Articles | Volume 70, issue 1 
            
                
                    
            
            
            https://doi.org/10.5194/egqsj-70-105-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-70-105-2021
                    © Author(s) 2021. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
A composite 10Be, IR-50 and 14C chronology of the pre-Last Glacial Maximum (LGM) full ice extent of the western Patagonian Ice Sheet on the Isla de Chiloé, south Chile (42° S)
                                            Instituto de Geografía, Facultad de Historia, Geografía y
Ciencia Política, Pontificia Universidad Católica de Chile, Avenida Vicuña
Mackenna 4860, Macul, Santiago, 782-0436, Chile
                                        
                                    Christopher Lüthgens
                                            Institute for Applied Geology, University of Natural Resources and
Life Sciences (BOKU), Vienna, 1190, Austria
                                        
                                    Rodrigo M. Vega
                                            Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5091000, Chile
                                        
                                    Ángel Rodés
                                            Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK
                                        
                                    Andrew S. Hein
                                            School of GeoSciences, University of Edinburgh, Edinburgh, Scotland, EH8 9XP, UK
                                        
                                    Steven A. Binnie
                                            Institut für Geologie und Mineralogie,
Universität zu Köln, Zülpicher Str. 49b, Gebäude 310, 50674,
Köln, Germany
                                        
                                    Related authors
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
                                    Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
                                            
                                            
                                        Gustav Firla, Markus Fiebig, Titus Rauter, and Christopher Lüthgens
                                    E&G Quaternary Sci. J., 74, 213–218, https://doi.org/10.5194/egqsj-74-213-2025, https://doi.org/10.5194/egqsj-74-213-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Glacio-lacustrine sediments from the overdeepened lower Salzach Valley were investigated. A 30 m long core retrieved sediments that could be identified as the “Salzburger Seeton”. Single-grain luminescence dating methods were applied on six samples spread over the whole depth of the core. The depositional age of these sediments was calculated to be 18.6 ± 0.9 ka. This time frame suggests that at least some shallow parts were filled by post-LGM (Last Glacial Maximum) lacustrine fine sediments.
                                            
                                            
                                        Joel Mohren, Hendrik Wiesel, Wulf Amelung, L. Keith Fifield, Alexandra Sandhage-Hofmann, Erik Strub, Steven A. Binnie, Stefan Heinze, Elmarie Kotze, Chris Du Preez, Stephen G. Tims, and Tibor J. Dunai
                                    Biogeosciences, 22, 1077–1094, https://doi.org/10.5194/bg-22-1077-2025, https://doi.org/10.5194/bg-22-1077-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We measured concentrations of nuclear fallout in soil samples taken from arable land in South Africa. We find that during the second half of the 20th century, the data strongly correlate with the organic matter content of the soils. The finding implies that wind erosion strongly influenced the loss of organic matter in the soils we investigated. Furthermore, the exponential decline of fallout concentrations and organic matter content over time peaks shortly after native grassland is ploughed.
                                            
                                            
                                        W. Marijn van der Meij, Arnaud J. A. M. Temme, Steven A. Binnie, and Tony Reimann
                                    Geochronology, 5, 241–261, https://doi.org/10.5194/gchron-5-241-2023, https://doi.org/10.5194/gchron-5-241-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We present our model ChronoLorica. We coupled the original Lorica model, which simulates soil and landscape evolution, with a geochronological module that traces cosmogenic nuclide inventories and particle ages through simulations. These properties are often measured in the field to determine rates of landscape change. The coupling enables calibration of the model and the study of how soil, landscapes and geochronometers change under complex boundary conditions such as intensive land management.
                                            
                                            
                                        Julien A. Bodart, Robert G. Bingham, Duncan A. Young, Joseph A. MacGregor, David W. Ashmore, Enrica Quartini, Andrew S. Hein, David G. Vaughan, and Donald D. Blankenship
                                    The Cryosphere, 17, 1497–1512, https://doi.org/10.5194/tc-17-1497-2023, https://doi.org/10.5194/tc-17-1497-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Estimating how West Antarctica will change in response to future climatic change depends on our understanding of past ice processes. Here, we use a reflector widely visible on airborne radar data across West Antarctica to estimate accumulation rates over the past 4700 years. By comparing our estimates with current atmospheric data, we find that accumulation rates were 18 % greater than modern rates. This has implications for our understanding of past ice processes in the region.
                                            
                                            
                                        Jacob Hardt, Nadav Nir, Christopher Lüthgens, Thomas M. Menn, and Brigitta Schütt
                                    E&G Quaternary Sci. J., 72, 37–55, https://doi.org/10.5194/egqsj-72-37-2023, https://doi.org/10.5194/egqsj-72-37-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We investigated the geomorphological and geological characteristics of the archaeological sites Hawelti–Melazo and the surroundings. We performed sedimentological analyses, as well as direct (luminescence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions, which we integrated into the wider context of Tigray.
                                            
                                            
                                        Tancrède P. M. Leger, Andrew S. Hein, Ángel Rodés, Robert G. Bingham, Irene Schimmelpfennig, Derek Fabel, Pablo Tapia, and ASTER Team
                                    Clim. Past, 19, 35–59, https://doi.org/10.5194/cp-19-35-2023, https://doi.org/10.5194/cp-19-35-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Over the past 800 thousand years, variations in the Earth’s orbit and tilt have caused antiphased solar insolation intensity in the Northern and Southern Hemispheres. Paradoxically, glacial records suggest that global ice sheets have responded synchronously to major cold glacial and warm interglacial episodes. To address this puzzle, we present a new detailed glacier chronology that estimates the timing of multiple Patagonian ice-sheet waxing and waning cycles over the past 300 thousand years.
                                            
                                            
                                        Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
                                    Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
                                            
                                            
                                        Christopher Lüthgens and Jacob Hardt
                                    DEUQUA Spec. Pub., 4, 29–39, https://doi.org/10.5194/deuquasp-4-29-2022, https://doi.org/10.5194/deuquasp-4-29-2022, 2022
                            Tibor János Dunai, Steven Andrew Binnie, and Axel Gerdes
                                    Geochronology, 4, 65–85, https://doi.org/10.5194/gchron-4-65-2022, https://doi.org/10.5194/gchron-4-65-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                We develop in situ-produced terrestrial cosmogenic krypton as a new tool to date and quantify Earth surface processes, the motivation being the availability of six stable isotopes and one radioactive isotope (81Kr, half-life 229 kyr) and of an extremely weathering-resistant target mineral (zircon). We provide proof of principle that terrestrial Krit can be quantified and used to unravel Earth surface processes.
                                            
                                            
                                        Sandra M. Braumann, Joerg M. Schaefer, Stephanie M. Neuhuber, Christopher Lüthgens, Alan J. Hidy, and Markus Fiebig
                                    Clim. Past, 17, 2451–2479, https://doi.org/10.5194/cp-17-2451-2021, https://doi.org/10.5194/cp-17-2451-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Glacier reconstructions provide insights into past climatic conditions and elucidate processes and feedbacks that modulate the climate system both in the past and present. We investigate the transition from the last glacial to the current interglacial and generate beryllium-10 moraine chronologies in glaciated catchments of the eastern European Alps. We find that rapid warming was superimposed by centennial-scale cold phases that appear to have influenced large parts of the Northern Hemisphere.
                                            
                                            
                                        Christopher Lüthgens, Daniela Sauer, and Michael Zech
                                    E&G Quaternary Sci. J., 69, 261–262, https://doi.org/10.5194/egqsj-69-261-2021, https://doi.org/10.5194/egqsj-69-261-2021, 2021
                            Joel Mohren, Steven A. Binnie, Gregor M. Rink, Katharina Knödgen, Carlos Miranda, Nora Tilly, and Tibor J. Dunai
                                    Earth Surf. Dynam., 8, 995–1020, https://doi.org/10.5194/esurf-8-995-2020, https://doi.org/10.5194/esurf-8-995-2020, 2020
                                    Short summary
                                    Short summary
                                            
                                                In this study, we comprehensively test a method to derive soil densities under fieldwork conditions. The method is mainly based on images taken from consumer-grade cameras. The obtained soil/sediment densities reflect 
                                            
                                        truevalues by generally > 95 %, even if a smartphone is used for imaging. All computing steps can be conducted using freeware programs. Soil density is an important variable in the analysis of terrestrial cosmogenic nuclides, for example to infer long-term soil production rates.
Cited articles
                        
                        Adamiec, G. and Aitken, M.: Dose-rate conversion factors: update, Ancient TL,
16, 37–50, 1998. 
                    
                
                        
                        Andersen, B. G., Denton, G. H., and Lowell, T. V.: Glacial geomorphologic maps of Llanquihue drift in the area of the southern Lake District, Chile,
Geogr. Ann. A, 81, 155–166, https://doi.org/10.1111/1468-0459.00056, 1999. 
                    
                
                        
                        Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for
feldspar IRSL using SAR, Radiat. Meas., 37, 487–492,
https://doi.org/10.1016/S1350-4487(03)00018-0, 2003. 
                    
                
                        
                        Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and
easily accessible means of calculating surface exposure ages or erosion
rates from 10Be and 26Al measurements,
Quat. Geochronol., 3, 174–195, https://doi.org/10.1016/j.quageo.2007.12.001, 2008. 
                    
                
                        
                        Barcaza, G., Nussbaumer, S. U., Tapia, G., Valdés, J., García, J. L.,
Videla, Y., Albornoz, A., and Arias, V.: Glacier inventory and recent glacier
variations in the Andes of Chile, South America, Ann. Glaciol., 58,
166–180, https://doi.org/10.1017/aog.2017.28, 2017. 
                    
                
                        
                        Bentley, M. J.: Relative and radiocarbon chronology of two former glaciers in
the Chilean Lake District, J. Quaternary Sci., 12, 25–33,
https://doi.org/10.1002/(SICI)1099-1417(199701/02)12:1<25::AID-JQS289>3.0.CO;2-A, 1997. 
                    
                
                        
                        Bierman, P. R., Caffee, M. W., Davies, P. D., Marsella, K., Pavich, M.,
Colgan, P., Mickelson, D., and Larsen, J.: Rates and Timing of Earth Surface
Processes From In Situ-Produced Cosmogenic Be-10,
Rev. Mineral. Geochem., 50, 147–205, https://doi.org/10.2138/rmg.2002.50.4, 2002. 
                    
                
                        
                        Blomdin, R., Murray, A., Thomsen, K., Buylaert, J.-P., Sohbati, R., Jansson,
K., and Alexanderson, H.: Timing of the deglaciation in southern Patagonia:
Testing the applicability of K-Feldspar IRSL, Quat. Geochronol., 10,
264–272, https://doi.org/10.1016/j.quageo.2012.02.019, 2012. 
                    
                
                        
                        Bøtter-Jensen, L., Bulur, E., Duller, G., and Murray, A.: Advances in
luminescence instrument systems, Radiat. Meas., 32, 523–528,
https://doi.org/10.1016/S1350-4487(00)00039-1, 2000. 
                    
                
                        
                        Bøtter-Jensen, L., Andersen, C., Duller, G., and Murray, A.: Developments
in radiation, stimulation and observation facilities in luminescence
measurements, Radiat. Meas., 37, 535–541, https://doi.org/10.1016/S1350-4487(03)00020-9, 2003. 
                    
                
                        
                        Cunningham, A. and Wallinga, J.: Realizing the potential of fluvial archives
using robust OSL chronologies, Quat. Geochronol., 12, 98–106,
https://doi.org/10.1016/j.quageo.2012.05.007, 2012. 
                    
                
                        
                        Dalton, A. S., Finkelstein, S. A., Forman, S. L., Barnett, P. J.,
Pico, T., and Mitrovica, J. X.: Was the Laurentide Ice Sheet significantly
reduced during Marine Isotope Stage 3? Geology, 47, 111–114, https://doi.org/10.1130/G45335.1, 2019. 
                    
                
                        
                        Darvill, C. M., Bentley, M. J., Stokes, C. R., Hein, A. S., and Rodés, A.: Extensive MIS 3 glaciation in southernmost Patagonia revealed by cosmogenic nuclide dating of outwash sediments, Earth Planet. Sc. Lett., 429, 157–169, https://doi.org/10.1016/j.epsl.2015.07.030, 2015. 
                    
                
                        
                        Darvill, C. M., Bentley, M. J., Stokes, C. R., and Shulmeister, J.: The timing and
cause of glacial advances in the southern mid-latitudes during the last
glacial cycle based on a synthesis of exposure ages from Patagonia and New Zealand, Quaternary Sci. Rev., 149, 200–214, https://doi.org/10.1016/j.quascirev.2016.07.024, 2016. 
                    
                
                        
                        Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., García, J.-L., Geiger, A., Glasser, N. F., Gheorghiu, D. M., Harrison, S., Hein, A. S., Kaplan, M. R., Martin, J. R. V., Mendelova. M., Palmer, A., Pelto, M., Rodés, A., Sagredo, E. A., Smedley, R., Smellie, J. L., and Thorndycraft, V. R.: The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE), Earth-Sci. Rev., 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020. 
                    
                
                        
                        Denton, G. H., Heusser, C. J., Lowell, T. V., Moreno, P. I., Andersen, B. G.,
Heusser, L. E., Schlühter, C., and Marchant, D. R.:
Interhemispheric linkage of paleoclimate during the last glaciation,
Geogr. Ann. A, 81, 107–153, https://doi.org/10.1111/1468-0459.00055, 1999a. 
                    
                
                        
                        Denton, G. H., Lowell, T. V., Moreno, P. I., Andersen, B. G., and
Schlühter, C.: Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the Southern Lake
District, Seno de Reloncaví and Isla Grande de Chiloé, Geogr. Ann. A, 81, 167–229, https://doi.org/10.1111/1468-0459.00057, 1999b. 
                    
                
                        
                        Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J.,
Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., and Klein, M.: CologneAMS, a dedicated center for accelerator mass spectrometry in Germany, Nucl. Instrum. Meth. B, 294, 18–23, https://doi.org/10.1016/j.nimb.2012.04.030, 2013. 
                    
                
                        
                        Doughty, A. M., Schaefer, J. M., Putnam, A. E., Denton, G. H., Kaplan,
M. R., Barrell, D. J. A., Andersen, B. G., Kelley, S. E., Finkel, R. C., and Schwartz, R.: Mismatch of glacier extent and summer insolation in Southern Hemisphere mid-latitudes, Geology, 43, 407–410, https://doi.org/10.1130/G36477.1, 2015. 
                    
                
                        
                        Duller, G. A. T.: Single grain optical dating of glacigenic deposits,
Quat. Geochronol., 1, 296–304, https://doi.org/10.1016/j.quageo.2006.05.018, 2006. 
                    
                
                        
                        Evans, D. J. A. and Twigg, D. R.: The active temperate glacial landsystem: a
model based on Breiðamerkurjökull and Fjallsjökull, Iceland,
Quaternary Sci. Rev., 21, 2143–2177, https://doi.org/10.1016/S0277-3791(02)00019-7, 2002. 
                    
                
                        
                        Evans, D. J. A., Phillips, E. R., Hiemstra, J. F., and Auton, C. A.: Subglacial till: formation, sedimentary characteristics and classification, Earth-Sci. Rev., 78, 115–176, https://doi.org/10.1016/j.earscirev.2006.04.001, 2006. 
                    
                
                        
                        Eyles, N., Eyles, C. H., and Miall, A. D.: Lithofacies types and vertical
profile models, an alternative approach to the description and environmental
interpretation of glacial diamict and diamictite sequences, Sedimentology,
30, 393–410, https://doi.org/10.1111/j.1365-3091.1983.tb00679.x, 1983. 
                    
                
                        
                        Galbraith, R., Roberts, R., Laslett, G., Yoshida, H., and Olley, J.: Optical
dating of single and multiple grains of Quartz from Jinmium rock shelter,
northern Australia: Part I, experimental design and statistical models,
Archaeometry, 41, 339–364, https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999. 
                    
                
                        
                        García, J.-L.: Late Pleistocene ice fluctuations and glacial
geomorphology of the Archipiélago de Chiloé, southern Chile,
Geogr. Ann. A, 94, 459–479, https://doi.org/10.1111/j.1468-0459.2012.00471.x, 2012. 
                    
                
                        
                        García, J.-L., Hein, A. S., Binnie, S. A., Gómez, G. A., González, M. A., and Dunai, T. J.: The MIS 3 maximum of the Torres del Paine and Última
Esperanza ice lobes in Patagonia and the pacing of southern mountain
glaciation, Quaternary Sci. Rev., 185, 9–26, https://doi.org/10.1016/j.quascirev.2018.01.013, 2018. 
                    
                
                        
                        García, J.-L., Maldonado, A., de Porras, M. E., Nuevo Delaunay, A.,
Reyes, O., Ebensperger, C. A., Binnie, S. A., Lüthgens, C., and
Méndez, C.: Early deglaciation and paleolake history of Río Cisnes
Glacier, Patagonian Ice Sheet (44∘ S), Quaternary Res., 91,
194–217, https://doi.org/10.1017/qua.2018.93, 2019. 
                    
                
                        
                        Garreaud, R. D.: Precipitation and circulation covariability in the
extratropics, J. Climate, 20, 4789–4797, https://doi.org/10.1175/JCLI4257.1, 2007. 
                    
                
                        
                        Garreaud, R. D., Vuille, M., Compagnucci, R., and Marengo, J.: Present-day South America climate, Palaeogeogr. Palaeocl., 281, 180–195, https://doi.org/10.1016/j.palaeo.2007.10.032, 2009. 
                    
                
                        
                        Garreaud, R. D., Lopez, P., Minvielle, M., and Rojas, M.: Large-scale control on the patagonian Climate, J. Climate, 26, 215–230, https://doi.org/10.1175/JCLI-D-12-00001.1, 2013. 
                    
                
                        
                        Glasser, N., Harrison, S., Ivy-Ochs, S., Duller, G., and Kubik, P.: Evidence
from the Rio Bayo valley on the extent of the north Patagonian ice field
during the late Pleistocene-Holocene transition, Quaternary Res., 65,
70–77, https://doi.org/10.1016/j.yqres.2005.09.002, 2006. 
                    
                
                        
                        Harrison, S., Glasser, N., Winchester, V., Haresign, E., Warren, C., Duller,
G., Bailey, R., Ivy-Ochs, S., Jansson, P., and Kubik, P.: Glaciar León,
Chilean Patagonia: late-Holocene chronology and geomorphology, Holocene,
18, 643–652, https://doi.org/10.1177/0959683607086771, 2008. 
                    
                
                        
                        Hein, A. S.: Quaternary Glaciations in the Lago Pueyrredon Valley, Argentina,
PhD thesis, The University of Edinburgh, Edinburgh, Scotland, 2009. 
                    
                
                        
                        Hein, A. S., Hulton, N. R. J., Dunai, T. J., Schnabel, C., Kaplan, M. R., Naylor, M., and Xu, S.: Middle Pleistocene glaciation in Patagonia dated by
cosmogenic-nuclide measurements on outwash gravels, Earth Planet. Sc. Lett., 286, 184–197, https://doi.org/10.1016/j.epsl.2009.06.026, 2009. 
                    
                
                        
                        Heusser, C. J. and Flint, R. F.: Quaternary glaciations and environments of
northern Isla Grande de Chiloé, Chile, Geology, 5, 305–308, https://doi.org/10.1130/0091-7613(1977)5<305:QGAEON>2.0.CO;2, 1977. 
                    
                
                        
                        Heusser, C. J., Lowell, T. V., Heusser, L. E., Hauser, A., Andersen, B. G., and Denton, G. H.: Full-glacial–late-glacial palaeoclimate of the Southern
Andes: evidence from pollen, beetle, and glacial records, J. Quaternary Sci., 11, 173–184, https://doi.org/10.1002/(SICI)1099-1417(199605/06)11:3<173::AID-JQS237>3.0.CO;2-5, 1996. 
                    
                
                        
                        Heusser, C. J., Heusser, L. E., and Lowell, T. V.: Paleoecology of the southern
Chilean Lake District – Isla Grande de Chiloé during middle-Late
Llanquihue glaciation and deglaciation, Geogr. Ann. A, 81, 231–284, https://doi.org/10.1111/1468-0459.00058, 1999. 
                    
                
                        
                        Hidy, A. J., Gosse, J. C., Pederson, J. L., Mattern, J. P., and Finkel, R.
C.: A geologically constrained Monte Carlo approach to modeling
exposure ages from profiles of cosmogenic nuclides: An example from Lees
Ferry, Arizona, Geochem. Geophy. Geosy., 11, Q0AA10,
https://doi.org/10.1029/2010GC003084, 2010. 
                    
                
                        
                        Hogg, A. G., Hua, Q., Blackwell, P. G., Niu, M., Buck, C. E., Guilderson, T. P., Heaton, T. J., Palmer, J. G., Reimer, P. J., Reimer, R. W., Turney, C. S. M., and Zimmerman, S. R. H.: SHCal13 Southern Hemisphere Calibration, 0–50 000 Years cal BP, Radiocarbon, 55, 1889–1903, https://doi.org/10.2458/azu_js_rc.55.16783, 2013. 
                    
                
                        
                        Hubbard, A., Hein, A. S., Kaplan, M. R., Hulton, N. R. J., and Glasser, N.: A
reconstruction of the late glacial maximum ice sheet and its deglaciation in
the vicinity of the Northern Patagonian Icefield, South America,
Geogr. Ann. A, 87, 375–391, https://doi.org/10.1111/j.0435-3676.2005.00264.x, 2005. 
                    
                
                        
                        Huntley, D. and Baril, M.: The K content of the K-feldspars being measured in
optical and thermoluminescence dating, Ancient TL, 15, 11–13, 1997. 
                    
                
                        
                        Huntley, D. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars
and the measurement and correction for it in optical dating,
Can. J. Earth Sci., 38, 1093–1106, https://doi.org/10.1139/e01-013, 2001. 
                    
                
                        
                        Ivy-Ochs, S., Kerschner, H., Reuther, A., Preusser, F., Heine, K., Maisch,
M., Kubik, P. W., and Schlüchter, C.: Chronology of the last glacial cycle in the European Alps, J. Quaternary Sci., 23, 559–573, https://doi.org/10.1002/jqs.1202, 2008. 
                    
                
                        
                        Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G. Falourd,S., Hoffmann, G. Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M., and Wolff, E. W.: Orbital and millennial Antarctic climate variability over the past 800 000 years, Science, 317, 793–796, https://doi.org/10.1126/science.1141038, 2007. 
                    
                
                        
                        Kaiser, J. and Lamy, F.: Links between Patagonian Ice Sheet fluctuations and
Antarctic dust variability during the last glacial period (MIS 4-2), Quaternary Sci. Rev., 29, 1464–1471, https://doi.org/10.1016/j.quascirev.2010.03.005,
2010. 
                    
                
                        
                        Kaiser, J., Lamy, F., and Hebblen, D.: A 70 kyr sea surface temperature
record off southern Chile (Ocean Drilling Program Site 1233),
Paleoceanography, 20, PA4009, https://doi.org/10.1029/2005PA001146, 2005. 
                    
                
                        
                        Kaplan, M. R., Strelin, J. A., Schaefer, J. M., Denton, G. H., Finkel, R. C., Schwartz, R., Putnam, A. E., Vandergoes, M. J., Goehring, B. M., and Travis, S. G.: In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology, Earth Planet. Sc. Lett., 309, 21–32, https://doi.org/10.1016/j.epsl.2011.06.018, 2011. 
                    
                
                        
                        Kelley, S. E., Kaplan, M. R., Schaefer, J. M., Andersen, B. G., Barrell, D. J. A., Putnam, A. E., Denton, G. H., Schwartz, R., Finkel, R. C., and Doughty, A. M.: High-precision 10Be chronology of moraines in the Southern Alps indicates synchronous cooling in Antarctica and New Zealand 42 000 years ago, Earth Planet. Sc. Lett., 405, 194–206, https://doi.org/10.1016/j.epsl.2014.07.031, 2014. 
                    
                
                        
                        Kohl, C. P. and Nishiizumi, K.: Chemical isolation of quartz for measurement
of in-situ-produced cosmogenic nuclides,
Geochim. Cosmochim. Ac., 56, 3583–3587, https://doi.org/10.1016/0016-7037(92)90401-4, 1992. 
                    
                
                        
                        Kreutzer, S., Schmidt, C., Fuchs, M., Dietze, M., and Fuchs, M.: Introducing
an R package for luminescence dating analysis, Ancient TL, 30, 1–8, 2012. 
                    
                
                        
                        Kulig G.: Erstellung einer Auswertesoftware zur Altersbestimmung mittels
Lumineszenzverfahren unter spezieller Berücksichtigung des Einflusses
radioaktiver Ungleichgewichte in der 238U-Zerfallsreihe, B.Sc. thesis,
Technische Universität Bergakademie, Freiberg, Germany, 35 pp., 2005. 
                    
                
                        
                        Lal, D.: Cosmic ray labeling of erosion surfaces: in-situ nuclide production
rates and erosion models, Earth Planet. Sc. Lett., 104,
424–439, https://doi.org/10.1016/0012-821X(91)90220-C, 1991. 
                    
                
                        
                        Lambert, F., Delmonte, B., Petit, J., Bigler, M., Kaufmann, P., Hutterli, M.,
Stocker, T., Ruth, U., Steffensen, J., and Maggi, V.: Dust-climate couplings
over the past 800 000 years from the EPICA Dome C ice core, Nature, 452,
616–619, https://doi.org/10.1038/nature06763, 2008. 
                    
                
                        
                        Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., and Stoner, J.:
Antarctic timing of surface water changes off Chile and Patagonian Ice Sheet
response, Science, 304, 1959–1962, https://doi.org/10.1126/science.1097863, 2004. 
                    
                
                        
                        Lamy, F., Arz, H. W., Kilian, R., Lange, C. B., Lembke-Jene, L., Wengler, M.,
Kaiser, J., Baeza-Urrea, O., Hall, I. R., Harada, N., and Tiedemann, R.:
Glacial reduction and millennial scale variations in Drake Passage
throughflow, P. Natl. Acad. Sci. USA, 112, 13496–13501, https://doi.org/10.1073/pnas.1509203112, 2015. 
                    
                
                        
                        Laugénie, C.: La Région des Lacs, Chili Meridional, PhD diss.,
Universit de Bordeaux, France, 1982. 
                    
                
                        
                        Lifton, N., Sato, T., and Dunai, T.: Scaling in situ cosmogenic nuclide
production rates using analytical approximations to atmospheric cosmic-ray
fluxes, Earth Planet. Sc. Lett., 386, 149–160, https://doi.org/10.1016/j.epsl.2013.10.052, 2014. 
                    
                
                        
                        Lovejoy, S. and Lambert, F.: Spiky fluctuations and scaling in high-resolution EPICA ice core dust fluxes, Clim. Past, 15, 1999–2017, https://doi.org/10.5194/cp-15-1999-2019, 2019. 
                    
                
                        
                        Lowell, T. V., Heusser, C. J., Andersen, B. G., Moreno, P. I., Hauser, A.,
Heusser, L. E., Schlüchter, C., Marchant, D. R., and Denton, G. H.:
Interhemispheric correlation of late Pleistocene glacial events, Science,
269, 1541–1549, https://doi.org/10.1126/science.269.5230.1541, 1995. 
                    
                
                        
                        Luebert, F. and Pliscoff, P.: Sinopsis bioclimática y vegetacional de
Chile, Editorial Universitaria, Santiago, Chile, ISBN 956-11-1832-7, 2006. 
                    
                
                        
                        Lüthgens, C., Neuhuber, S., Grupe, S., Payer, T., Peresson, M., and Fiebig, M.: Geochronological investigations using a combination of luminescence and
cosmogenic nuclide burial dating of drill cores from the Vienna Basin,
Z. Dtsch. Ges. Geowiss., 168, 115–140, https://doi.org/10.1127/zdgg/2017/0081, 2017. 
                    
                
                        
                        Maizels, J.: Lithofacies variations within sandur deposits: the role of
runoff regime, flow dynamics and sediment supply characteristics,
Sediment. Geol., 85, 299–325, https://doi.org/10.1016/0037-0738(93)90090-R, 1993. 
                    
                
                        
                        Manger, G. E.: Porosity and bulk density of sedimentary rocks, USGS
Publications Warehouse, Washington D.C., Bulletin 1144-E, 55 pp., https://doi.org/10.3133/b1144E, 1963. 
                    
                
                        
                        Mayr, C., Stojakowits, P., Lempe, B., Blaauw, M., Diersche, V., Grohganz,
M., López Correa, M., Ohlendorf, C., Reimer, P., and Zolitschka, B.:
High-resolution geochemical record of environmental changes during MIS 3
from the northern Alps (Nesseltalgraben, Germany), Quaternary Sci. Rev., 218, 122–136, https://doi.org/10.1016/j.quascirev.2019.06.013, 2019. 
                    
                
                        
                        Mejdahl, V.: Thermoluminescence dating: beta attenuation in quartz grains,
Achaeometry, 21, 61–73, 1979. 
                    
                
                        
                        Mendelová, M., Hein, A. S., Rodés, A., and Xu, S.: Extensive mountain
glaciation in central Patagonia during marine isotope stage 5, Quaternary Sci. Rev., 227, 105996, https://doi.org/10.1016/j.quascirev.2019.105996, 2020. 
                    
                
                        
                        Menzies, J.: Strain pathways, till internal architecture and microstructures
– perspectives on a general kinematic model – a “blueprint” for till
development, Quaternary Sci. Rev., 50, 105–124, https://doi.org/10.1016/j.quascirev.2012.07.012, 2012. 
                    
                
                        
                        Menzies, J., van der Meer, J. J. M., and Rose, J.: Till – as a glacial
“tectomict”, its internal architecture, and the development of a
“typing” method for till differentiation, Geomorphology, 75, 172–200,
https://doi.org/10.1016/j.geomorph.2004.02.017, 2006. 
                    
                
                        
                        Mercer, J. H.: Chilean glacial chronology 20 000 to 11 000 carbon – 14 years ago: some global comparisons, Science 172, 1118–1120, https://doi.org/10.1126/science.176.4039.1118, 1972. 
                    
                
                        
                        Mercer, J. H.: Glacial history of southernmost South America, Quaternary Res., 6, 125–166, https://doi.org/10.1016/0033-5894(76)90047-8, 1976. 
                    
                
                        
                        Miall, A. D.: Architectural-Element Analysis: A New Method of Facies
Analysis Applied to Fluvial Deposits, Earth-Sci. Rev., 22, 261–308,
https://doi.org/10.1016/0012-8252(85)90001-7, 1985. 
                    
                
                        
                        Miall, A. D.: The Geology of Fluvial Deposits: Sedimentary facies, basin
analysis and petroleum geology, Springer, Berlin, Germany, 582 pp., https://doi.org/10.1007/978-3-662-03237-4, 2006. 
                    
                
                        
                        Miller, J. H.: The climate of Chile, in: Climates of Central and South America, edited by: Schwerdtfeger, W., World Survey of
Climatology, Elsevier, Amsterdam, The Netherlands, 113–145, 1976. 
                    
                
                        
                        NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second,
NASA EOSDIS Land Processes DAAC, USA, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013. 
                    
                
                        
                        Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C.,
and McAninch, J.: Absolute calibration of Be-10 AMS standards,
Nucl. Instrum. Meth. B, 258, 403–413, https://doi.org/10.1016/j.nimb.2007.01.297, 2007. 
                    
                
                        
                        Parducci, L., Jorgensen, T., Tollefsrud, M. M., Elverland, E., Alm, T., Fontana, S. L., Bennett, K. D., Haile, J., Matetovici, I., Suyama, Y., Edwards, M. E., Andersen, K., Rasmussen, M., Boessenkool, S., Coissac, E., Brochmann, C., Taberlet, P., Houmark-Nielsen, M., Larsen, N. K., Orlando, L., Gilbert, M. T. P, Kjær, K. H., Greve, Alsos, I. G., and Willerslev, E.:
Glacial survival of boreal trees in northern Scandinavia, Science, 335,
1083–1086, https://doi.org/10.1126/science.1216043., 2012. 
                    
                
                        
                        Parrenin, F., Masson-Delmotte, V., Koehller, P., Raynud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., and Jouzel, J.: Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming, Science, 339, 1060–1063, https://doi.org/10.1126/science.1226368, 2013. 
                    
                
                        
                        Porter, S.: Pleistocene Glaciations in the Southern Lake District of Chile,
Quaternary Res., 8, 2–31, https://doi.org/10.1016/0033-5894(81)90013-2, 1981. 
                    
                
                        
                        Prescott, J. and Hutton J.: Cosmic ray distributions to dose rates for
luminescence and ESR dating: large depths and long-term variations,
Radiat. Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994. 
                    
                
                        
                        Prescott, J. and Stephan, L.: The contribution of cosmic radiation to the
environmental dose for thermoluminescent dating – Latitude, altitude and
depth dependencies, PACT. Revue du Groupe Européen d'Etudes pour les Techniques Physiques, Chimiques et Mathématiques Appliquées à l'Archéologie, 6, 17–25, 1982. 
                    
                
                        
                        Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J. Q. G.: Luminescence dating: basics, methods and applications, E&G Quaternary Sci. J., 57, 95–149, https://doi.org/10.3285/eg.57.1-2.5, 2008. 
                    
                
                        
                        Putnam, A. E., Schaefer, J. M., Denton, G. H., Barrell, D. J. A., Birkel, S. D., Andersen, B. G., Kaplan, M. R., Finkel, R. C., Schwartz, R., and Doughty, A. M.: The Last Glacial Maximum at 44∘ S documented by a 10BE moraine chronology at Lake Ohau, Southern Alps of New Zealand, Quaternary Sci. Rev., 62, 114–141, https://doi.org/10.1016/j.quascirev.2012.10.034, 2013. 
                    
                
                        
                        Rhodes, E.: Optically Stimulated Luminescence Dating of Sediments over the
Past 200 000, Annu. Rev. Earth. Pl. Sc., 39, 461–488,
https://doi.org/10.1146/annurev-earth-040610-133425, 2011. 
                    
                
                        
                        Rodés, Á., Pallàs, R., Braucher, R., Moreno, X., Masana, E.,
and Bourlés, D. L.: Effect of density uncertainties in cosmogenic 10BE
depth-profiles: dating a cemented Pleistocene alluvial fan (Carboneras
Fault, SE Iberia), Quat. Geochronol., 6, 186–194, https://doi.org/10.1016/j.quageo.2010.10.004, 2011. 
                    
                
                        
                        Roig, F. A., Le-Quesne, C., Boninsegna, J. A., Briffa, K. R., Lara, A., Grudd, H., Jones, P. D., and Villagrán, C.: Climate variability 50 000 years ago in
mid-latitide Chile as reconstructed from tree rings, Nature, 410, 567–570,
https://doi.org/10.1038/35069040, 2001. 
                    
                
                        
                        Sagredo, E. A., Moreno, P. I., Villa-Martinez, R., Kaplan, M. R., Kubik, P. W., and Stern, C. R.: Fluctuations of the Última Esperanza ice lobe (52∘ S), Chilean Patagonia, during the last glacial maximum and termination 1, Geomorphology, 125, 92–108, https://doi.org/10.1016/j.geomorph.2010.09.007, 2011. 
                    
                
                        
                        Schaefer, J. M., Putnam, A. E., Denton, G. H., Kaplan, M. R., Birkel, S., Ninneman, U. S., Barker, S., Schwartz, R., Andersen, B. J., and Schluechter, C.: The southern glacial maximum 65 000 years ago and its unfinished termination, Quaternary Sci. Rev., 114, 52–60,https://doi.org/10.1016/j.quascirev.2015.02.009, 2015. 
                    
                
                        
                        Shackleton, N. J., Hall, M. A., and Vincent, E.: Phase relationships between
millennial-scale events 64 000–24 000 years ago, Paleoceanography, 15,
565–569, https://doi.org/10.1029/2000PA000513, 2000. 
                    
                
                        
                        Shulmeister, J., Thackray, G. D., Rieser, U., Hyatt, O. M., Rother, H., Smart, C. C., and Evans, D. J.: The stratigraphy, timing and climatic implications of
glaciolacustrine deposits in the middle Rakaia Valley, South Island, New
Zealand, Quaternary Sci. Rev., 29, 2362–2381, https://doi.org/10.1016/j.quascirev.2010.06.004, 2010. 
                    
                
                        
                        Smedley, R. K., Glasser, N. F., and Duller, G. A. T.: Luminescence dating of glacial advances at Lago Buenos Aires (∼ 46∘ S), Patagonia, Quaternary Sci. Rev., 134, 59–73, https://doi.org/10.1016/j.quascirev.2015.12.010, 2016. 
                    
                
                        
                        Strub, P. T., Mesias, J. M., Montecino, V., Ruttlant, J., and Salinas, S.:
Coastal ocean circulation off western South America, in: The Global Coastal
Ocean: Regional Studies and Synthesis, edited by: Robinson, A. R. and Brink
K. H., John Wiley, New York, USA, 273–315, 1998. 
                    
                
                        
                        Stuiver, M., Reimer, P. J., and Reimer, R. W.: CALIB 7.1 [WWW program], available at: http://calib.org, last access: 16 April 2020. 
                    
                
                        
                        Sugden, D. E., McCulloch, R. D., Bory, A. J.-M., and Hein, A. S.: Influence of
Patagonian glaciers on Antarctic dust deposition during the last glacial
period, Nat. Geosci., 2, 281–285, https://doi.org/10.1038/ngeo474, 2009.
 
                    
                
                        
                        Villagrán, C.: Expansion of Magellanic moorland during the Late
Pleistocene: palynological evidence from northern Isla Grande de Chiloé,
Quaternary Res., 30, 304–314, https://doi.org/10.1016/0033-5894(88)90006-3, 1988. 
                    
                
                        
                        Villagrán, C.: Glacial, Late-Glacial, and Post-Glacial climate and
vegetation of the Isla Grande de Chiloé, Southern Chile (41–44∘ S), Quat. S. Am. A., 8, 1–15, 1990. 
                    
                
                        
                        Villagrán, C., León, A., and Roig, F. A.: Paleodistribución del
alerce y ciprés de las Guaitecas durante períodos interestadiales
de la Glaciación Llanquihue: provincias de Llanquihue y Chiloé,
Región de Los Lagos, Chile, Rev. Geol. Chile, 31,
133–151, https://doi.org/10.4067/S0716-02082004000100008, 2004. 
                    
                
                        
                        Villagrán, C., Abarzúa, A. M., and Armesto, J.: Nuevas evidencias
paleobotánicas y filogeográficas en torno a la historia Cuaternaria
de los bosques subtropical-templados de la Cordillera de la Costa de Chile,
in: Biodiversidad y Ecología de
los bosques costeros de Chile, edited by: Smith-Ramirez, C. and Squeo, F., Editorial Universidad de Los Lagos, Chile, 3–21, 2019. 
                    
                
                        
                        WAIS Divide Project Members: Precise interpolar phasing of abrupt climate
change during the last ice age, Nature, 520, 661–665, https://doi.org/10.1038/nature14401, 2015. 
                    
                
                        
                        Williams, P. W., McGlone, M., Neil, H., and Zhao, J.-X.: A review of New Zealand
palaeoclimate from the last interglacial to the global last glacial maximum,
Quaternary Sci. Rev., 110, 92–106, https://doi.org/10.1016/j.quascirev.2014.12.017, 2015. 
                    
                
                        
                        Wintle, A.: Anomalous Fading of Thermo-luminescence in Mineral Samples,
Nature, 245, 143–144, https://doi.org/10.1038/245143a0, 1973. 
                    
                
                        
                        Wintle, A.: Luminescence dating: where it has been and where it is going,
Boreas, 37, 471–482, https://doi.org/10.1111/j.1502-3885.2008.00059.x, 2008. 
                    
                Short summary
            The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
            The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent....