Articles | Volume 71, issue 2
https://doi.org/10.5194/egqsj-71-163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-71-163-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two glaciers and one sedimentary sink: the competing role of the Aare and the Valais glaciers in filling an overdeepened trough inferred from provenance analysis
Michael A. Schwenk
CORRESPONDING AUTHOR
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Laura Stutenbecker
Institute of Applied Geosciences, Technical University Darmstadt, Darmstadt, Germany
Patrick Schläfli
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Institute of Plant Sciences, University of Bern, Bern, Switzerland
Dimitri Bandou
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Fritz Schlunegger
Institute of Geological Sciences, University of Bern, Bern, Switzerland
Related authors
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Chantal Schmidt, David Mair, Naki Akçar, Marcus Christl, Negar Haghipour, Christof Vockenhuber, Philip Gautschi, Brian McArdell, and Fritz Schlunegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-3055, https://doi.org/10.5194/egusphere-2025-3055, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
Our study examines erosion in a small, pre-Alpine basin by using cosmogenic nuclides in river sediments. Based on a dense measuring network we were able to distinguish two main zones: an upper zone with slow erosion of surface material, and a steeper, lower zone where faster erosion is driven by landslides. The data suggests that sediment has been constantly produced over thousands of years, indicating a stable, long-term balance between contrasting erosion processes.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Renas I. Koshnaw, Jonas Kley, and Fritz Schlunegger
Solid Earth, 15, 1365–1383, https://doi.org/10.5194/se-15-1365-2024, https://doi.org/10.5194/se-15-1365-2024, 2024
Short summary
Short summary
This study investigates how Earth's geodynamic processes shaped the NW Zagros mountain belt in the Middle East. The Neogene foreland basin underwent subsidence due to the load of the surface and the subducting slab and was later influenced by the Neotethys horizontal slab tearing and the associated asthenospheric mantle flow during the Late Miocene and onward.
Michael Margreth, Florian Lustenberger, Dorothea Hug Peter, Fritz Schlunegger, and Massimiliano Zappa
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-78, https://doi.org/10.5194/nhess-2024-78, 2024
Preprint under review for NHESS
Short summary
Short summary
Recession models (RM) are crucial for observing the low flow behavior of a catchment. We developed two novel RM, which are designed to represent slowly draining catchment conditions. With a newly designed low flow prediction procedure we tested the prediction capability of these two models and three others from literature. One of our novel products delivered the best results, because it best represents the slowly draining catchment conditions.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024, https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Short summary
Engineering structures known as check dams are built with the intention of managing streams. The effectiveness of such structures can be expressed by quantifying the reduction of the sediment flux after their implementation. In this contribution, we estimate and compare the volumes of sediment transported in a mountain stream for engineered and non-engineered conditions. We found that without check dams the mean sediment flux would be ca. 10 times larger in comparison with the current situation.
Sibylle Knapp, Michael Schwenk, and Michael Krautblatter
Earth Surf. Dynam., 10, 1185–1193, https://doi.org/10.5194/esurf-10-1185-2022, https://doi.org/10.5194/esurf-10-1185-2022, 2022
Short summary
Short summary
The Flims area in the Swiss Alps has fascinated the researchers with its complex geological history ever since. Especially the order of events related to the Tamins and Flims rockslides has long been debated. This paper presents novel results based on up to 160 m deep geophysical profiles, which show onlaps of the Bonaduz Formation onto the Tamins deposits (Ils Aults) and thus indicate that the Tamins rockslide occurred first. The consecutive evolution of this landscape is shown in four phases.
David Mair, Ariel Henrique Do Prado, Philippos Garefalakis, Alessandro Lechmann, Alexander Whittaker, and Fritz Schlunegger
Earth Surf. Dynam., 10, 953–973, https://doi.org/10.5194/esurf-10-953-2022, https://doi.org/10.5194/esurf-10-953-2022, 2022
Short summary
Short summary
Grain size data are important for studying and managing rivers, but they are difficult to obtain in the field. Therefore, methods have been developed that use images from small and remotely piloted aircraft. However, uncertainty in grain size data from such image-based products is understudied. Here we present a new way of uncertainty estimation that includes fully modeled errors. We use this technique to assess the effect of several image acquisition aspects on grain size uncertainty.
Maryam Mansouri, Laura Stutenbecker, Matthias Hinderer, Anna Lewin, and Enkurie L. Dawit
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-35, https://doi.org/10.5194/esurf-2022-35, 2022
Preprint withdrawn
Short summary
Short summary
The Permian-Triassic is well known for the most extensive mass extinction in the history of life caused by climatic, tectonic, and ecological disruptions. Due to the lack of studies on continental deposits in eastern Africa, we aim to use this continental archive to study the response of earth surface processes linked to perturbations around the PTB. Our results show a successive erosional process in East Africa due to extensional movements accompanied by recycling and then by basement erosion.
Ariel Henrique do Prado, Renato Paes de Almeida, Cristiano Padalino Galeazzi, Victor Sacek, and Fritz Schlunegger
Earth Surf. Dynam., 10, 457–471, https://doi.org/10.5194/esurf-10-457-2022, https://doi.org/10.5194/esurf-10-457-2022, 2022
Short summary
Short summary
Our work is focused on describing how and why the terrace levels of central Amazonia were formed during the last 100 000 years. We propose to address this question through a landscape evolution numerical model. Our results show that terrace levels at lower elevation were established in response to dry–wet climate changes and the older terrace levels at higher elevations most likely formed in response to a previously higher elevation of the regional base level.
Alessandro Lechmann, David Mair, Akitaka Ariga, Tomoko Ariga, Antonio Ereditato, Ryuichi Nishiyama, Ciro Pistillo, Paola Scampoli, Mykhailo Vladymyrov, and Fritz Schlunegger
Geosci. Model Dev., 15, 2441–2473, https://doi.org/10.5194/gmd-15-2441-2022, https://doi.org/10.5194/gmd-15-2441-2022, 2022
Short summary
Short summary
Muon tomography is a technology that is used often in geoscientific research. The know-how of data analysis is, however, still possessed by physicists who developed this technology. This article aims at providing geoscientists with the necessary tools to perform their own analyses. We hope that a lower threshold to enter the field of muon tomography will allow more geoscientists to engage with muon tomography. SMAUG is set up in a modular way to allow for its own modules to work in between.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Renas I. Koshnaw, Fritz Schlunegger, and Daniel F. Stockli
Solid Earth, 12, 2479–2501, https://doi.org/10.5194/se-12-2479-2021, https://doi.org/10.5194/se-12-2479-2021, 2021
Short summary
Short summary
As continental plates collide, mountain belts grow. This study investigated the provenance of rocks from the northwestern segment of the Zagros mountain belt to unravel the convergence history of the Arabian and Eurasian plates. Provenance data synthesis and field relationships suggest that the Zagros Mountains developed as a result of the oceanic crust emplacement on the Arabian continental plate, followed by the Arabia–Eurasia collision and later uplift of the broader region.
Owen A. Anfinson, Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger
Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, https://doi.org/10.5194/se-11-2197-2020, 2020
Short summary
Short summary
We present new U–Pb age data to provide insights into the source of sediment for the Molasse Sedimentary Basin in Switzerland. The paper aims to help shed light on the processes that built the Central Alpine Mountains between ~35 and ~15 Ma. A primary conclusion drawn from the results is that at ~21 Ma there was a significant change in the sediment sources for the basin. We feel this change indicates major tectonic changes within the Central Alps.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Cited articles
Andò, S.: Gravimetric Separation of Heavy Minerals in Sediments and Rocks, Minerals, 10, 273, https://doi.org/10.3390/min10030273, 2020. a
Anfinson, O. A., Stockli, D. F., Miller, J. C., Möller, A., and Schlunegger, F.: Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland, Solid Earth, 11, 2197–2220, https://doi.org/10.5194/se-11-2197-2020, 2020. a, b
Bachmann, I.: Die Kander im Berner Oberland ein ehemaliges Gletscher- und
Flussgebiet, Dalp'sche Buch- und Kunsthandlung, Bern, 1870. a
Baltzer, A.: Der diluviale Aargletscher und seine Ablagerungen in der Gegend
von Bern mit Berücksichtigung des Rhonegletschers, in: Der diluviale
Aargletscher und seine Ablagerungen in der Gegend von Bern mit
Berücksichtigung des Rhonegletschers, Beiträge zur Geologischen Karte der
Schweiz Lieferung 30, Schmid, Francke & Co., Bern, 1896. a, b, c, d, e
Bandou, D., Schlunegger, F., Kissling, E., Marti, U., Schwenk, M., Schläfli, P., Douillet, G., and Mair, D.: Three-dimensional gravity modelling of a Quaternary overdeepening fill in the Bern area of Switzerland
discloses two stages of glacial carving, Sci. Rep., 12, 1441,
https://doi.org/10.1038/s41598-022-04830-x, 2022. a
Beck, P.: Bericht über die ausserordentliche Frühjahrsversammlung der Schweizerischen Geologischen Gesellschaft in Thun, Eclogae Geol. Helv., 31, 173–197, https://doi.org/10.5169/seals-159820, 1938. a
Becker, P., Seguinot, J., Jouvet, G., and Funk, M.: Last Glacial Maximum precipitation pattern in the Alps inferred from glacier modelling, Geogr. Helv., 71, 173–187, https://doi.org/10.5194/gh-71-173-2016, 2016. a
Becker, P., Funk, M., Schlüchter, C., and Hutter, K.: A study of the Würm glaciation focused on the Valais region (Alps), Geogr. Helv., 72, 421–442, https://doi.org/10.5194/gh-72-421-2017, 2017. a, b, c
Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C., and Schaefer, A.: Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin
(SMB), Int. J. Earth Sci., 94, 711–731,
https://doi.org/10.1007/s00531-005-0479-y, 2005. a
Bini, A., Buoncristiani, J., Couterrand, S., Ellwanger, D., Felber, M., Florineth, D., Graf, H., Keller, O., Kelly, M., and Schlüchter, C.: Die
Schweiz während des letzteiszeitlichen Maximums (LGM) (1 : 500 000), Bundesamt für Landestopografie swisstopo, Bern–Wabern, ISBN 978-3-302-40049-5, 2009. a, b, c, d, e
Blaser, P., Gubler, T., Küpfer, T., Marschall, P., Matter, A., Matyas, J., Meier, B., Müller, W., Schlanke, S., Schlunegger, F., Siber, N., and Wyss, E.: Geothermiebohrung Bassersdorf. Charakterisierung der Oberen Meeresmolasse und Unteren Süsswassermolasse, Tech. Rep. NTB 94-01, Nagra,
Wettingen, https://www.nagra.ch/de/technischer-bericht-94-01 (last access: 17 August 2022), 1994. a
Braakhekke, J., Ivy-Ochs, S., Monegato, G., Gianotti, F., Martin, S., Casale,
S., and Christl, M.: Timing and flow pattern of the Orta Glacier (European
Alps) during the Last Glacial Maximum, Boreas, 49, 315–332,
https://doi.org/10.1111/bor.12427, 2020. a
Buechi, M. W., Frank, S. M., Graf, H. R., Menzies, J., and Anselmetti, F. S.:
Subglacial emplacement of tills and meltwater deposits at the base of
overdeepened bedrock troughs, Sedimentology, 64, 658–685,
https://doi.org/10.1111/sed.12319, 2017. a
Bundesamt für Landestopografie swisstopo: Tektonische Karte der Schweiz 1 : 500 000, Bundesamt für Landestopografie swisstopo, https://data.geo.admin.ch/ch.swisstopo.geologie-tektonische_karte/, last access: 3 November 2021b. a
Busfield, M. E., Lee, J. R., Riding, J. B., Zalasiewicz, J., and Lee, S. V.: Pleistocene till provenance in east Yorkshire: reconstructing ice flow of the British North Sea Lobe, P. Geologist. Assoc., 126,
86–99, https://doi.org/10.1016/j.pgeola.2014.12.002, 2015. a
Cook, S. J. and Swift, D. A.: Subglacial basins: Their origin and importance in glacial systems and landscapes, Earth-Sci. Rev., 115, 332–372,
https://doi.org/10.1016/j.earscirev.2012.09.009, 2012. a
Florineth, D. and Schlüchter, C.: Alpine evidence for atmospheric circulation patterns in Europe during the Last Glacial Maximum,
Quaternary Res., 54, 295–308, https://doi.org/10.1006/qres.2000.2169, 2000. a
Füchtbauer, H.: Sedimentpetrographische Untersuchungen in der älteren Molasse
nördlich der Alpen, Eclogae Geol. Helv., 57, 157–298, https://doi.org/10.5169/seals-163140, 1964. a, b, c
Garzanti, E. and Andò, S.: Chapter 20 Heavy Mineral Concentration in Modern Sands: Implications for Provenance Interpretation, in: Heavy Minerals in Use,
edited by: Mange, M. A. and Wright, D. T., vol. 58 of Developments in
Sedimentology, Elsevier, 517–545, https://doi.org/10.1016/S0070-4571(07)58020-9, 2007. a, b
Garzanti, E. and Andò, S.: Heavy Minerals for Junior Woodchucks, Minerals, 9, 148, https://doi.org/10.3390/min9030148, 2019. a
Gasser, U. and Nabholz, W.: Zur Sedimentologie der Sandfraktion im Pleistozän des schweizerischen Mittellandes, Eclogae Geol. Helv., 62, 467–516, https://doi.org/10.5169/seals-163708, 1969. a, b
Gerber, E.: Einige Querprofile durch das Aaretal mit Berücksichtigung der
letzten Bohrungen und Tunnelbauten, Mitteilungen der Naturforschenden
Gesellschaft Bern, XXIV–XXXI, 1923. a
Gilliéron, V.: Description géologique des territoires de Vaud, Fribourg et Berne, in: Description géologique des territoires de Vaud, Fribourg et Berne compris dans la feuille XII entre le lac de Neuchâtel et la crête du Niesen, Matériaux pour la carte géologique de la Suisse Livraison 18, Schmid, Francke & Co., Berne, 1885. a
Giorgetti, G., Talarico, F., Sandroni, S., and Zeoli, A.: Provenance of Pleistocene sediments in the ANDRILL AND-1B drillcore: Clay and heavy mineral data, Global Planet. Change, 69, 94–102, https://doi.org/10.1016/j.gloplacha.2009.03.018, 2009. a
Graf, A., Akçar, N., Ivy-Ochs, S., Strasky, S., Kubik, P. W., Christl, M., Burkhard, M., Wieler, R., and Schlüchter, C.: Multiple advances of
Alpine glaciers into the Jura Mountains in the Northwestern Switzerland,
Swiss J. Geosci., 108, 225–238, https://doi.org/10.1007/s00015-015-0195-y, 2015. a
Graf, H. R.: Die Deckenschotter der zentralen Nordschweiz, PhD thesis, ETH
Zürich, Zürich, Switzerland, 187 pp., https://doi.org/10.3929/ethz-a-000899302, 1993. a
Hänni, R. and Pfiffner, O.-A.: Evolution and internal structure of the
Helvetic nappes in the Bernese Oberland, Eclogae Geol. Helv., 94,
161–171, https://doi.org/10.5169/seals-168886, 2001. a
Institut für Geologie, Universität Bern and Bundesamt für Wasser und
Geologie: Tektonische Karte der Schweiz 1 : 500 000 = Carte tectonique de la Suisse 1 :500 000, Institut für Geologie, Universität Bern and Bundesamt für Wasser und Geologie, ISBN 3-906723-56-9, 2005. a
Jouvet, G., Seguinot, J., Ivy-Ochs, S., and Funk, M.: Modelling the diversion
of erratic boulders by the Valais Glacier during the last glacial maximum,
J. Glaciol., 63, 487–498, https://doi.org/10.1017/jog.2017.7, 2017. a, b, c, d
Kelly, M. A., Buoncristiani, J.-F., and Schlüchter, C.: A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France, Eclogae Geol. Helv., 97, 57–75, https://doi.org/10.1007/s00015-004-1109-6, 2004. a, b, c
Kjær, K. H., Houmark-Nielsen, M., and Richardt, N.: Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian Ice
Sheet: signature of palaeo-ice streams, Boreas, 32, 130–148,
https://doi.org/10.1111/j.1502-3885.2003.tb01434.x, 2003. a
Kruskal, W. H. and Wallis, W. A.: Use of Ranks in One-Criterion Variance
Analysis, J. Am. Stat. Assoc., 47, 583–621,
https://doi.org/10.1080/01621459.1952.10483441, 1952. a
Larsen, D. J., Miller, G. H., Áslaug Geirsdóttir, and Thordarson, T.: A
3000-year varved record of glacier activity and climate change from the
proglacial lake Hvítárvatn, Iceland, Quaternary Sci. Rev., 30,
2715–2731, https://doi.org/10.1016/j.quascirev.2011.05.026, 2011. a
Lizaga, I., Gaspar, L., Blake, W. H., Latorre, B., and Navas, A.:
Fingerprinting changes of source apportionments from mixed land uses in
stream sediments before and after an exceptional rainstorm event,
Geomorphology, 341, 216–229, https://doi.org/10.1016/j.geomorph.2019.05.015, 2019. a
Lizaga, I., Latorre, B., Gaspar, L., and Navas, A.: FingerPro: an R Package for Tracking the Provenance of Sediment, Water Resour. Manage., 34,
3879–3894, https://doi.org/10.1007/s11269-020-02650-0, 2020. a, b, c, d
Lüthy, H., Matter, A., and Nabholz, W. K.: Sedimentologische Untersuchung
eines temporären Quartäraufschlusses bei der Neubrügg nördlich Bern,
Eclogae Geol. Helv., 56, 119–145, https://doi.org/10.5169/seals-163032, 1963. a, b
Meyers, P. A. and Teranes, J. L.: Sediment Organic Matter, Springer Netherlands, Dordrecht, 239–269, https://doi.org/10.1007/0-306-47670-3_9, 2001. a
Monien, D., Kuhn, G., von Eynatten, H., and Talarico, F. M.: Geochemical provenance analysis of fine-grained sediment revealing Late Miocene to recent
Paleo-Environmental changes in the Western Ross Sea, Antarctica, Global Planet. Change, 96-97, 41–58, https://doi.org/10.1016/j.gloplacha.2010.05.001, 2012. a
Morton, A. C.: A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern
North Sea, Sedimentology, 32, 553–566,
https://doi.org/10.1111/j.1365-3091.1985.tb00470.x, 1985. a
Pawlowsky-Glahn, V. and Egozcue, J. J.: Compositional data and their analysis: an introduction, Geological Society, London, Special Publications, 264, 1–10, https://doi.org/10.1144/GSL.SP.2006.264.01.01, 2006. a
Pompilio, M., Dunbar, N., Gebhardt, A. C., Helling, D., Kuhn, G., Kyle, P.,
McKay, R., Talarico, F., Tulaczyk, S., Vogel, S., Wilch, T., and the
ANDRILL-MIS Science Team: Petrology and Geochemistry of the AND-1B Core,
ANDRILL McMurdo Ice Shelf Project, Antarctica, Terra Antartica, 14, 255–288, 2007. a
Preusser, F., Drescher-Schneider, R., Fiebig, M., and Schlüchter, C.: Re-interpretation of the Meikirch pollen record, Swiss Alpine Foreland, and implications for Middle Pleistocene chronostratigraphy, J. Quaternary Sci., 20, 607–620, https://doi.org/10.1002/jqs.930, 2005. a, b, c, d
Preusser, F., Reitner, J. M., and Schlüchter, C.: Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland, Swiss J. Geosci., 103, 407–426,
https://doi.org/10.1007/s00015-010-0044-y, 2010. a, b
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last access: 17 August 2022. a
Reber, R., Akçar, N., Ivy-Ochs, S., Tikhomirov, D., Burkhalter, R.,
Zahno, C., Lüthold, A., Kubik, P. W., Vockenhuber, C., and
Schlüchter, C.: Timing of retreat of the Reuss Glacier (Switzerland) at
the end of the Last Glacial Maximum, Swiss J. Geosci., 107,
293–307, https://doi.org/10.1007/s00015-014-0169-5, 2014. a, b
Sandroni, S. and Talarico, F. M.: The record of Miocene climatic events in AND-2A drill core (Antarctica): Insights from provenance analyses of basement
clasts, Global Planet. Change, 75, 31–46,
https://doi.org/10.1016/j.gloplacha.2010.10.002, 2011. a, b
Schlunegger, F., Matter, A., and Mange, M. A.: Alluvial fan sedimentation and structure of the southern Molasse Basin margin, Lake Thun area, Switzerland,
Eclogae Geol. Helv., 86, 717–750, https://doi.org/10.5169/seals-167260, 1993. a, b, c
Schlunegger, F., Burbank, D., Matter, A., Engesser, B., and Mödden, C.: Magnetostratigraphic calibration of the Oligocene to Middle Miocene (30–15 Ma) mammal biozones and depositional sequences of the Swiss Molasse Basin, Eclogae Geol. Helv., 89, 753–788, https://doi.org/10.5169/seals-167923, 1996. a
Schläfli, P., Gobet, E., van Leeuwen, J. F., Vescovi, E., Schwenk, M. A.,
Bandou, D., Douillet, G. A., Schlunegger, F., and Tinner, W.: Palynological
investigations reveal Eemian interglacial vegetation dynamics at Spiezberg,
Bernese Alps, Switzerland, Quaternary Sci. Rev., 263, 106975,
https://doi.org/10.1016/j.quascirev.2021.106975, 2021. a
Schlüchter, C.: The most complete quaternary record of the Swiss Alpine
Foreland, Palaeogeogr. Palaeocl., 72, 141–146,
https://doi.org/10.1016/0031-0182(89)90138-7, 1989. a
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogen, Eclogae Geol. Helv.,
97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004. a, b
Schönig, J., von Eynatten, H., Tolosana-Delgado, R., and Meinhold, G.: Garnet major-element composition as an indicator of host-rock type: a machine learning approach using the random forest classifier, Contrib. Mineral. Petr., 176, 98, https://doi.org/10.1007/s00410-021-01854-w, 2021. a, b
Schwenk, M. A., Schlunegger, F., Gribenski, N., Schläfli, P., Bandou, D., Douillet, G. A., and Krbanjevic, J.: Stratigraphic and Multi Scanner Core Logging (MSCL) data plus supplementary luminescence dating material obtained
from the scientific drilling QDR-RE-IfG and its drill site in the Aare
Valley, Bern, Switzerland, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2021.021, 2021. a
Schwenk, M. A., Schläfli, P., Bandou, D., Gribenski, N., Douillet, G. A., and Schlunegger, F.: From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland, Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Seguinot, J., Ivy-Ochs, S., Jouvet, G., Huss, M., Funk, M., and Preusser, F.: Modelling last glacial cycle ice dynamics in the Alps, The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, 2018. a
Sinclair, H. D. and Allen, P. A.: Vertical versus horizontal motions in the
Alpine orogenic wedge: stratigraphic response in the foreland basin, Basin
Res., 4, 215–232, https://doi.org/10.1111/j.1365-2117.1992.tb00046.x, 1992. a
Spiegel, C., Kuhlemann, J., Dunkl, I., Frisch, W., Von Eynatten, H., and
Balogh, K.: The erosion history of the Central Alps: evidence from zircon
fission track data of the foreland basin sediments, Terra Nova, 12, 163–170, https://doi.org/10.1046/j.1365-3121.2000.00289.x, 2000. a
Spiegel, C., Kuhlemann, J., Dunkl, I., and Frisch, W.: Paleogeography and
catchment evolution in a mobile orogenic belt: the Central Alps in
Oligo–Miocene times, Tectonophysics, 341, 33–47,
https://doi.org/10.1016/S0040-1951(01)00187-1, 2001. a
Spiegel, C., Siebel, W., Frisch, W., and Berner, Z.: Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators: implications for the reconstruction of the exhumation history of the Central Alps, Chem. Geol., 189, 231–250,
https://doi.org/10.1016/S0009-2541(02)00132-8, 2002. a, b
Stampfli, G. M.: Tethyan oceans, Geological Society, London, Special
Publications, 173, 1–23, https://doi.org/10.1144/GSL.SP.2000.173.01.01, 2000. a
Strunck, P. and Matter, A.: Depositional evolution of the western Swiss
Molasse, Eclogae Geol. Helv., 95, 197–222, https://doi.org/10.5169/seals-168955, 2002. a, b, c
Stutenbecker, L., Berger, A., and Schlunegger, F.: The potential of detrital garnet as a provenance proxy in the Central Swiss Alps, Sediment. Geol.,
351, 11–20, https://doi.org/10.1016/j.sedgeo.2017.02.002, 2017. a, b, c, d
Stutenbecker, L., Delunel, R., Schlunegger, F., Silva, T. A., Šegvić, B.,
Girardclos, S., Bakker, M., Costa, A., Lane, S. N., Loizeau, J.-L., Molnar,
P., Akçar, N., and Christl, M.: Reduced sediment supply in a fast
eroding landscape? A multi-proxy sediment budget of the upper Rhône basin,
Central Alps, Sediment. Geol., 375, 105–119, https://doi.org/10.1016/j.sedgeo.2017.12.013, 2018. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Stutenbecker, L., Tollan, P. M. E., Madella, A., and Lanari, P.: Miocene basement exhumation in the Central Alps recorded by detrital garnet geochemistry in foreland basin deposits, Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019, 2019. a, b, c, d
Tatzel, M., Dunkl, I., and von Eynatten, H.: Provenance of Palaeo-Rhine sediments from zircon thermochronology, geochemistry, U Pb dating and heavy mineral assemblages, Basin Res., 29, 396–417, https://doi.org/10.1111/bre.12155,
2017. a
Vale, S. S., Fuller, I. C., Procter, J. N., Basher, L. R., and Smith, I. E.:
Application of a confluence-based sediment-fingerprinting approach to a
dynamic sedimentary catchment, New Zealand, Hydrol. Process., 30,
812–829, https://doi.org/10.1002/hyp.10611, 2016. a
Vermeesch, P. and Garzanti, E.: Making geological sense of “Big Data” in
sedimentary provenance analysis, Chem. Geol., 409, 20–27,
https://doi.org/10.1016/j.chemgeo.2015.05.004, 2015. a
Vermeesch, P., Resentini, A., and Garzanti, E.: An R package for statistical
provenance analysis, Sediment. Geol., 336, 14–25,
https://doi.org/10.1016/j.sedgeo.2016.01.009, 2016. a, b, c
Welten, M.: Pollenanalytische Untersuchungen im Jüngeren Quartär
des nördlichen Alpenvorlandes der Schweiz, Beiträge zur
Geologischen Karte der Schweiz-Neue Folge, 156, 210 pp., 1982. a
Welten, M.: Neue pollenanalytische Ergebnisse über das Jüngere Quartär des nördlichen Alpenvorlandes der Schweiz (Mittel- und Jungpleistozän), Beiträge zur Geologischen Karte der Schweiz-Neue
Folge, 162, 52 pp., 1988. a
Weltje, G. J. and von Eynatten, H.: Quantitative provenance analysis of
sediments: review and outlook, Sediment. Geol., 171, 1–11,
https://doi.org/10.1016/j.sedgeo.2004.05.007, 2004. a, b, c
Wildi, W.: Heavy mineral distribution and dispersal pattern in penninic and ligurian flysch basins (Alps, northern Apennines), Giornale di Geologia, 47,
77–99, 1985. a
Wissing, S. and Pfiffner, O.-A.: Structure of the eastern Klippen nappe (BE, FR): Implications for its Alpine tectonic evolution, Eclogae Geol. Helv., 95, 381–398, https://doi.org/10.5169/seals-168966, 2002. a
Ziegler, P. A. and Fraefel, M.: Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben, Swiss J. Geosci., 102, 57–75, https://doi.org/10.1007/s00015-009-1306-4, 2009. a
Short summary
We investigated the origin of glacial sediments in the Bern area to determine their route of transport either with the Aare Glacier or the Valais Glacier. These two ice streams are known to have joined in the Bern area during the last major glaciation (ca. 20 000 years ago). However, little is known about the ice streams prior to this last glaciation. Here we collected evidence that during a glaciation about 250 000 years ago the Aare Glacier dominated the area as documented in the deposits.
We investigated the origin of glacial sediments in the Bern area to determine their route of...