Articles | Volume 71, issue 1
https://doi.org/10.5194/egqsj-71-91-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-71-91-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Holocene vegetation reconstruction in the forest–steppe of Mongolia based on leaf waxes and macro-charcoals in soils
Marcel Lerch
Heisenberg Chair of Physical Geography with Focus on
Paleoenvironmental Research, Institute of Geography, Technische
Universität Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
Julia Unkelbach
Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Florian Schneider
Department of Physical Geography, Institute of Geography, University of Göttingen, Goldschmidtstr. 5, 37077 Göttingen, Germany
Michael Zech
Heisenberg Chair of Physical Geography with Focus on
Paleoenvironmental Research, Institute of Geography, Technische
Universität Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
Department of Physical Geography, Institute of Geography, University of Göttingen, Goldschmidtstr. 5, 37077 Göttingen, Germany
Related authors
No articles found.
Fabian Seemann, Michael Zech, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Claire Treat, Lutz Schirrmeister, Susanne Liebner, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3727, https://doi.org/10.5194/egusphere-2025-3727, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arctic coastal landscapes, like those in northernmost Alaska, often contain saline sediments that are more prone to thawing. We studied six sediment cores to understand how thawing and salinity affect organic carbon breakdown and land change. Our results show that salinity speeds up organic matter loss when permafrost thaws. This highlights the overlooked risk of salinity in shaping Arctic landscapes and carbon release as the climate continues to warm.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Jakob Labahn, Lucas Bittner, Philip Hirschmann, Christopher-Bastian Roettig, Diana Burghardt, Bruno Glaser, Slobodan B. Marković, and Michael Zech
E&G Quaternary Sci. J., 71, 83–90, https://doi.org/10.5194/egqsj-71-83-2022, https://doi.org/10.5194/egqsj-71-83-2022, 2022
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Florian Schneider, Michael Klinge, Jannik Brodthuhn, Tino Peplau, and Daniela Sauer
SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, https://doi.org/10.5194/soil-7-563-2021, 2021
Short summary
Short summary
The central Mongolian forest steppe underlies a recent decline of forested area. We analysed the site and soil properties in the Khangai Mountains to identify differences between disturbed forest areas with and without regrowth of trees. More silty soils were found under areas with tree regrowth and more sandy soils under areas without tree regrowth. Due to the continental, semi-arid climate, soil properties which increase the amount of available water are decisive for tree regrowth in Mongolia.
Michael Zech, Marcel Lerch, Marcel Bliedtner, Tobias Bromm, Fabian Seemann, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Jean Nicolas Haas, Dieter Schäfer, and Clemens Geitner
E&G Quaternary Sci. J., 70, 171–186, https://doi.org/10.5194/egqsj-70-171-2021, https://doi.org/10.5194/egqsj-70-171-2021, 2021
Lucas Dugerdil, Sébastien Joannin, Odile Peyron, Isabelle Jouffroy-Bapicot, Boris Vannière, Bazartseren Boldgiv, Julia Unkelbach, Hermann Behling, and Guillemette Ménot
Clim. Past, 17, 1199–1226, https://doi.org/10.5194/cp-17-1199-2021, https://doi.org/10.5194/cp-17-1199-2021, 2021
Short summary
Short summary
Since the understanding of Holocene climate change appears to be a relevant issue for future climate change, the paleoclimate calibrations have to be improved. Here, surface samples from Mongolia and Siberia were analyzed to provide new calibrations for pollen and biomarker climate models. These calibrations appear to be more powerful than global calibrations, especially in an arid central Asian context. These calibrations will improve the understanding of monsoon Holocene oscillations.
Christopher Lüthgens, Daniela Sauer, and Michael Zech
E&G Quaternary Sci. J., 69, 261–262, https://doi.org/10.5194/egqsj-69-261-2021, https://doi.org/10.5194/egqsj-69-261-2021, 2021
Cited articles
Academy of Sciences of Mongolia and Academy of Sciences of USSR: National Atlas of the Peoples Republic of Mongolia, Ulan Baatar, Moscow, 144 pp., 1990.
Bittner, L., Bliedtner, M., Grady, D., Gil-Romera, G., Martin-Jones, C.,
Lemma, B., Mekonnen, B., Lamb, H. F., Yang, H., Glaser, B., Szidat, S.,
Salazar, G., Rose, N. L., Opgenoorth, L., Miehe, G., Zech, W., and Zech, M.:
Revisiting afro-alpine Lake Garba Guracha in the Bale Mountains of Ethiopia:
rationale, chronology, geochemistry, and paleoenvironmental implications, J.
Paleolimnol., 64, 293–314, https://doi.org/10.1007/s10933-020-00138-w, 2020.
Bliedtner, M., Schäfer, I. K., Zech, R., and von Suchodoletz, H.: Leaf wax n-alkanes in modern plants and topsoils from eastern Georgia (Caucasus) – implications for reconstructing regional paleovegetation, Biogeosciences, 15, 3927–3936, https://doi.org/10.5194/bg-15-3927-2018, 2018.
Bliedtner, M., von Suchodoletz, H., Schäfer, I., Welte, C., Salazar, G., Szidat, S., Haas, M., Dubois, N., and Zech, R.: Age and origin of leaf wax n-alkanes in fluvial sediment–paleosol sequences and implications for paleoenvironmental reconstructions, Hydrol. Earth Syst. Sci., 24, 2105–2120, https://doi.org/10.5194/hess-24-2105-2020, 2020.
Breckle, S.-W., Lawlor, G., Lawlor, D. W., and Walter, H. (Eds.): Walter's
vegetation of the earth: The ecological systems of the geo-biosphere, 4th edn., Springer, Berlin, 527 pp., ISBN 9783540433156, 2002.
Brugger, S. O., Gobet, E., Sigl, M., Osmont, D., Papina, T., Rudaya, N.,
Schwikowski, M., and Tinner, W.: Ice records provide new insights into
climatic vulnerability of Central Asian forest and steppe communities,
Global Planet. Change, 169, 188–201, https://doi.org/10.1016/j.gloplacha.2018.07.010, 2018.
Buggle, B., Wiesenberg, G. L., and Glaser, B.: Is there a possibility to
correct fossil n-alkane data for postsedimentary alteration effects?, Appl. Geochem., 25, 947–957, https://doi.org/10.1016/j.apgeochem.2010.04.003, 2010.
Bush, R. T. and McInerney, F. A.: Leaf wax n-alkane distributions in and
across modern plants: Implications for paleoecology and chemotaxonomy,
Geochim. Cosmochim. Ac., 117, 161–179, https://doi.org/10.1016/j.gca.2013.04.016, 2013.
Diefendorf, A. F., Freeman, K. H., Wing, S. L., and Graham, H. V.:
Production of n-alkyl lipids in living plants and implications for the
geologic past, Geochim. Cosmochim. Ac., 75, 7472–7485, https://doi.org/10.1016/j.gca.2011.09.028, 2011.
Dulamsuren, C. and Hauck, M.: Spatial and seasonal variation of climate on
steppe slopes of the northern Mongolian mountain taiga, Grassl. Sci., 54,
217–230, https://doi.org/10.1111/j.1744-697X.2008.00128.x, 2008.
Eglinton, G. and Hamilton, R. J.: Leaf epicuticular waxes, Science,
1322–1325, 1967.
Eichler, A., Tinner, W., Brütsch, S., Olivier, S., Papina, T., and
Schwikowski, M.: An ice-core based history of Siberian forest fires since AD
1250, Quaternary Sci. Rev., 30, 1027–1034, https://doi.org/10.1016/j.quascirev.2011.02.007, 2011.
Erdős, L., Ambarlı, D., Anenkhonov, O. A., Bátori, Z., Cserhalmi,
D., Kiss, M., Kröel-Dulay, G., Liu, H., Magnes, M., Molnár, Z.,
Naqinezhad, A., Semenishchenkov, Y. A., Tölgyesi, C., and Török,
P.: The edge of two worlds: A new review and synthesis on Eurasian
forest-steppes, Appl. Veg. Sci., 21, 345–362, https://doi.org/10.1111/avsc.12382, 2018.
Fernández-Giménez, M. E., Venable, N. H., Angerer, J., Fassnacht, S.
R., Reid, R. S., and Khishigbayar, J.: Exploring linked ecological and
cultural tipping points in Mongolia, Anthropocene, 17, 46–69, https://doi.org/10.1016/j.ancene.2017.01.003, 2017.
Fowell, S. J., Hansen, B. C., Peck, J. A., Khosbayar, P., and Ganbold, E.:
Mid to late Holocene climate evolution of the Lake Telmen Basin, North
Central Mongolia, based on palynological data, Quat. Res., 59, 353–363,
https://doi.org/10.1016/S0033-5894(02)00020-0, 2003.
Gunin, P. D., Vastokova, E. A., Dorofeyuj, N. I., Tarasov, P. E., and Black,
C. C. (Eds.): Vegetation dynamics of Mongolia, Geobotany, 26, Kluwer
Academic Publishers, Dordrecht, Boston, London, 238 pp., https://doi.org/10.1007/978-94-015-9143-0_2, 1999.
Haas, M., Bliedtner, M., Borodynkin, I., Salazar, G., Szidat, S., Eglinton,
T. I., and Zech, R.: Radiocarbon Dating of Leaf Waxes in the Loess-Paleosol
Sequence Kurtak, Central Siberia, Radiocarbon, 59, 165–176, https://doi.org/10.1017/RDC.2017.1, 2017.
Hais, M., Chytrý, M., and Horsák, M.: Exposure-related
forest-steppe: A diverse landscape type determined by topography and
climate, J. Arid Environ., 135, 75–84, https://doi.org/10.1016/j.jaridenv.2016.08.011, 2016.
Hepp, J., Zech, R., Rozanski, K., Tuthorn, M., Glaser, B., Greule, M.,
Keppler, F., Huang, Y., Zech, W., and Zech, M.: Late Quaternary relative
humidity changes from Mt. Kilimanjaro, based on a coupled 2H-18O
biomarker paleohygrometer approach, Quatern. Int., 438, 116–130, https://doi.org/10.1016/j.quaint.2017.03.059, 2017.
Hessl, A. E., Brown, P., Byambasuren, O., Cockrell, S., Leland, C., Cook,
E., Nachin, B., Pederson, N., Saladyga, T., and Suran, B.: Fire and climate
in Mongolia (1532–2010 Common Era), Geophys. Res. Lett., 43, 6519–6527,
https://doi.org/10.1002/2016GL069059, 2016.
Hoefs, M. J., Rijpstra, W. C., and Sinninghe Damsté, J. S.: The
influence of oxic degradation on the sedimentary biomarker record I:
evidence from Madeira Abyssal Plain turbidites, Geochim. Cosmochim. Ac., 66, 2719–2735, https://doi.org/10.1016/S0016-7037(02)00864-5, 2002.
Iijima, Y., Ishikawa, M., and Jambaljav, Y.: Hydrological cycle in relation
to permafrost environment in forest-grassland ecotone in Mongolia, Journal
of Japanese Association of Hydrological Sciences, 42, 119–130, 2012.
Khansaritoreh, E., Dulamsuren, C., Klinge, M., Ariunbaatar, T., Bat-Enerel,
B., Batsaikhan, G., Ganbaatar, K., Saindovdon, D., Yeruult, Y., Tsogtbaatar,
J., Tuya, D., Leuschner, C., and Hauck, M.: Higher climate warming
sensitivity of Siberian larch in small than large forest islands in the
fragmented Mongolian forest steppe, Glob. Change Biol., 23, 3675–3689, https://doi.org/10.1111/gcb.13750, 2017.
Khapugin, A. A., Vargot, E. V., and Chugunov, G. G.: Vegetation recovery in
fire-damaged forests: a case study at the southern boundary of the taiga
zone, Forestry Studies, 64, 39–50, https://doi.org/10.1515/fsmu-2016-0003, 2016.
Klinge, M. and Sauer, D.: Spatial pattern of Late Glacial and Holocene
climatic and environmental development in Western Mongolia – A critical
review and synthesis, Quaternary Sci. Rev., 210, 26–50, https://doi.org/10.1016/j.quascirev.2019.02.020, 2019.
Klinge, M., Dulamsuren, C., Erasmi, S., Karger, D. N., and Hauck, M.: Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia, Biogeosciences, 15, 1319–1333, https://doi.org/10.5194/bg-15-1319-2018, 2018.
Klinge, M., Schneider, F., Dulamsuren, C., Arndt, K., Bayarsaikhan, U., and
Sauer, D.: Interrelations between vegetation, natural and anthropogenic
disturbances, and discontinuous permafrost in the forest-steppe of central
Mongolia, Earth Surf. Proc. Land., 46, 1766–1782, https://doi.org/10.1002/esp.5116, 2021.
Klinge, M., Schneider, F., Yan, L., Frechen, M., and Sauer, D.: Alternating
geomorphological processes in the northern Khangai Mountains, Mongolia since
the Late Glacial period, Geomorphology, 401, 108113, https://doi.org/10.1016/j.geomorph.2022.108113, 2022.
Kolattukudy, P. E.: Biochemistry of plant waxes, in: Chemistry and
biochemistry of natural waxes, edited by: Kolattukudy, P. E. and
Kolattukudy, P. E., Elsevier, Amsterdam, 290–349, ISBN 0444414703, 1976.
Kopp, B. J., Minderlein, S., and Menzel, L.: Soil Moisture Dynamics in a
Mountainous Headwater Area in the Discontinuous Permafrost Zone of northern
Mongolia, Arct. Antarct. Alp. Res., 46, 459–470, https://doi.org/10.1657/1938-4246-46.2.459, 2014.
Lerch, M., Bliedtner, M., Roettig, C.-B., Schmidt, J.-U., Szidat, S., Salazar, G., Zech, R., Glaser, B., Kleber, A., and Zech, M.: Lipid biomarkers in aeolian sediments under desert pavements – potential and first results from the Black Rock Desert, Utah, USA, and Fuerteventura, Canary Islands, Spain, E&G Quaternary Sci. J., 66, 103–108, https://doi.org/10.5194/egqsj-66-103-2018, 2018.
Miehe, G., Schlütz, F., Miehe, S., Opgenoorth, L., Cermak, J., Samiya,
R., Jäger, E. J., and Wesche, K.: Mountain forest islands and Holocene
environmental changes in Central Asia: A case study from the southern Gobi
Altay, Mongolia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 250, 150–166,
https://doi.org/10.1016/j.palaeo.2007.03.022, 2007.
Mustaphi, C. J. C. and Pisaric, M. F.: A classification for macroscopic
charcoal morphologies found in Holocene lacustrine sediments, Prog.
Phys. Geog., 38, 734–754, https://doi.org/10.1177/0309133314548886, 2014.
Nyamjav, B., Goldammer, G., and Uibrig, H.: Fire situation in Mongolia, in:
International Forest Fire News, 46–66, 2007.
Odgaard, B. V.: Fossil pollen as a record of past biodiversity, J.
Biogeogr., 26, 7–17, https://doi.org/10.1046/j.1365-2699.1999.00280.x, 1999.
Patterson, W. A., Edwards, K. J., and Maguire, D. J.: Microscopic charcoal
as a fossil indicator of fire, Quaternary Sci. Rev., 6, 3–23, https://doi.org/10.1016/0277-3791(87)90012-6, 1987.
Pelletier, J. D., Barron-Gafford, G. A., Gutiérrez-Jurado, H., Hinckley,
E.-L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G.-Y., Poulos, M. J.,
Rasmussen, C., Richardson, P., Swetnam, T. L., and Tucker, G. E.: Which way
do you lean? Using slope aspect variations to understand Critical Zone
processes and feedbacks, Earth Surf. Proc. Land., 43, 1133–1154, https://doi.org/10.1002/esp.4306, 2018.
Pessenda, L. C. R., Gouveia, S. E. M., and Aravena, R.: Radiocarbon Dating
of Total Soil Organic Matter and Humin Fraction and Its Comparison with
14C Ages of Fossil Charcoal, Radiocarbon, 43, 595–601, https://doi.org/10.1017/S0033822200041242, 2001.
Poynter, J. G., Farrimond, P., Robinson, N., and Eglinton, G.:
Aeolian-Derived Higher Plant Lipids in the Marine Sedimentary Record: Links
with Palaeoclimate, in: Paleoclimatology and Paleometeorology: Modern and
Past Patterns of Global Atmospheric Transport, edited by: Leinen, M. and
Sarnthein, M., Springer, Dordrecht, 435–462, https://doi.org/10.1007/978-94-009-0995-3_18, 1989.
Rudaya, N., Tarasov, P. E., Dorofeyuk, N., Solovieva, N., Kalugin, I.,
Andreev, A., Daryin, A., Diekmann, B., Riedel, F., and Tserendash, N.:
Holocene environments and climate in the Mongolian Altai reconstructed from
the Hoton-Nur pollen and diatom records: A step towards better understanding
climate dynamics in Central Asia, Quaternary Sci. Rev., 28, 540–554,
https://doi.org/10.1016/j.quascirev.2008.10.013, 2009.
Schäfer, I. K., Lanny, V., Franke, J., Eglinton, T. I., Zech, M., Vysloužilová, B., and Zech, R.: Leaf waxes in litter and topsoils along a European transect, SOIL, 2, 551–564, https://doi.org/10.5194/soil-2-551-2016, 2016.
Schneider, F., Klinge, M., Brodthuhn, J., Peplau, T., and Sauer, D.: Hydrological soil properties control tree regrowth after forest disturbance in the forest steppe of central Mongolia, SOIL, 7, 563–584, https://doi.org/10.5194/soil-7-563-2021, 2021.
Stevenson, J. and Haberle, S.: Macro Charcoal Analysis: A modified technique
used by the Department of Archaeology and Natural History, Palaeoworks
Technical Papers, 5, http://hdl.handle.net/1885/144170 (last access: 20 May 2022), 2005.
Strobel, P., Struck, J., Zech, R., and Bliedtner, M.: The spatial
distribution of sedimentary compounds and their environmental implications
in surface sediments of Lake Khar Nuur (Mongolian Altai), Earth Surf. Proc.
Land., 46, 611–625, https://doi.org/10.1002/esp.5049, 2021.
Struck, J., Roettig, C. B., Faust, D., and Zech, R.: Leaf waxes from aeolianite–paleosol sequences on Fuerteventura and their potential for paleoenvironmental and climate reconstructions in the arid subtropics, E&G Quaternary Sci. J., 66, 109–114, https://doi.org/10.5194/egqsj-66-109-2018, 2018.
Struck, J., Bliedtner, M., Strobel, P., Schumacher, J., Bazarradnaa, E., and Zech, R.: Leaf wax n-alkane patterns and compound-specific δ13C of plants and topsoils from semi-arid and arid Mongolia, Biogeosciences, 17, 567–580, https://doi.org/10.5194/bg-17-567-2020, 2020.
Tarasov, P. E., Müller, S., Zech, M., Andreeva, D., Diekmann, B., and
Leipe, C.: Last glacial vegetation reconstructions in the
extreme-continental eastern Asia: Potentials of pollen and n-alkane biomarker analyses, Quatern. Int., 290–291, 253–263, https://doi.org/10.1016/j.quaint.2012.04.007, 2013.
Thomas, C. L., Jansen, B., van Loon, E. E., and Wiesenberg, G. L. B.: Transformation of n-alkanes from plant to soil: a review, SOIL, 7, 785–809, https://doi.org/10.5194/soil-7-785-2021, 2021.
Umbanhowar, C. E. and Mcgrath, M. J.: Experimental production and analysis
of microscopic charcoal from wood, leaves and grasses, Holocene, 8,
341–346, https://doi.org/10.1191/095968398666496051, 1998.
Umbanhowar, C. E., Shinneman, A. L., Tserenkhand, G., Hammon, E. R., Lor,
P., and Nail, K.: Regional fire history based on charcoal analysis of
sediments from nine lakes in western Mongolia, Holocene, 19, 611–624,
https://doi.org/10.1177/0959683609104039, 2009.
Unkelbach, J., Kashima, K., Enters, D., Dulamsuren, C., Punsalpaamuu, G.,
and Behling, H.: Late Holocene (Meghalayan) palaeoenvironmental evolution
inferred from multi-proxy-studies of lacustrine sediments from the Dayan
Nuur region of Mongolia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 530,
1–14, https://doi.org/10.1016/j.palaeo.2019.05.021, 2019.
Unkelbach, J., Dulamsuren, C., Klinge, M., and Behling, H.: Holocene
high-resolution forest-steppe and environmental dynamics in the Tarvagatai
Mountains, north-central Mongolia, over the last 9570 cal yr BP, Quaternary Sci. Rev., 266, 107076, https://doi.org/10.1016/j.quascirev.2021.107076, 2021.
Wang, W., Ma, Y., Feng, Z.-D., Meng, H., Sang, Y., and Zhai, X.: Vegetation
and climate changes during the last 8660 cal. a BP in central Mongolia,
based on a high resolution pollen record from Lake Ugii Nuur, Chinese Sci.
Bull., 54, 1579–1589, https://doi.org/10.1007/s11434-009-0023-8, 2009.
Wiesenberg, G., Lehndorff, E., and Schwark, L.: Thermal degradation of rye
and maize straw: Lipid pattern changes as a function of temperature, Org.
Geochem., 40, 167–174, https://doi.org/10.1016/j.orggeochem.2008.11.004, 2009.
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G., and Zöller, L.: Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: Problems and possible solutions, potential and limitations, E&G Quaternary Sci. J., 58, 148–155, https://doi.org/10.3285/eg.58.2.03, 2010a.
Zech, M., Andreev, A., Zech, R., Müller, S., Hambach, U., Frechen, M.,
and Zech, W.: Quaternary vegetation changes derived from a loess-like
permafrost palaeosol sequence in northeast Siberia using alkane biomarker
and pollen analyses, Boreas, 4142, 540–550, https://doi.org/10.1111/j.1502-3885.2009.00132.x, 2010b.
Zech, M., Rass, S., Buggle, B., Löscher, M., and Zöller, L.:
Reconstruction of the late Quaternary paleoenvironments of the Nussloch
loess paleosol sequence, Germany, using n-alkane biomarkers, Quat. Res., 78, 226–235, https://doi.org/10.1016/j.yqres.2012.05.006, 2012.
Zech, M., Krause, T., Meszner, S., and Faust, D.: Incorrect when
uncorrected: Reconstructing vegetation history using n-alkane biomarkers in
loess-paleosol sequences – A case study from the Saxonian loess region,
Germany, Quatern. Int., 296, 108–116, https://doi.org/10.1016/j.quaint.2012.01.023, 2013.
Zech, M., Kreutzer, S., Zech, R., Goslar, T., Meszner, S., McIntyre, C.,
Häggi, C., Eglinton, T., Faust, D., and Fuchs, M.: Comparative 14C
and OSL dating of loess-paleosol sequences to evaluate post-depositional
contamination of n-alkane biomarkers, Quat. Res., 87, 180–189, https://doi.org/10.1017/qua.2016.7, 2017.
Short summary
Charcoals and leaf waxes from vegetation accumulate in the soil and provide information about past vegetation because they are mostly resistant against physical and biological degradation. Analyzing and comparing ratios of both element types helped us to improve the evidence for vegetation reconstruction. We found that the accumulation processes and preservation of these elements depend on different environmental conditions at forest- and steppe-dominated sites in the Mongolian forest–steppe.
Charcoals and leaf waxes from vegetation accumulate in the soil and provide information about...