Articles | Volume 71, issue 1
https://doi.org/10.5194/egqsj-71-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-71-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Late Quaternary landform evolution and sedimentary successions in the Miaoli Tableland, northwestern Taiwan
Shih-Hung Liu
CORRESPONDING AUTHOR
Institute of Geographical Sciences, Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
Robert Hebenstreit
Institute of Geographical Sciences, Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
Margot Böse
Institute of Geographical Sciences, Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
Related authors
No articles found.
Bernhard Diekmann, Werner Stackebrandt, Roland Weiße, Margot Böse, Udo Rothe, Boris Biskaborn, and Achim Brauer
DEUQUA Spec. Pub., 4, 5–17, https://doi.org/10.5194/deuquasp-4-5-2022, https://doi.org/10.5194/deuquasp-4-5-2022, 2022
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Christopher Lüthgens and Margot Böse
E&G Quaternary Sci. J., 67, 85–86, https://doi.org/10.5194/egqsj-67-85-2019, https://doi.org/10.5194/egqsj-67-85-2019, 2019
Margot Böse
E&G Quaternary Sci. J., 66, 131–131, https://doi.org/10.5194/egqsj-66-131-2018, https://doi.org/10.5194/egqsj-66-131-2018, 2018
Related subject area
Geomorphology
What do dust sinks tell us about their sources and past environmental dynamics? A case study for oxygen isotope stages 3–2 in the Middle Rhine Valley, Germany
Pleniglacial dynamics in an oceanic central European loess landscape
On the expression and distribution of glacial trimlines: a case study of Little Ice Age trimlines on Svalbard
A tribute to Büdel (1951): The climatic zones of the ice age
A tribute to Louis (1952): On the theory of glacial erosion in valleys
A tribute to Woldstedt (1952): Problems of terrace formation
A tribute to Rohdenburg (1970): Morphodynamic activity and stability phases instead of pluvial and interpluvial times
A first outline of the Quaternary landscape evolution of the Kashaf Rud River basin in the drylands of northeastern Iran
Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating
Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany
Disestablishing “Glacial Lake Speight”, New Zealand? An example for the validity of detailed geomorphological assessment with the study of mountain glaciations
Reconsidering the origin of the Sedrun fans (Graubünden, Switzerland)
Mathias Vinnepand, Peter Fischer, Ulrich Hambach, Olaf Jöris, Carol-Ann Craig, Christian Zeeden, Barry Thornton, Thomas Tütken, Charlotte Prud'homme, Philipp Schulte, Olivier Moine, Kathryn E. Fitzsimmons, Christian Laag, Frank Lehmkuhl, Wolfgang Schirmer, and Andreas Vött
E&G Quaternary Sci. J., 72, 163–184, https://doi.org/10.5194/egqsj-72-163-2023, https://doi.org/10.5194/egqsj-72-163-2023, 2023
Short summary
Short summary
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing detailed information on Quaternary environmental and climate changes. We present an integrative approach combining sedimentological, rock magnetic, and bulk geochemical data, as well as information on Sr and Nd isotope composition. The approach adds to a comprehensive understanding of LPS formation including changes in dust composition and associated circulation patterns during Quaternary climate changes.
Stephan Pötter, Katharina Seeger, Christiane Richter, Dominik Brill, Mathias Knaak, Frank Lehmkuhl, and Philipp Schulte
E&G Quaternary Sci. J., 72, 77–94, https://doi.org/10.5194/egqsj-72-77-2023, https://doi.org/10.5194/egqsj-72-77-2023, 2023
Short summary
Short summary
We reconstructed a wetland environment for a late Middle to Upper Pleniglacial (approx. 30–20 ka) loess sequence in western Germany. Typically, these sequences reveal terrestrial conditions with soil formation processes during this time frame. The here-investigated section, however, was influenced by periodical flooding, leading to marshy conditions and a stressed ecosystem. Our results show that the landscape of the study area was much more fragmented during this time than previously thought.
Camilla M. Rootes and Christopher D. Clark
E&G Quaternary Sci. J., 71, 111–122, https://doi.org/10.5194/egqsj-71-111-2022, https://doi.org/10.5194/egqsj-71-111-2022, 2022
Short summary
Short summary
Glacial trimlines are visible breaks in vegetation or landforms that mark the former extent of glaciers. They are often observed as faint lines running across valley sides and are useful for mapping the three-dimensional shape of former glaciers or for assessing by how much present-day glaciers have thinned and retreated. Here we present the first application of a new trimline classification scheme to a case study location in central western Spitsbergen, Svalbard.
Jef Vandenberghe
E&G Quaternary Sci. J., 70, 205–207, https://doi.org/10.5194/egqsj-70-205-2021, https://doi.org/10.5194/egqsj-70-205-2021, 2021
Short summary
Short summary
A main element in Büdel's concept is his quite provocative link between climate zones and geomorphological processes, a strong relation which was frequently contested later. Büdel's contribution is still relevant in modern times as the present-day climatic change will probably also invoke a poleward shift of climatic zones, accompanied by associated shifts in geomorphological environments and ecosystems.
Pierre G. Valla
E&G Quaternary Sci. J., 70, 209–212, https://doi.org/10.5194/egqsj-70-209-2021, https://doi.org/10.5194/egqsj-70-209-2021, 2021
James Rose, David R. Bridgland, and Rob Westaway
E&G Quaternary Sci. J., 70, 217–220, https://doi.org/10.5194/egqsj-70-217-2021, https://doi.org/10.5194/egqsj-70-217-2021, 2021
Dominik Faust and Markus Fuchs
E&G Quaternary Sci. J., 70, 243–246, https://doi.org/10.5194/egqsj-70-243-2021, https://doi.org/10.5194/egqsj-70-243-2021, 2021
Azra Khosravichenar, Morteza Fattahi, Alireza Karimi, Hassan Fazeli Nashli, and Hans von Suchodoletz
E&G Quaternary Sci. J., 70, 145–150, https://doi.org/10.5194/egqsj-70-145-2021, https://doi.org/10.5194/egqsj-70-145-2021, 2021
Short summary
Short summary
This article discusses the first basic framework of Quaternary landscape evolution in a main large river valley of the drylands of northeastern Iran and the first geomorphic frame for human migrations in the important migration corridor of central Asia.
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Felix Martin Hofmann, Florian Rauscher, William McCreary, Jan-Paul Bischoff, and Frank Preusser
E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, https://doi.org/10.5194/egqsj-69-61-2020, 2020
Short summary
Short summary
The Black Forest was covered by a 1000 km2 large ice cap during the last glaciation. Glacial landforms in the area north-west of the highest summit of the Black Forest, the Feldberg (1493 m above sea level), were investigated to select suitable sampling sites for dating glacial landforms in future studies. Some of the terminal moraines described in this study are mapped for the first time. The application of dating methods will provide insights into the chronology of the last glaciation.
Stefan Winkler, David Bell, Maree Hemmingsen, Kate Pedley, and Anna Schoch
E&G Quaternary Sci. J., 67, 25–31, https://doi.org/10.5194/egqsj-67-25-2018, https://doi.org/10.5194/egqsj-67-25-2018, 2018
Short summary
Short summary
Geomorphological mapping and analysis conducted as an initial step towards a future sediment budget study of the middle Waimakariri River (Southern Alps, New Zealand) reveals that the traditional concept of the temporary palaeolake
glacial Lake Speightis conflicting with our conclusions of realistic chronosequences and timescales of para- and postglacial landform development. Especially the temporal and causal relation to the last deglaciation needs to be questioned and will be discussed.
Catharina Dieleman, Susan Ivy-Ochs, Kristina Hippe, Olivia Kronig, Florian Kober, and Marcus Christl
E&G Quaternary Sci. J., 67, 17–23, https://doi.org/10.5194/egqsj-67-17-2018, https://doi.org/10.5194/egqsj-67-17-2018, 2018
Cited articles
Angelier, J., Barrier, E., and Chu, H. T.: Plate collision and paleostress
trajectories in a fold-thrust belt: The foothills of Taiwan, Tectonophysics,
125, 161–178, https://doi.org/10.1016/0040-1951(86)90012-0, 1986.
Beuselinck, L., Govers, G., Poesen, J., Degraer, G., and Froyen, L.:
Grain-size analysis by laser diffractometry: comparison with the
sieve-pipette method, Catena, 32, 193–208,
https://doi.org/10.1016/S0341-8162(98)00051-4, 1998.
Bridgland, D. and Westaway, R.: Climatically controlled river terrace
staircases: A worldwide Quaternary phenomenon, Geomorphology, 98, 285–315,
https://doi.org/10.1016/j.geomorph.2006.12.032, 2008.
Buatois, L. A., Santiago, N., Herrera, M., Plink-Björklund, P., Steel,
R. O. N., Espin, M., and Parra, K.: Sedimentological and ichnological
signatures of changes in wave, river and tidal influence along a Neogene
tropical deltaic shoreline, Sedimentology, 59, 1568–1612,
https://doi.org/10.1111/j.1365-3091.2011.01317.x, 2012.
Center for GIS RCHSS Academia Sinica: Taiwan Historical Atlas Web Map Tile
Service [data set], available at: http://gis.sinica.edu.tw/tileserver/wmts (last access: 14 January 2022), 2017.
Central Geological Survey: National Geological Data Warehouse [data set], available at: https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm (last access: 14 January 2022), 2017.
Central Weather Bureau: Typhoon Data Base [data set], available at: https://rdc28.cwb.gov.tw/TDB/ (last access: 14 January 2022), 2019.
Central Weather Bureau: Tidal level statistics [data set], available at: https://www.cwb.gov.tw/V8/C/C/MMC_STAT/sta_tide.html (last access: 14 January 2022), 2020.
Chang, H.-C.: Baishatun, Central Geological Survey, Geological Map of Taiwan
scale 1 : 50 000, Taipei, Taiwan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=118492&ctNode=1303&mp=6 (last access: 14 January 2022), 1990.
Chang, H.-C.: Dajia, Central Geological Survey, Geological Map of Taiwan
scale 1 : 50 000, Taipei, Taiwan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=118453&ctNode=333&mp=106 (last access: 14 January 2022), 1994.
Chang, J.-C., Teng, K.-H., and Liu, M.-C.: A Geomorphological Study on River
Terraces in Miaoli Hills, Geogr. Res., 29, 97–112,
https://doi.org/10.6234/JGR, 1998.
Chang, L.-S.: The revision of stratigraphy categories of Taiwan (continued), Geological Review, 13, 291–310, 1948.
Chang, L.-S.: Geologic map of Taiwan, Geological Survey of Taiwan, Taipei,
Taiwan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=111421&ctNode=217&mp=6 (last access: 14 January 2022), 1953.
Chang, L.-S.: The strata of Taiwan, Quarterly Journal of the Taiwan Bank, 7, 26–49, 1955.
Charlton, R.: Fundamentals of fluvial geomorphology, Routledge, New York, USA, https://doi.org/10.4324/9780203371084, 2008.
Chen, C.-G.: Miaoli County, The soil investigation report of the slopes, Mountain Agricultural Resources Development Bureau, Nantou, Taiwan, available at: https://tssurgo.tari.gov.tw/Tssurgo (last access: 14 January 2022), 1983.
Chen, H.-F., Yeh, P.-Y., Song, S.-R., Hsu, S.-C., Yang, T.-N., Wang, Y.,
Chi, Z., Lee, T.-Q., Chen, M.-T., Cheng, C.-L., Zou, J., and Chang, Y.-P.:
The Ti/Al molar ratio as a new proxy for tracing sediment transportation
processes and its application in aeolian events and sea level change in East
Asia, J. Asian Earth Sci., 73, 31–38,
https://doi.org/10.1016/j.jseaes.2013.04.017, 2013.
Chen, S., Steel, R. J., Dixon, J. F., and Osman, A.: Facies and architecture
of a tide-dominated segment of the Late Pliocene Orinoco Delta (Morne
L'Enfer Formation) SW Trinidad, Mar. Petrol. Geol., 57, 208–232,
https://doi.org/10.1016/j.marpetgeo.2014.05.014, 2014.
Chen, W.-S., Ridgway, K. D., Horng, C.-S., Chen, Y.-G., Shea, K.-S., and
Yeh, M.-G.: Stratigraphic architecture, magnetostratigraphy, and
incised-valley systems of the Pliocene-Pleistocene collisional marine
foreland basin of Taiwan, GSA Bulletin, 113, 1249–1271,
https://doi.org/10.1130/0016-7606(2001)113<1249:SAMAIV>2.0.CO;2, 2001.
Chen, W.-S., Chen, Y.-G., Shih, R.-C., Liu, T.-K., Huang, N.-W., Lin, C.-C.,
Sung, S.-H., and Lee, K.-J.: Thrust-related river terrace development in
relation to the 1999 Chi-Chi earthquake rupture, Western Foothills, central
Taiwan, J. Asian Earth Sci., 21, 473–480,
https://doi.org/10.1016/S1367-9120(02)00072-X, 2003.
Chen, Y.-G. and Liu, T.-K.: Sea Level Changes in the Last Several Thousand
Years, Penghu Islands, Taiwan Strait, Quaternary Res., 45, 254–262,
https://doi.org/10.1006/qres.1996.0026, 1996.
Chen, Y.-G., Shyu, J. B. H., Ota, Y., Chen, W.-S., Hu, J.-C., Tsai, B.-W.,
and Wang, Y.: Active structures as deduced from geomorphic features: a case
in Hsinchu Area, northwestern Taiwan, Quaternary Int., 115–116,
189-199, https://doi.org/10.1016/s1040-6182(03)00107-1, 2004.
Chen, Z.-S., Hseu, Z.-Y., and Tsai, C.-C.: The soils of Taiwan, World soils
book series, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-9726-9, 2015.
Ching, K.-E., Hsieh, M.-L., Johnson, K. M., Chen, K.-H., Rau, R.-J., and
Yang, M.: Modern vertical deformation rates and mountain building in Taiwan
from precise leveling and continuous GPS observations, 2000–2008, J. Geophys. Res., 116, B08406, https://doi.org/10.1029/2011jb008242, 2011.
Choi, J. H., Kim, J. W., Murray, A. S., Hong, D. G., Chang, H. W., and
Cheong, C.-S.: OSL dating of marine terrace sediments on the southeastern
coast of Korea with implications for Quaternary tectonics, Quatern. Int., 199, 3–14, https://doi.org/10.1016/j.quaint.2008.07.009,
2009.
Covey, M.: The Evolution of Foreland Basins to Steady State: Evidence from
the Western Taiwan Foreland Basin, in: Foreland Basins, Blackwell Publishing
Ltd., 77–90, https://doi.org/10.1002/9781444303810.ch4, 1986.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S.
D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C. P., Lague, D., and Lin,
J.-C.: Links between erosion, runoff variability and seismicity in the
Taiwan orogen, Nature, 426, 648–651, https://doi.org/10.1038/nature02150,
2003.
Dalrymple, R. W. and Choi, K.: Morphologic and facies trends through the
fluvial–marine transition in tide-dominated depositional systems: A
schematic framework for environmental and sequence-stratigraphic
interpretation, Earth-Sci. Rev., 81, 135–174,
https://doi.org/10.1016/j.earscirev.2006.10.002, 2007.
Davis, R. A.: Tidal Signatures and Their Preservation Potential in Stratigraphic Sequences, in: Principles of tidal sedimentology, edited by: Davis, R. A. and Dalrymple, R. W., Springer, Dordrecht, 35–55, https://doi.org/10.1007/978-94-007-0123-6_3, 2012.
Deffontaines, B., Lacombe, O., Angelier, J., Chu, H. T., Mouthereau, F.,
Lee, C. T., Deramond, J., Lee, J. F., Yu, M. S., and Liew, P. M.: Quaternary
transfer faulting in the Taiwan Foothills: evidence from a multisource
approach, Tectonophysics, 274, 61–82,
https://doi.org/10.1016/S0040-1951(96)00298-3, 1997.
Delcaillau, B.: Geomorphic response to growing fault-related folds: example
from the foothills of central Taiwan, Geodin. Acta, 14, 265–287,
https://doi.org/10.1016/S0985-3111(01)01071-3, 2001.
Eshel, G., Levy, G. J., Mingelgrin, U., and Singer, M. J.: Critical
Evaluation of the Use of Laser Diffraction for Particle-Size Distribution
Analysis, Soil Sci. Soc. Am. J., 68, 736–743,
https://doi.org/10.2136/sssaj2004.7360, 2004.
Goodbred, S. and Saito, Y.: Tide-Dominated Deltas, in: Principles of tidal sedimentology, edited by: Davis, R. A. and Dalrymple, R. W., Springer, Dordrecht, 129–149, https://doi.org/10.1007/978-94-007-0123-6_7, 2011.
Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., Saito, Y., and Okuno, J. I.:
Formation and fate of sedimentary depocentres on Southeast Asia's Sunda
Shelf over the past sea-level cycle and biogeographic implications,
Earth-Sci. Rev., 104, 92–110,
https://doi.org/10.1016/j.earscirev.2010.09.006, 2011.
Hebenstreit, R. and Böse, M.: Quaternary mineral aeolian dust deposits
in Taiwan and their potentials as a new archive, XIX INQUA Congress, 27 July–2 August 2015, Nagoya, Japan, available at: https://www.inqua-seqs.org/files/INQUA2015_program_web.pdf (last access: 14 January 2022), 2015.
Ho, C.-S.: An introduction to the geology of Taiwan: explanatory text of the
geologic map of Taiwan, Central Geological Survey, Taipei, Taiwan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=109139&ctNode=1303&mp=6 (last access: 14 January 2022), 1988.
Ho, H.-C.: Miaoli, Central Geological Survey, Geological Map of Taiwan scale
1 : 50 000, Taipei, Taiwan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=118489&ctNode=1303&mp=6 (last access: 14 January 2022), 1994.
Horng, C.-S.: Age of the Tananwan Formation in Northern Taiwan: A
Reexamination of the Magnetostratigraphy and Calcareous Nannofossil
Biostratigraphy, Terr. Atmos. Ocean. Sci., 25, 137–147,
https://doi.org/10.3319/tao.2013.11.05.01(tt), 2014.
Horng, C.-S. and Huh, C.-A.: Magnetic properties as tracers for
source-to-sink dispersal of sediments: A case study in the Taiwan Strait,
Earth Planet. Sc. Lett., 309, 141–152,
https://doi.org/10.1016/j.epsl.2011.07.002, 2011.
Huang, T.: Planktic foraminiferal biostratigraphy and datum planes in the
Neogene sedimentary sequence in Taiwan, Palaeogeogr. Palaeocl., 46, 97–106, https://doi.org/10.1016/0031-0182(84)90028-2,
1984.
Huh, C.-A., Chen, W., Hsu, F.-H., Su, C.-C., Chiu, J.-K., Lin, S., Liu,
C.-S., and Huang, B.-J.: Modern (< 100 years) sedimentation in the
Taiwan Strait: Rates and source-to-sink pathways elucidated from
radionuclides and particle size distribution, Cont. Shelf Res.,
31, 47–63, https://doi.org/10.1016/j.csr.2010.11.002, 2011.
Jahn, R., Blume, H. P., Asio, V. B., Spaargaren, O., and Schad, P.:
Guidelines for soil description, 4th edn., Food and Agriculture
Organization of the United Nations, Rome, ISBN 9251055211, 2006.
Jan, S., Wang, J., Chern, C.-S., and Chao, S.-Y.: Seasonal variation of the
circulation in the Taiwan Strait, J. Marine Syst., 35, 249–268,
https://doi.org/10.1016/S0924-7963(02)00130-6, 2002.
Konert, M. and Vandenberghe, J.: Comparison of laser grain size analysis
with pipette and sieve analysis: a solution for the underestimation of the
clay fraction, Sedimentology, 44, 523–535,
https://doi.org/10.1046/j.1365-3091.1997.d01-38.x, 1997.
Lee, C.-L., Huang, T., Shieh, K.-S., and Chen, Z.-H.: The chronostratigraphy
and sedimentary environments of the Toukoshan Fm. in Beishatun area, Miaoli, Annual Report of Central Geological Survey, MOEA, 1999–2000, 17–20, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=111058&ctNode=1303&mp=6 (last access: 14 January 2022), 2002.
Lee, J.-F.: Dongshi, Central Geological Survey, Geological Map of Taiwan
scale 1 : 50 000, Taipei, Taiwan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=118454&ctNode=1303&mp=6 (last access: 14 January 2022), 2000.
Lin, A. T. and Watts, A. B.: Origin of the West Taiwan basin by orogenic
loading and flexure of a rifted continental margin, J. Geophys. Res.-Sol. Ea., 107, ETG 2-1–ETG 2-19, https://doi.org/10.1029/2001jb000669, 2002.
Lin, A. T., Watts, A. B., and Hesselbo, S. P.: Cenozoic stratigraphy and
subsidence history of the South China Sea margin in the Taiwan region, Basin
Res., 15, 453–478, https://doi.org/10.1046/j.1365-2117.2003.00215.x,
2003.
Lin, C. C.: Geomorphology of Taiwan, The Historical Research Commission of
Taiwan Province, Taipei, Taiwan, 1957.
Lin, C. C.: The Lungkang Formation, lower marine terrace deposits near
Miaoli, Petroleum Geology of Taiwan, 2, 87–105, 1963.
Lin, C. C.: Holocene Geology of Taiwan, Acta Geologica Taiwanica, 13,
83–126, 1969.
Lin, C. C. and Chou, J. T.: Geology of Taiwan, Maw Chang Book Co., Ltd.,
Taipei, Taiwan, 1978.
Liu, J. P., Milliman, J. D., Gao, S., and Cheng, P.: Holocene development of
the Yellow River's subaqueous delta, North Yellow Sea, Mar. Geol., 209,
45–67, https://doi.org/10.1016/j.margeo.2004.06.009, 2004.
Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J.,
and Lin, S. W.: Flux and fate of small mountainous rivers derived sediments
into the Taiwan Strait, Mar. Geol., 256, 65–76,
https://doi.org/10.1016/j.margeo.2008.09.007, 2008.
Liu, S.-H., Böse, M., and Hebenstreit, R.: The columnar sections and pictures of the outcrops in Miaoli Tableland, Refubium – Freie Universität Berlin Repository [data set], https://doi.org/10.17169/refubium-31813, 2021.
Makiyama, T.: Hakusyaton Sheet, Bureau of Productive Industries,
Government-General of Taiwan, Explanatory text of the geological map of
Taiwan (1 : 50 000), Tokyo, Japan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=119130&ctNode=217&mp=6 (last access: 14 January 2022), 1934.
Makiyama, T.: The topographic and geological map of Tûsyô petroleum field, Bureau of Productive Industries, Government-General of Taiwan, Tokyo, Japan, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=108126&ctNode=1304&mp=104 (last access: 14 January 2022), 1937.
Mather, A. E., Stokes, M., and Whitfield, E.: River terraces and alluvial
fans: The case for an integrated Quaternary fluvial archive, Quaternary
Sci. Rev., 166, 74–90,
https://doi.org/10.1016/j.quascirev.2016.09.022, 2017.
Matsu'ura, T., Kimura, H., Komatsubara, J., Goto, N., Yanagida, N.,
Ichikawa, K., and Furusawa, A.: Late Quaternary uplift rate inferred from
marine terraces, Shimoka Peninsula, northeastern Japan: A preliminary
investigation of the buried shoreline angle, Geomorphology, 209, 1–17,
https://doi.org/10.1016/j.geomorph.2013.11.013, 2014.
Miall, A. D.: Fluvial Depositional Systems, Springer Geology, Springer
International Publishing, Switzerland, 316 pp.,
https://doi.org/10.1007/978-3-319-24304-7, 2014.
NASA JPL: 1 Arc Second scene N24 E120 [data set],
https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013.
National Land Surveying and Mapping Center: Taiwan Map Service [data set], available at: https://wmts.nlsc.gov.tw/wmts (last access: 14 January 2022), 2016.
Olariu, C., Steel, R. J., Dalrymple, R. W., and Gingras, M. K.: Tidal dunes
versus tidal bars: The sedimentological and architectural characteristics of
compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower
Eocene), Ager Basin, Spain, Sediment. Geol., 279, 134–155,
https://doi.org/10.1016/j.sedgeo.2012.07.018, 2012.
Ota, Y., Shyu, J. B., Chen, Y.-G., and Hsieh, M.-L.: Deformation and age of
fluvial terraces south of the Choushui River, central Taiwan, and their
tectonic implications, Western Pacific Earth Sciences, 2, 251–260, 2002.
Ota, Y., Chen, Y.-G., and Chen, W.-S.: Review of paleoseismological and
active fault studies in Taiwan in the light of the Chichi earthquake of
September 21, 1999, Tectonophysics, 408, 63–77,
https://doi.org/10.1016/j.tecto.2005.05.040, 2005.
Ota, Y., Lin, Y.-N. N., Chen, Y.-G., Chang, H.-C., and Hung, J.-H.: Newly
found Tunglo Active Fault System in the fold and thrust belt in northwestern
Taiwan deduced from deformed terraces and its tectonic significance,
Tectonophysics, 417, 305–323, https://doi.org/10.1016/j.tecto.2006.02.001,
2006.
Ota, Y., Lin, Y.-N. N., Chen, Y.-G., Matsuta, N., Watanuki, T., and Chen,
Y.-W.: Touhuanping Fault, an active wrench fault within fold-and-thrust belt
in northwestern Taiwan, documented by spatial analysis of fluvial terraces,
Tectonophysics, 474, 559–570, https://doi.org/10.1016/j.tecto.2009.04.034,
2009.
Pelletier, B. and Stephan, J. F.: Middle miocene deduction and late miocene
beginning of collision registered in the hengchun peninsula: Geodynamic
implications for the evolution of Taiwan, Tectonophysics, 125, 133–160,
https://doi.org/10.1016/0040-1951(86)90011-9, 1986.
Pickering, J. L., Goodbred, S. L., Reitz, M. D., Hartzog, T. R., Mondal, D.
R., and Hossain, M. S.: Late Quaternary sedimentary record and Holocene
channel avulsions of the Jamuna and Old Brahmaputra River valleys in the
upper Bengal delta plain, Geomorphology, 227, 123–136,
https://doi.org/10.1016/j.geomorph.2013.09.021, 2014.
Pye, K. and Zhou, L.-P.: Late Pleistocene and Holocene aeolian dust
deposition in North China and the Northwest Pacific Ocean, Palaeogeogr.
Palaeocl., 73, 11–23,
https://doi.org/10.1016/0031-0182(89)90041-2, 1989.
Robustelli, G., Ermolli, E. R., Petrosino, P., Jicha, B., Sardella, R., and
Donato, P.: Tectonic and climatic control on geomorphological and
sedimentary evolution of the Mercure basin, southern Apennines, Italy,
Geomorphology, 214, 423–435, https://doi.org/10.1016/j.geomorph.2014.02.026,
2014.
Saito, K. and Oguchi, T.: Slope of alluvial fans in humid regions of Japan,
Taiwan and the Philippines, Geomorphology, 70, 147–162,
https://doi.org/10.1016/j.geomorph.2005.04.006, 2005.
Satellite Survey Center: Ministry of the Interior 20 m raster digital elevation model [data set], available at: https://data.gov.tw/dataset/35430 (last access: 14 January 2022), 2018.
Shackleton, N. J.: The 100,000-Year Ice-Age Cycle Identified and Found to
Lag Temperature, Carbon Dioxide, and Orbital Eccentricity, Science, 289,
1897–1902, https://doi.org/10.1126/science.289.5486.1897, 2000.
Shih, T.-T. and Yang, G.-S.: The Active Faults and Geomorphic Surfaces of
Pakua Tableland in Taiwan, Geogr. Res., 11, 173–186, 1985.
Shyu, J. B. H., Sieh, K., Chen, Y.-G., and Liu, C.-S.: Neotectonic
architecture of Taiwan and its implications for future large earthquakes,
J. Geophys. Res., 110, B08402, https://doi.org/10.1029/2004jb003251,
2005.
Siame, L. L., Chen, R.-F., Derrieux, F., Lee, J.-C., Chang, K.-J.,
Bourlès, D. L., Braucher, R., Léanni, L., Kang, C.-C., Chang, C.-P.,
and Chu, H.-T.: Pleistocene alluvial deposits dating along frontal thrust of
Changhua Fault in western Taiwan: The cosmic ray exposure point of view,
J. Asian Earth Sci., 51, 1–20,
https://doi.org/10.1016/j.jseaes.2012.02.002, 2012.
Simoes, M. and Avouac, J. P.: Investigating the kinematics of mountain
building in Taiwan from the spatiotemporal evolution of the foreland basin
and western foothills, J. Geophys. Res., 111, B10401,
https://doi.org/10.1029/2005jb004209, 2006.
Suppe, J.: Kinematics of arc-continent collision, flipping of subduction,
and back-arc spreading near Taiwan, Memoir of the Geological Society of
China, 6, 131–146, 1984.
Teng, K.-H.: A Quantitative Study on the Landforms of Lateritic Gravel
Tablelands in Northwestern Taiwan, The College of Chinese Culture Institute
of Geography Science Reports, 3, 113–186, 1979.
Teng, L. S.: Geotectonic evolution of late Cenozoic arc-continent collision
in Taiwan, Tectonophysics, 183, 57–76,
https://doi.org/10.1016/0040-1951(90)90188-E, 1990.
Teng, L.-S.: Geotectonic evolution of Tertiary continental margin basins of
Taiwan, Petroleum Geology of Taiwan, 27, 1–19, 1992.
Teng, L. S.: Extensional collapse of the northern Taiwan mountain belt,
Geology, 24, 949–952, 1996a.
Teng, L. S.: Geological background of the gravel formations of Taiwan,
Sine-Geotechnics, 55, 5–24, https://doi.org/10.30140/SG.199606.0001, 1996b.
Teng, L. S., Lee, C., Peng, C.-H., Chen, W.-F., and Chu, C.-J.: Origin and
geological evolution of the Taipei basin, northern Taiwan, Western Pacific
Earth Sciences, 1, 115–142, 2001.
The Taiwan Provincial Weather Institution: Report on Floods of 7th August,
1959, The Taiwan Provincial Weather Institution, Taipei, Taiwan, available at: https://photino.cwb.gov.tw/rdcweb/lib/cd/cd02tyrp/typ/1959/6.pdf (last access: 14 January 2022), 1959.
Tomita, Y.: On the geomorphological classification of fans in Taiwan
(Formosa), Journal of Geography (Chigaku Zasshi), 60, 2–9, 1951.
Tomita, Y.: The classification of fluvial terraces, Annals of The Tohoku
Geographycal Asocciation, 6, 1–6, https://doi.org/10.5190/tga1948.6.1, 1953.
Tomita, Y.: Surface Geology and Correlation of River Terraces, Annals of The
Tohoku Geographycal Asocciation, 6, 51–58,
https://doi.org/10.5190/tga1948.6.4_51, 1954.
Torii, K.: Tosei Sheet, Bureau of Productive Industries, Government-General
of Taiwan, Explanatory text of the geological map of Taiwan (1 : 50 000),
Tokyo, available at: https://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/ct?xItem=104094&ctNode=217&mp=6 (last access: 14 January 2022), 1935.
Tsai, H., Huang, W.-S., Hseu, Z.-Y., and Chen, Z.-S.: A River Terrace Soil
Chronosequence of the Pakua Tableland in Central Taiwan, Soil Science, 171,
167–179, https://doi.org/10.1097/01.ss.0000187376.76767.21, 2006.
Tsai, H., Maejima, Y., and Hseu, Z.-Y.: Meteoric 10Be dating of highly
weathered soils from fluvial terraces in Taiwan, Quaternary Int.,
188, 185–196, https://doi.org/10.1016/j.quaint.2007.06.007, 2008.
Tsai, H., Hseu, Z.-Y., Huang, S.-T., Huang, W.-S., and Chen, Z.-S.:
Pedogenic properties of surface deposits used as evidence for the type of
landform formation of the Tadu tableland in central Taiwan, Geomorphology,
114, 590–600, https://doi.org/10.1016/j.geomorph.2009.09.020, 2010.
Tseng, C.-H., Wenske, D., Böse, M., Reimann, T., Lüthgens, C., and
Frechen, M.: Sedimentary features and ages of fluvial terraces and their
implications for geomorphic evolution of the Taomi River catchment: A case
study in the Puli Basin, central Taiwan, J. Asian Earth Sci.,
62, 759–768, https://doi.org/10.1016/j.jseaes.2012.11.028, 2013.
Vail, P. R., Audemade, F., Bowman, S. A., Eisner, P. N., and Perez-Cruz, C.:
The stratigraphic signatures of tectonics, eustacy and sedimentology – an
overview, in: Cycles and Events in Stratigraphy, edited by: Einsele, G.,
Ricken, W., and Seilacher, A., Springer-Verlag, Berlin, 617–659, ISBN 3540527842, 1991.
Volker, H. X., Wasklewicz, T. A., and Ellis, M. A.: A topographic
fingerprint to distinguish alluvial fan formative processes, Geomorphology,
88, 34–45, https://doi.org/10.1016/j.geomorph.2006.10.008, 2007.
Wang, Y. H., Jan, S., and Wang, D. P.: Transports and tidal current
estimates in the Taiwan Strait from shipboard ADCP observations
(1999–2001), Estuar., Coast. Shelf Sci., 57, 193–199,
https://doi.org/10.1016/S0272-7714(02)00344-X, 2003.
Willemin, J. H. and Knuepfer, P. L. K.: Kinematics of arc-continent
collision in the eastern Central Range of Taiwan inferred from geomorphic
analysis, J. Geophys. Res.-Sol. Ea., 99, 20267–20280,
https://doi.org/10.1029/94JB00731, 1994.
Yang, K.-M., Huang, S.-T., Wu, J.-C., Ting, H.-H., and Mei, W.-W.: Review
and New Insights on Foreland Tectonics in Western Taiwan, Int. Geol. Rev., 48, 910–941, https://doi.org/10.2747/0020-6814.48.10.910,
2006.
Yang, K.-M., Huang, S.-T., Jong-Chang, W., Ting, H.-H., Wen-Wei, M., Lee,
M., Hsu, H.-H., and Lee, C.-J.: 3D geometry of the Chelungpu thrust system
in central Taiwan: Its implications for active tectonics, Terr. Atmos. Ocean. Sci., 18, 143, https://doi.org/10.3319/TAO.2007.18.2.143(TCDP), 2007.
Yang, K.-M., Rau, R.-J., Chang, H.-Y., Hsieh, C.-Y., Ting, H.-H., Huang,
S.-T., Wu, J.-C., and Tang, Y.-J.: The role of basement-involved normal
faults in the recent tectonics of western Taiwan, Geol. Mag., 153,
1166–1191, https://doi.org/10.1017/S0016756816000637, 2016.
Yu, H.-S. and Chou, Y.-W.: Characteristics and development of the flexural
forebulge and basal unconformity of Western Taiwan Foreland Basin,
Tectonophysics, 333, 277–291, https://doi.org/10.1016/S0040-1951(00)00279-1,
2001.
Yu, H.-S. and Song, G. S.: Submarine physiographic features in Taiwan region
and their geological significance, Journal of the Geological Society of
China, 43, 267–286, 2000.
Yu, N.-T., Teng, L. S., Chen, W.-S., Yue, L.-F., and Chen, M.-M.: Early
post-rift sequence stratigraphy of a Mid-Tertiary rift basin in Taiwan:
Insights into a siliciclastic fill-up wedge, Sediment. Geol., 286–287,
39–57, https://doi.org/10.1016/j.sedgeo.2012.12.009, 2013.
Short summary
The Miaoli Tableland (northwestern Taiwan) consists of a sequence of fine-grained tidal to coarse fluvial late Quaternary sediments which underwent a spatially differentiated uplift and fluvial dissection. They reveal repeated rework processes of fluvial cobbles from the highlands to the coast. A new landform classification based on high-resolution 3D terrain analysis results in a new interpretation of the landform evolution. The results favour a local rarely used Quaternary stratigraphic code.
The Miaoli Tableland (northwestern Taiwan) consists of a sequence of fine-grained tidal to...