–57,
2002.
Forel, B., Monna, F., Petit, C., Bruguier, O., Losno, R., Fluck, P., Begeot,
C., Richard, H., Bichet, V., and Chateau, C.: Historical mining and smelting
in the Vosges Mountains (France) recorded in two ombrotrophic peat bogs, J.
Geochem. Explor., 107, 9–20, 2010.
Galuszka, A., Migaszewski, Z. M., and Zalasiewicz, J.: Assessing the
Anthropocene with geochemical methods, Geo. Soc. Spec. Publ., 395, 221–238,
2014.
Gao, W. and Huang, Y.: Effects of humic acid and compost on speciation
transformation of zinc and lead in soil, Chin. J. Environ. Eng., 3,
549–554, 2009.
Gasser, D., Gusterhuber, J., Krische, O., Puhr, B., Scheucher, L., Wagner,
T., and Stüwe, K.: Geology of Styria: An overview, Mit. Naturw. Ver.
Steierm., 139, 5–36, 2009.
Geologische Bundesanstalt: Geological maps of Austria,
BundesAT_GBA_GK100_200:
available at: https://gisgba.geologie.ac.at/gbaviewer/?url=https://gisgba.geologie.ac.at/ArcGIS/rest/services/image/AT_GBA_GK100_200/ImageServer, last access: 28 October 2019.
Grimm, E.: TGView, Illinois State Museum, Research and Collections Center,
Springfield, Massachusetts, 2004.
Grögler, N., Grünenfelder, M., and Schroll, E.: Ein Hinweis auf
Jungpräkambrium und Altpaläozoikum im Altkristallin Kärntens,
Tschermaks Mineral. Petrogr. Mitt., 10, 586–594, 1965.
Gulson, B., Kamenov, G. D., Manton, W., and Rabinowitz, M.: Concerns about
Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the Environment
and Health Fields, Int. J. Environ. Res. Pub. Health, 15, 1–18, 2018.
Hanning, E.: Reconstructing Bronze Age Copper Smelting in the Alps: an
ongoing process, Experim. Archäo. Eur., 11, 75–86, 2012.
Haubner, R., Strobl, S., Klemm, S., and Trebsche, P.: Prähistorische
Kupfergewinnung im südöstlichen Niederösterreich –
archäometallurgische Untersuchungen an alten und neuen Fundstücken,
in: Beiträge zum Tag der Niederösterreichischen
Landesarchäologie 2015, edited by: Lauermann, E. and Trebsche, P. E.,
26–33, Katalog des Niederösterreichischen Landesmuseums N. F. 521,
Asparn/Zaya, 26–33, 2015.
Heiri, O., Lotter, A. F., Hausmann, S., and Kienast, F.: A chironomid-based
Holocene summer air temperature reconstruction from the Swiss Alps,
Holocene, 13, 477–484, 2003.
Herbert, B.: Urgeschiche und Römerzeit in der Steiermark. Geschichte der
Steiermark 1, Böhlau Verlag, Vienna, 2015.
Herzschuh, U.: Reliability of pollen ratios for environmental
reconstructions on the Tibetan Plateau, J. Biogeog., 34, 1265–1273, 2007.
Ho, Y. S., McKay, G., Wase, D. A. J., and Foster, C. F.: Study of the Sorption
of Divalent Metal Ions on to Peat, Adsor. Sci. Technol., 18, 639–650, 2000.
Hodgkins, S. B., Richardson, C. J., Dommain, R., Wang, H., Glaser, P. H.,
Brittany, V., Winkler, B. R., Cobb, A. R., Rich, V. I., Missilmani, M.,
Flanagan, N., Ho, M., Hoyt, A. M., Harvey, C. F., Vining, S. R., Hough, M.
A., Moore, T. R., Richard, P . J. H., De La Cruz, F. B., Toufaily, J.,
Hamdan, R., Cooper, W. T. C., and Chanton, J. P.: Tropical peatland carbon
storage linked to global latitudinal trends in peat recalcitrance, Nat.
Commun., 9, 1–13, https://doi.org/10.1038/s41467-018-06050-2 , 2018.
Holmgren, A. and Norden, B.: Characterization of peat samples by diffuse
reflectance FTIR spectroscopy, App. Spectrosc., 42, 255–262, 1988.
Hogue, B. A. and Inglett, P. W.: Nutrient release from combustion residues of
two contrasting herbaceous vegetation types, Sci. Total Environ., 431,
9–19, 2012.
Huang, T., Cheng, S., Mao, X., Hong, B., Hu, Z., and Zhou, Y.: Humification
degree of peat and its implications for Holocene climate change in Hani
peatland, Northeast China, Chin. J. Geochem., 32, 406–412, 2013.
Huber, K., Weckström, K., Drescher-Schneider, R., Knoll, J., Schmidt,
J., and Schmidt, R.: Climate changes during the last glacial termination
inferred from diatom-based temperatures and pollen in a sediment core from
Längsee (Austria), J. Paleolimn., 43, 131–147, 2010.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in
the European Alps, Quaternary Sci. Rev., 28, 2137–2149, 2009.
Judd, C. D. and Swami, K.: ICP-MS determinattion of lead isotope ratios in legal and couterfeit cigarette tobacco samples: Isotopes, Environ. Health Stud., 46, 484–494, 2010.
Kalbitz, K., Geyer, W., and Geyer, S.: Spectroscopic properties of dissolved
humic substances – a reflection of land use history in a fen area,
Biogeochemistry, 47, 219–238, 1999.
Keil, M. and Neubauer, F.: Initiation and development of a
fault-controlled, orogen-parallel overdeepened valley: the upper Enns
Valley, Austria, Aust. J. Earth Sci., 102, 80–90, 2009.
Kempter, H.: Der Verlauf des anthropogenen Elementeintrags in
Regenwassermoore des westlichen Mitteleuropas während des jüngeren
Holozäns, Gustav Fischer Verlag, Stuttgart, 1996.
Klemm, S.: Montanarchäologie in den Eisenerzer Alpen, in:
Montanarchäologie in den Eisenerzer Alpen, Steiermark.
Archäologische und naturwissenschaftliche Untersuchungen zum
prähistorischen Kupferbergbau in der Eisenerzer Ramsau, edited by:
Klemm, S., Verlag der Österreichischen Akademie der Wissenschaften,
Vienna, 11–43, 2003.
Knierzinger, W.: (Bio)geochemical data Pürgschachen Moor, PANGAEA, https://doi.org/10.1594/PANGAEA.919320, 2020.
Krachler, M., Mohl, C., Emons, H., and Shotyk, W.: Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry, Spectrochim. Acta B, 57, 1277–1289, 2002.
Kraus, S.: Archäometallurgische Studien zur bronzezeitlichen
Kupferverhütungstechnologie am Kupferschmelzplatz S1 in der Eisenerzer
Ramsau (Steiermark, Österreich), Dissertation, Eberhard Karls
Universität Tübingen, Germany, 147 pp., 2013, Tübingen, 2014.
Kucha, H. and Raith, J. G.: Gold-oxysulphides in copper deposits of the
greywacke Zone, Austria: a mineral chemical and infrared fluid inclusion
study, Ore Geo. Rev., 35, 87–100, 2009.
Kutschera, W., Patzelt, G., Steier, P., and Wild, E. M.: The Tyrolean Iceman
and his glacial environment during the Holocene, Radiocarbon, 59, 395–405,
2017:
Kylander, M. E., Weiss, D. J., Martínez-Cortizas, A., Spiro, B.,
Garcia-Sanchez, R., and Coles, B. J.: Refining the pre-industrial atmospheric
Pb isotope evolution curve in Europe using a 8000 year old peat core from NW
Spain, Earth Plan. Sci. Lett., 240, 467–485, 2005.
Kylander, M. E., Martínez-Cortizas, A., Bindler, R., Greenwod, S. L.,
Mörth, C. M., and Rauch, S.: Potentials and problems of building detailed
dust records using peat archives: An example from Store Mosse (the “Great
Bog”) Sweden, Geochim. Cosmochim. Acta, 190, 156–174, 2016.
Laflamme, J. H. G. and Cabri, L. J.: Silver and antimony contents of galena from the Brunswick No. 12 mine, CANMET Mineral Sci. Lab. Div. Rep. MSL, 86–138, 1–13, 1986.
Leifeld, J., Gubler, L., and Grünig, A.: Organic matter losses from
temperate ombrotrophic peatlands: an evaluation of the ash residue method,
Plant. Soil, 341, 349–361, 2011.
Longman, J., Veres, D., Finsinger, W., and Ersek, V.: Exceptionally high
levels of lead pollution in the Balkans from the Early Bronze Age to the
Industrial Revolution, P. Natl. Acad. Sci. USA, 115, E5661–E5668, 2018.
Lutz, J. and Pernicka, E.: Prehistoric copper from the Eastern Alps, Op. J.
Archaeometry, 1, 122–127, 2013.
Mariet, A. L., Bégeot, C., Gimbert, F., Gauthier, J., Fluck, P., and
Walter-Simonnet, A. V.: Past mining activities in the Vosges Mountains
(eastern France): Impact on vegetation and metal contamination over the past
millennium, Holocene, 26, 1225–1236, 2016.
Martínez-Cortizas, A., Pontevedra-Pombal, X., Garcıa-Rodeja, E.,
Novoa-Munoz, J. C., and Shotyk, W.: Mercury in a Spanish peat bog: archive of
climate change and atmospheric metal deposition, Science, 284, 939–942,
1999.
Martínez Cortizas, A., Biester, H., Mighall, T., and Bindler, R.: Climate-driven enrichment of pollutants in peatlands, Biogeosciences, 4, 905–911, https://doi.org/10.5194/bg-4-905-2007, 2007.
Mighall, T. M., Timberlake, S., Foster, I. D. L., Krupp, E., and Singh, S.:
Ancient copper and lead pollution records from a raised bog complex in
Central Wales, UK, J. Archaeol. Sci., 36, 1504–1515, 2009.
Mighall, T., Martínez-Cortizas, A., Silva-Sánchez, N., Foster,
I. D. L., Singh, S., Bateman, M., and Pickin, J.: Identifying evidence for
past mining and metallurgy from a record of metal contamination preserved in
an ombrotrophic mire near Leadhills, SW Scotland, UK, Holocene, 24,
1719–1730, 2014.
Mihaljevič, M., Zuna, M., Ettler, V., Šebek, O., Strnad, L., and
Goliáš, V.: Lead fluxes, isotopic and concentration profiles in a
peat deposit near a lead smelter (Příbram, Czech Republic), Sci.
Total Environ., 372, 334–344, 2006.
Millot, R., Allègre, C. J., Gaillardet, J., and Rox, S.: Lead isotopic
systematics of major river sediments: a new estimate of the Pb isotopic
composition of the Upper Continental Crust, Chem. Geo., 203, 75–90, 2004.
Miola, A.: Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of
Quaternary NPP types and reference literature in English language
(1972–2011), Rev. Palaeobot. Palyno., 186, 142–161, 2012.
Monna, F., Lancelot, J., Croudace, I. W., Cundy, A. B., and Lewis, J. T.: Pb
Isotopic Composition of Airborne Particulate Material from France and the
Southern United Kingdom: Implications for Pb Pollution Sources in Urban
Areas, Environ. Sci. Technol., 31, 2277–2287, 1997.
Monna, F., Galop, D., Carozza, L., Tual, M., Beyrie, A., Marembert, F.,
Chateau, C., Dominik, J., and Grousset, F. E.: Environmental impact of early
Basque mining and smelting recorded in a high ash minerogenic peat deposit,
Sci. Total Environ., 327, 197–214, 2004.
Nicolussi, K., Kaufmann, M., Patzelt, G., van der Plicht, J., and Thurner,
A.: Holocene tree-line variability in the Kauner Valley, Central Eastern
Alps, indicated by dendrochronological analysis of living trees and
subfossil logs, Veget. Hist. Archaeobot., 14, 221–234, 2005.
Niemeyer, J., Chen, Y., and Bollag, J. M.: Characterization of humic acids,
composts, and peat by diffuse reflectance Fourier-transform infrared
spectroscopy, Soil Sci. Soc. Am. J., 56, 135–140, 1992.
Novak, M., Zemanova, L., Voldrichova, P., Stepanova, M., Adamova, M.,
Pacherova, P., Komarek, A., Krachler, M., and Prechova, E.: Experimental
evidence for mobility/immobility of metals in peat, Environ. Sci. Technol.,
45, 7180–7187, 2011.
O'Brien, W.: Prehistoric Copper Mining in Europe. 5500–500 BC, Oxford
University Press, Oxford, 2015.
Olid, C., Garcia-Orellana, J., Martínez-Cortizas, A., Masqué, P.,
Peiteado-Varela, E., and Sanchez-Cabeza, J. A.: Multiple site study of recent
atmospheric metal (Pb,
Zn and Cu) deposition in the NW Iberian Peninsula using peat cores, Sci.
Total Environ., 408, 5540–5549, 2010.
Pernicka, E., Lutz, J., and Stöllner, T.: Bronze Age Copper Produced At
Mitterberg, Austria, and its Distribution, Arach. Austriaca, 100, 19–55,
2016.
Pichler, T., Nicolussi, K., Schröder, J., Stöllner, T., Thomas, P.,
and Thurner, A.: Tree-ring analyses on Bronze Age mining timber from the
Mitterberg Main Lode, Austria – did the miners lack wood?, J. Arch. Sci
Rep., 19, 701–711, 2018.
Pilarski, J., Waller, P., and Pickering, W.: Soprtion of antimony species by
humid acid, Water Air Soil Poll., 84, 51–59, 1995.
Pratte, S., Garneau, M., and De Vleeschouwer, F.: Late-Holocene atmospheric
dust deposition in eastern Canada (St. Lawrence North Shore), Holocene, 27,
12–25, 2017.
Preßlinger, H. and Köstler, H. J.: Zur Geschichte des
Eisenerzbergbaus am Blahberg bei Admont, Res. montanarum, 27, 21–26, 2002.
Preßlinger, H., Eibner, C., and Preßlinger, B.: Archäologische
Belege der bronzezeitlichen Kupfererzverhüttung im Paltental, Res.
Montanarum, 46, 35–45, 2009.
R Core Team: R: A Language and Environment for Statistical Computing,
available at: https://www.r-project.org (last access: 11 April
2020), 2018.
Rausch, N., Ukonmaanaho, L., Nieminen, T. M., Krachler, M., and Shotyk, W.:
Porewater evidence of metal (Cu, Ni, Co, Zn, Cd) mobilization in an
acidified, ombrotrophic peat bog impacted by a smelter, Harjavalta, Finland,
Environ. Sci. Technol., 39, 8207–8213, 2005.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk
Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes,
P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning,
S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R.,
Staff, R. A., Turney, C. S. M., and van der Plicht, J.: IntCal13 and Marine13
radiocarbon age calibration curves 0–50,000 years cal BP, Radiocarbon,
55, 1869–1887, 2013.
Röpke, A. and Krause, R.: High montane–subalpine soils in the Montafon
Valley (Austria, northern Alps) and their link to land-use, fire and
settlement history, Quaternary Int., 308–309, 178–189, 2013.
Rösch, M. and Lechterbeck, J.: Seven Millennia of human impact as
reflected in a high resolution pollen profile from the profundal sediments
of Litzelsee, Lake Constance region, Germany, Veg. Hist. Archaeobot., 25,
339–358, 2016.
Rothwell, J. J., Taylor, K. G., Chenery, S. R. N., Cundy, A. B., Evans, M. G., and
Allott, T. E. H.: Storage and Behavior of As, Sb, Pb, and Cu in Ombrotrophic
Peat Bogs under Contrasting Water Table Conditions, Environ. Sci. Technol.,
44, 8497–8502, 2010.
Schmidt, R., Kamenik, C., Tessadri, R., and Koinig, K. A.: Climatic changes
from 12,000 to 4,000 years ago in the Austrian Central Alps tracked by
sedimentological and biological proxies of a lake sediment core, J.
Paleolimon., 35, 491–505, 2006.
Schnyder, E., Štrok, M., Kosonen, Z., Skudnik, M., Mazej, D., Jeran, Z.,
and Thöni, L.: Lead concentrations and stable lead isotope ratios in
moss in Slovenia and Switzerland, Ecol. Indicat., 95, 250–259, 2018.
Schumann, W.: Der neue BLV Steine- und Mineralienführer, BLV
Verlagsgesellschaft mbH, München, 2002.
Segnana, M., Oeggl, K., Poto, L., Gabrieli, J., Festi, D., Kofler, W.,
Cesco-Frare, P., Zaccone, C., and Barbante, C.: Holocene vegetation history
and human impact in the eastern Italian Alps: a multi-proxy study on the
Coltrondo peat bog, Comelico Superiore, Italy, Veget. Hist. Archeobot., 29, 407–426,
https://doi.org/10.1007/s00334-019-00749-y, 2019.
Sharp, T. G. and Buseck, P. R.: The distribution of Ag and Sb in galena:
Inclusions versus solid solution, Am. Mineral., 78, 85–95, 1993.
Shotyk, W., Weiss, D., Kramers, J. D., Frei, R., Cheburkin, Gloor, M., and
Reese, S.: Geochemistry of the peat bog at Etang de Gruere, Jura Mountains,
Switzerland, and its record of atmsopheric Pb and lithogenic trace metals
(Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP, Geochim. Cosmochim. Acta,
65, 2337–2360, 2001.
Shotyk, W., Weiss, D., Heisterkamp, M., Cherbukin, A. K., Appleby, P. G., and
Adams, F. C.: New Peat Bog Record of Atmospheric Lead Pollution in
Switzerland: Pb Concentrations, Enrichment Factors, Isotopic Composition,
and Organolead Species, Eviron. Sci. Technol., 36, 3893–3900, 2002.
Shotyk, W., Krachler, M., and Chen, B.: Antimony in recent, ombrotrophic
peat from Switzerland and Scotland: Comparison with natural background
values (5,320 to 8,020 14C yr BP) and implication for the global atmospheric
Sb cycle, Global Biogeochem. Cy., 18, 1–13, 2004.
Shotyk, W., Kempter, H., Krachler, M., and Zaccone, C.: Stable (206Pb,
207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1 year of growth of
Sphagnum moss from four ombrotrophic bogs in southern Germany: Geochemical
significance and environmental implications, Geochim. Cosmochim. Acta, 163,
101–125, 2015.
Shotyk, W., Appleby, P. G., Bicalho, B., Davies, L. J., Froese, D.,
Grant-Weaver, I., Mangan, G., Mullan-Bourdreau, G., Noernberg, T.,
Pelletier, R., Shannon, B., van Bellen, S., and Zaccone, C.: Peat Bogs
Document Decades of Declining Atmospheric Contamination by Trace Metals in
the Athabasca Bituminous Sands Region, Environ. Sci. Technol., 51,
6237–6249, 2017.
Sîre, J., Klavins, M., Purmalis, O., and Melecis, V.: Experimental
study of peat humification indicators, Proc. Latv. Acad. Sci. Sect. B Nat.
Exact. Appl. Sci., 62, 18–26, 2008.
Smieja-Król, B. and Fiałkiewicz-Kozieł, B.: Quantitative
determination of minerals and anthropogenic particles in some Polish peat
occurrences using a novel SEM point-counting method, Environ. Monit.
Assess., 188, 2573–2587, 2014.
Stattegger, K.: Schwermineraluntersuchungen in der Östlichen
Grauwackenzone (Steiermark/Österreich) und deren statistische
Auswertung, Verh. Geol. B.-A., 1982, 107–121, 1982.
Steinnes, E.: Trace element profiles in ombrogenous peat cores from Norway:
Evidence of long range atmospheric transport, Water Air Soil Poll., 100,
405–413, 1997.
Stivrins, N., Ozola, I., Galka, M., Kuske, E., Alliksaar, T., Andersen,
T. J., Lamentowicz, M., Wulf, S., and Reitalu, T.: Drivers of peat
accumulation rate in a raised bog: impact of drainage, climate, and local
vegetation composition, Mires Peat, 19, 1–19, 2017.
Stockmarr, J.: Tablets with spores used in absolute pollen analysis, Pollen
et Spores, 13, 615–621, 1971.
Stöllner, T.: Der Mitterberg als Großproduzent für Kupfer in der
Bronzezeit: Fragestellungen und bisherige Ergebnisse, in: Die Geschichte des
Bergbaues in Tirol und seinen angrenzenden Gebieten. Proceedings zum 5.
Milestone-Meeting des SFB HiMAT vom 07.–10.10.2010 in Mühlbach, edited
by: Oeggl, K., Goldenberg, G., Stöllner, T., and Prast, M., Innsbruck
University Press, Innsbruck, 93–106, 2011.
Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., and Stevens, P. A.:
Predicting the release of metals from ombrotrophic peat due to
drought-induced acidification, Environ. Pollut., 123, 239–253, 2003.
Tolonen, K.: Interpretation of changes in the ash content of ombrotrophic
peat layers, B. Geol. Soc. Finland, 56, 207–219, 1984.
Ukonmaanaho, L., Nieminen, T. M., Rausch, N., and Shotyk, W.: Enrichment of
Cu, Ni, Zn, Pb and As in an ombrotrophic peat bog near a Cu-Ni smelter in
Southwest Finland, Sci. Total Environ., 292, 81–89, 2002.
Ukonmaanaho, L., Nieminen, T. M., Rausch, N., and Shotyk, W.: Heavy metal and
arsenic profiles in ombrogenous peat cores from four differently loaded
areas in Finland, Water Air Soil Pollut., 158, 277–294, 2004.
van der Knaap, W. O., Lametowicz, M., van Leeuwn, J. F. N., Hangartner, S.,
Leuenberger, M., Mauquoy, D., Goslar, T., Mitchell, E. A. D., Lamentowicz, L.,
and Kamenik, C.: A multi-proxy, high resolution record of a peatland
development and its drivers during the last millennium from the subalpine
Swiss Alps, Quaternary Sci. Rev., 30, 3467–3480, 2011.
van der Linden, M. and van Geel, B.: Late Holocene climate change and human
impact recorded in a south Swedish ombrotrophic peat bog, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 240, 649–667, 2006.
Von Post, L.: Das genetische System der Organogenen Bildungen Schwedens.
Memoires sur la nomenclature et la classification des sols, International
Committee of Soil Science, 287–304, Helsinki, 1924.
von Scheffer, C., Lange, A., De Vleeschouwer, F., Schrautzer, J., and Unkel,
I.: 6200 years of human activities and environmental change in the northern
central Alps, E&G Quat. Sci. J., 68, 13–28, 2019.
Wagreich, M.: Sedimentologie und Beckenentwicklung des tieferen Abschnittes
(Santon-Untercampan) der Gosauschichtgruppe von Gosau und Rußbach
(Oberösterreich-Salzburg), Jb. Geol. B.-A., 131, 663–685, 1988.
Wagreich, M. and Draganits, E.: Early mining and smelting lead anomalies in
geological archives as potential stratigraphic markers for the base of an
Early Anthropocene, Anthropocene Rev., 5, 177–201, 2018.
Walker, M., Head, M. J., Lowe, J., Berkelhammer, M., Björck, S., Cheng,
H., Cwynar, L., Fisher, D., Gkinis, V., Long, A., Newham, R., Rasmussen, S.,
and Weiss, H.: Subdividing the Holocene Series/Epoch: formalization of
stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary
stratotypes, J. Quat. Sci., 34, 1–14, 2019.
Weiss, D., Shoytk, W., Appleby, P. G., Kramers, J. D., and Cheburkin, A. K.:
Atmospheric Pb deposition since the Industrial Revolution recorded in five
Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and
sources, Environ. Sci. Technol., 33, 1340–1352, 1999.
Xiao, H., Cheng, S., Mao, X., Huang, T., Hu, Z., Zhou, Y., and Liu, X.:
Characteristics of peat humification, magnetic susceptibility and trace
elements of Hani peatland, northeastern China: paleoclimatic implications,
Atmos. Sci. Lett., 18, 140–150, 2017.
Yang, T. and Hodson, M. E.: The copper complexation ability of a synthetic
humic-like acid formed by an abiotic humification process and the effect of
experimental factors on its copper complexation ability, Environ. Sci. Poll.
Res., 25, 15873–15884, 2018.
Yang, Y., Wang, B., Guo, X., Zou, C. W., and Tan, X. D.: Investigating
adsorption performance of heavy metals onto humic acid from sludge using
Fourier-transform infrared combinend with two-dimensional correlation
spectroscopy, Envrion. Sci. Poll. Res., 26, 9842–9850, 2019.
Zhang, Y., Kong, Z., Wang, G., and Ni, J.: Anthropogenic and climatic
impacts on surface pollen assemblages along a precipitation gradient in
north-eastern China, Global Ecol. Biogeogr., 19, 621–631, 2010.
Short summary
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the ombrotrophic Pürgschachen Moor. Pronounced increases in cultural indicators suggest significant human activity in the Bronze Age and in the period of the late La Tène culture. We found strong, climate-controlled interrelations between the pollen record, the humification degree and the ash content. Human activity is reflected in the pollen record and by heavy metals.
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the...