Articles | Volume 73, issue 2
https://doi.org/10.5194/egqsj-73-239-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-73-239-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards a quantitative lithostratigraphy of Pleistocene glaciofluvial deposits in the southern Upper Rhine Graben
Lukas Gegg
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Felicitas A. Griebling
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Nicole Jentz
Institute of Earth and Environmental Sciences, University of Freiburg, Albertstraße 23b, 79104 Freiburg, Germany
Ulrike Wielandt-Schuster
Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau (LGRB), Albertstraße 5, 79104 Freiburg, Germany
Related authors
Lukas Gegg
E&G Quaternary Sci. J., 74, 125–127, https://doi.org/10.5194/egqsj-74-125-2025, https://doi.org/10.5194/egqsj-74-125-2025, 2025
Short summary
Short summary
Drillings, outcrops, and seismic data provide insights into a glacial basin and a former river channel in northern Switzerland. Both are infilled with diverse (glacial, lacustrine, fluvial, colluvial) sediments attributed to three separate glaciations. The depth of the glacial basin depends strongly on the underlying rock type, which together with (hydro)fractures provides evidence on the conditions and erosion processes at the ice–rock interface.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Lukas Gegg
E&G Quaternary Sci. J., 74, 125–127, https://doi.org/10.5194/egqsj-74-125-2025, https://doi.org/10.5194/egqsj-74-125-2025, 2025
Short summary
Short summary
Drillings, outcrops, and seismic data provide insights into a glacial basin and a former river channel in northern Switzerland. Both are infilled with diverse (glacial, lacustrine, fluvial, colluvial) sediments attributed to three separate glaciations. The depth of the glacial basin depends strongly on the underlying rock type, which together with (hydro)fractures provides evidence on the conditions and erosion processes at the ice–rock interface.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Lukas Gegg and Johann Gegg
Sci. Dril., 32, 55–59, https://doi.org/10.5194/sd-32-55-2023, https://doi.org/10.5194/sd-32-55-2023, 2023
Short summary
Short summary
Geoscientists working with drill cores often struggle with proper photo documentation. We present a simple smartphone-based setup for acquiring high-resolution undistorted core pictures as an alternative to state-of-the-art commercial line scan imaging systems that are typically expensive and inflexible. It makes use of the phone's panoramic picture mode while being guided along the core in question on a rail, and the resulting images are of similar quality to classic line scan photos.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Cited articles
Abdulkarim, M., Schmitt, L., Fülling, A., Rambeau, C., Ertlen, D., Mueller, D., Chapkanski, S., and Preusser, F.: Late glacial to Holocene fluvial dynamics in the Upper Rhine alluvial plain, France, Quat. Res., 121, 109–131, https://doi.org/10.1017/qua.2024.22, 2024.
Anselmetti, F. S., Bavec, M., Crouzet, C., Fiebig, M., Gabriel, G., Preusser, F., Ravazzi, C., and DOVE scientific team: Drilling Overdeepened Alpine Valleys (ICDP-DOVE): quantifying the age, extent, and environmental impact of Alpine glaciations, Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, 2022.
Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C., Derer, C., and Schaefer, A.: Paleogeography of the upper Rhine Graben (URG) and the Swiss Molasse basin (SMB) from Eocene to Pliocene, Int. J. Earth Sci., 94, 697–710, 2005.
Dietze, E., and Dietze, M.: Grain-size distribution unmixing using the R package EMMAgeo, E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, 2019.
Edel, J.-B., Schulmann, K., and Rotstein, Y.: The Variscan tectonic inheritance of the Upper Rhine Graben: evidence of reactivations in the Lias, Late Eocene–Oligocene up to the recent, Int. J. Earth Sci., 96, 305–325, https://doi.org/10.1007/s00531-006-0092-8, 2007.
Ehlers, J. and Gibbard, P. L. (Eds.): Quaternary glaciations: extent and chronology, 1st Ed., Elsevier, Amsterdam, San Diego, 1126 pp., ISBN 9780444534477, 2004.
Ellwanger, D., Wielandt-Schuster, U., Franz, M., and Simon, T.: The Quaternary of the southwest German Alpine Foreland (Bodensee-Oberschwaben, Baden-Württemberg, Southwest Germany), E&G Quaternary Sci. J., 60, 22, https://doi.org/10.3285/eg.60.2-3.07, 2011.
Ellwanger, D., Franz, M., and Wielandt-Schuster, U.: Zur Einführung: Heidelberger Becken, Oberschwaben-Oberrhein, Geosystem Rhein, LGRB Informationen, 26, 7–24, https://produkte.lgrb-bw.de/schriftensuche/lgrb-informationen/informationen26/?aid=19 (last access: 5 December 2024), 2012.
FGG Rhein: Überblicksbericht der Flussgebiets-gemeinschaft Rhein zur Bewirtschaftungsplanung nach Wasserrahmenrichtlinie für den 3. Bewirtschaftungs-zeitraum, Flussgebietsgemeinschaft Rhein, https://fgg-rhein.de/servlet/is/4367/ (last access: 10 July 2024), 2020.
Fiebig, M., Ellwanger, D., and Doppler, G.: Pleistocene glaciations of southern Germany, in: Developments in Quaternary Sciences, Vol. 15, Elsevier, 163–173, https://doi.org/10.1016/B978-0-444-53447-7.00014-3, 2011.
Frechen, M., Ellwanger, D., Hinderer, M., Lämmermann-Barthel, J., Neeb, I., and Techmer, A.: Late Pleistocene fluvial dynamics in the Hochrhein Valley and in the Upper Rhine Graben: chronological frame, Int. J. Earth Sci., 99, 1955–1974, https://doi.org/10.1007/s00531-009-0482-9, 2010.
Frechen, M., Ellwanger, D., Hinderer, M., Lämmermann-Barthel, J., Neeb, I., and Techmer, A.: Reply to Preusser et al. on Frechen et al. “Late Pleistocene fluvial dynamics in the Hochrhein Valley in the upper Rhine Graben: chronological frame”, Int. J. Earth Sci., 101, 389–392, https://doi.org/10.1007/s00531-011-0638-2, 2012.
Gabriel, G., Ellwanger, D., Hoselmann, C., Weidenfeller, M., Wielandt-Schuster, U., and Team, T. H. B. P.: The Heidelberg Basin, Upper Rhine Graben (Germany): a unique archive of Quaternary sediments in Central Europe, Quaternary Int., 292, 43–58, 2013.
Gegg, L. and Preusser, F.: Comparison of overdeepened structures in formerly glaciated areas of the northern Alpine foreland and northern central Europe, E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, 2023.
Gegg, L., Jacob, L., Moine, O., Nelson, E., Penkman, K.E.H., Schwahn, F., Stojakowits, P., White, D., Wielandt-Schuster, U., and Preusser, F.: Climatic and tectonic controls on deposition in the Heidelberg Basin, Upper Rhine Graben, Germany, Quaternary Sci. Res., https://doi.org/10.1016/j.quascirev.2024.109018, in press, 2024.
Graf, A., Akçar, N., Ivy-Ochs, S., Strasky, S., Kubik, P. W., Christl, M., Burkhard, M., Wieler, R., and Schlüchter, C.: Multiple advances of Alpine glaciers into the Jura Mountains in the Northwestern Switzerland, Swiss J. Geosci., 108, 225–238, 2015.
Graf, H. R.: Stratigraphie von Mittel-und Spätpleistozän in der Nordschweiz, Beiträge zur Geologischen Karte der Schweiz, N. F. 168, 198 pp., ISBN 9783302400501, 2009.
Hagedorn, E. M.: Sedimentpetrographie und Lithofazies der jungtertiären und quartären Sedimente im Oberrheingebiet, PhD thesis, Universität zu Köln, https://kups.ub.uni-koeln.de/1253/1/Hagedorn.pdf (last access: 5 December 2024), 2004.
Hagedorn, E. M. and Boenigk, W.: The Pliocene and Quaternary sedimentary and fluvial history in the Upper Rhine Graben based on heavy mineral analyses, Neth. J. Geosci. Geol. En Mijnb., 87, 21, https://doi.org/10.1017/S001677460002401X, 2008.
Hantke, R.: Eiszeitalter: Die jüngste Erdgeschichte der Schweiz und ihrer Nachbargebiete 1 – Klima, Flora, Fauna, Mensch, Alt- und Mittel-Pleistozän, Vogesen, Schwarzwald, Schwäbische Alb, Ott Verlag, Thun, 468 pp., 1987.
Hofmann, F. M., Rauscher, F., McCreary, W., Bischoff, J.-P., and Preusser, F.: Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany, E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, 2020.
Hofmann, F. M., Preusser, F., Schimmelpfennig, I., Léanni, L., and Aster Team (Georges Aumaître, Karim Keddadouche & Fawzi Zaid: Late Pleistocene glaciation history of the southern Black Forest, Germany: 10Be cosmic-ray exposure dating and equilibrium line altitude reconstructions in Sankt Wilhelmer Tal, J. Quat. Sci., 37, 688–706, https://doi.org/10.1002/jqs.3407, 2022.
Huggenberger, P. and Regli, C.: A Sedimentological Model to Characterize Braided River Deposits for Hydrogeological Applications, in: Braided Rivers, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Wiley, 51–74, https://doi.org/10.1002/9781444304374.ch3, 2006.
Hughes, P. D., Gibbard, P. L., and Ehlers, J.: The “missing glaciations” of the Middle Pleistocene, Quaternary Res., 96, 161–183, 2019.
Jautzy, T., Rixhon, G., Braucher, R., Delunel, R., Valla, P. G., Schmitt, L., and Team, A.: Cosmogenic (un-)steadiness revealed by paired-nuclide catchment-wide denudation rates in the formerly half-glaciated Vosges Mountains (NE France), Earth Planet. Sci. Lett., 625, 118490, https://doi.org/10.1016/j.epsl.2023.118490, 2024.
Jordan, P., Wetzel, A., and Reisdorf, A.: Swiss Jura Mountains, in: The Geology of Central Europe, Vol. 2, edited by: McCann, T., Geological Society of London, 823–923, ISBN 9781862392656, 2008.
Kock, S., Kramers, J. D., Preusser, F., and Wetzel, A.: Dating of Late Pleistocene terrace deposits of the River Rhine using Uranium series and luminescence methods: Potential and limitations, Quat. Geochronol., 4, 363–373, https://doi.org/10.1016/j.quageo.2009.04.002, 2009a.
Kock, S., Huggenberger, P., Preusser, F., Rentzel, P., and Wetzel, A.: Formation and evolution of the Lower Terrace of the Rhine River in the area of Basel, Swiss J. Geosci., 102, 307–321, https://doi.org/10.1007/s00015-009-1325-1, 2009b.
Lukas, S., Benn, D. I., Boston, C. M., Brook, M., Coray, S., Evans, D. J. A., Graf, A., Kellerer-Pirklbauer, A., Kirkbride, M. P., and Krabbendam, M.: Clast shape analysis and clast transport paths in glacial environments: A critical review of methods and the role of lithology, Earth-Sci. Rev., 121, 96–116, 2013.
Marik, M., Serra, E., Gegg, L., Wölki, D., and Preusser, F.: Combined different luminescence dating approaches on fluvial gravel deposits from the southern Upper Rhine Graben, Quat. Geochronol., 101536, https://doi.org/10.1016/j.quageo.2024.101536, 2024.
Meyer, J.: Gesteine der Schweiz - Der Feldführer, Haupt Verlag, Bern, 448 pp., ISBN 9783258082776, 2013.
Nivière, B., Bruestle, A., Bertrand, G., Carretier, S., Behrmann, J., and Gourry, J.-C.: Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany), Quatermary Sci. Rev., 27, 541–555, https://doi.org/10.1016/j.quascirev.2007.11.018, 2008.
Pfiffner, O. A.: Geologie der Alpen, 2nd Ed., Haupt Verlag, Bern, 397 pp., ISBN 9783825284169, 2010.
Pietsch, J. S., Wetzel, A., and Jordan, P.: A new lithostratigraphic scheme for the Schinznach Formation (upper part of the Muschelkalk Group of northern Switzerland), Swiss J. Geosci., 109, 285–307, https://doi.org/10.1007/s00015-016-0214-7, 2016.
Powers, M. C.: A New Roundness Scale for Sedimentary Particles, SEPM J. Sediment. Res., 23, 117–119, https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D, 1953.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Preusser, F., Büschelberger, M., Kemna, H. A., Miocic, J., Mueller, D., and May, J.-H.: Exploring possible links between Quaternary aggradation in the Upper Rhine Graben and the glaciation history of northern Switzerland, Int. J. Earth Sci., 1–20, https://doi.org/10.1007/s00531-021-02043-7, 2021.
Przyrowski, R. and Schäfer, A.: Quaternary fluvial basin of northern Upper Rhine Graben, Z. Dtsch. Ges. Für Geowiss., 166, 71–98, https://doi.org/10.1127/1860-1804/2014/0080, 2015.
Ritter, J. R. R., Wagner, M., Bonjer, K.-P., and Schmidt, B.: The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben, Int. J. Earth Sci., 98, 697–705, https://doi.org/10.1007/s00531-007-0284-x, 2009.
Salcher, B. C., Frank-Fellner, C., Lomax, J., Preusser, F., Ottner, F., Scholger, R., and Wagreich, M.: Middle to Late Pleistocene multi-proxy record of environmental response to climate change from the Vienna Basin, Central Europe (Austria), Quaternary Sci. Rev., 173, 193–210, https://doi.org/10.1016/j.quascirev.2017.08.014, 2017.
Schaltegger, U.: U-Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement, Int. J. Earth Sci., 88, 814–828, https://doi.org/10.1007/s005310050308, 2000.
Scheidt, S., Hambach, U., and Rolf, C.: A consistent magnetic polarity stratigraphy of late Neogene to Quaternary fluvial sediments from the Heidelberg Basin (Germany): A new time frame for the Plio–Pleistocene palaeoclimatic evolution of the Rhine Basin, Glob. Planet. Change, 127, 103–116, https://doi.org/10.1016/j.gloplacha.2015.01.004, 2015.
Schumacher, M. E.: Upper Rhine Graben: Role of preexisting structures during rift evolution, Tectonics, 21, 1006, https://doi.org/10.1029/2001TC900022, 2002.
Seidel, M. and Hlawitschka, M.: An R-based function for modeling of end member compositions, Math. Geosci., 47, 995–1007, 2015.
Stark, L., Franz, M., Wielandt-Schuster, U., and Feist-Burkhardt, S.: Die Forschungsbohrung Unteres Bleichtal bei Herbolzheim (Landkreis Emmendingen, Baden-Württemberg), LGRB Informationen, 32, 113–157, 2021.
Villinger, E.: Mündungsschwemmkegel der Dreisam, LGRB Informationen, 12, 31–37, https://produkte.lgrb-bw.de/schriftensuche/lgrb-informationen/informationen12/?aid=73 (last access: 5 December 2024), 1999.
Villinger, E.: Freiburg im Breisgau und der Oberrheingraben – 50 Mill. Jahre lebendige Erdgeschichte im Stadtgarten dokumentiert, LGRB-Nachrichten, 27, https://www.lgrb-bw.de/sites/default/files/download_pool/lgrb_n2702.pdf (last access: 15 February 2024), 2002.
Werner, W., Leiber, J., and Bock, H.: Die grobklastische pleistozäne Sedimentserie im südlichen Oberrheingraben: Geologischer und lithologischer Aufbau, Lagerstättenpotential, Zbl Geol Paläont Teil I, 1059–1084, 1996.
Wirsing, G. and Luz, A.: Hydrogeologischer Bau und Aquifereigenschaften der Lockergesteine im Oberrheingraben (Baden-Württemberg), LGRB Informationen, 19, https://produkte.lgrb-bw.de/schriftensuche/lgrb-informationen/informationen19/?aid=78 (last access: 5 December 2024), 2007.
Yanites, B. J., Becker, J. K., Madritsch, H., Schnellmann, M., and Ehlers, T. A.: Lithologic effects on landscape response to base level changes: A modeling study in the context of the Eastern Jura Mountains, Switzerland, J. Geophys. Res.-Earth Surf., 122, 2196–2222, 2017.
Ziegler, P. A. and Fraefel, M.: Response of drainage systems to Neogene evolution of the Jura fold-thrust belt and Upper Rhine Graben, Swiss J. Geosci., 102, 57–75, 2009.
Short summary
The subdivision and distinction of gravel units is an important tool in terrestrial Quaternary stratigraphy but can be challenging. Here, we investigate the glaciofluvial infill of the Upper Rhine Graben as an archive of recurring Alpine glaciations. With the help of statistical approaches, we identify differences in petrographic compositions, thereby differentiating two units that are likely representative of the last and penultimate glaciation, which have previously been difficult to pinpoint.
The subdivision and distinction of gravel units is an important tool in terrestrial Quaternary...