Articles | Volume 71, issue 1
https://doi.org/10.5194/egqsj-71-23-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-71-23-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of geochemical proxies and radiocarbon data from a loess record of the Upper Palaeolithic site Kammern-Grubgraben, Lower Austria
Lilian Reiss
CORRESPONDING AUTHOR
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058 Erlangen, Germany
Christian Stüwe
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058 Erlangen, Germany
Thomas Einwögerer
Austrian Archaeological Institute, Austrian Academy of Sciences,
Hollandstrasse 11–13, 1020 Vienna, Austria
Marc Händel
Austrian Archaeological Institute, Austrian Academy of Sciences,
Hollandstrasse 11–13, 1020 Vienna, Austria
Andreas Maier
Institute of Prehistoric Archaeology, University of Cologne, Bernhard-Feilchenfeld-Strasse 11, 50969 Cologne, Germany
Stefan Meng
Institute for Geography and Geology, University of Greifswald,
Friedrich-Ludwig-Jahnstraße 16/17a, 17489 Greifswald, Germany
Kerstin Pasda
Institute of Pre- and Protohistoric Archaeology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kochstrasse 4/18, 91054 Erlangen, Germany
Ulrich Simon
Austrian Archaeological Institute, Austrian Academy of Sciences,
Hollandstrasse 11–13, 1020 Vienna, Austria
Bernd Zolitschka
Institute of Geography, University of Bremen, Celsiusstrasse 2, 28359 Bremen, Germany
Christoph Mayr
Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058 Erlangen, Germany
Department Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Strasse 10, 80333 Munich, Germany
Related authors
No articles found.
Oliver A. Kern, Andreas Maier, and Nikki Vercauteren
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-306, https://doi.org/10.5194/essd-2024-306, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We provide vegetation reconstructions during the Last Glacial period (60,000 to 20,000 years before present) using fossil pollen data and the REVEALS model. Understanding vegetation change in response to abrupt climate change is critical to enhance our understanding plant migration patterns and the demographic development and dispersal of anatomically modern humans into Europe. Our application PALVEG (https://oakern.shinyapps.io/PALVEG/), aims to make such data accessible to non-experts.
Carolina Franco, Antonio Maldonado, Christian Ohlendorf, A. Catalina Gebhardt, María Eugenia de Porras, Amalia Nuevo-Delaunay, César Méndez, and Bernd Zolitschka
Clim. Past, 20, 817–839, https://doi.org/10.5194/cp-20-817-2024, https://doi.org/10.5194/cp-20-817-2024, 2024
Short summary
Short summary
We present a continuous record of lake sediments spanning the Holocene from central west Patagonia. By examining various indicators like elemental composition and grain size data, we found that, around ~5500 years ago, the way sediments settled in the lake changed. On a regional scale, our results suggest that rainfall, influenced by changes in the Southern Hemisphere Westerly Winds, played a key role in shaping the environment of the region for the past ~10 000 years.
Stella Birlo, Wojciech Tylmann, and Bernd Zolitschka
Geochronology, 5, 65–90, https://doi.org/10.5194/gchron-5-65-2023, https://doi.org/10.5194/gchron-5-65-2023, 2023
Short summary
Short summary
Sediment cores from the volcanic lake Holzmaar provide a very precise chronology based on tree-ring-like annual laminations or varves. We statistically combine this varve chronology with radiometric dating and tested three different methods to upgrade the age–depth model. However, only one of the three methods tested improved the dating accuracy considerably. With this work, an overview of different age integration methods is discussed and made available for increased future demands.
Carolin Kiefer, Patrick Oswald, Jasper Moernaut, Stefano Claudio Fabbri, Christoph Mayr, Michael Strasser, and Michael Krautblatter
Earth Surf. Dynam., 9, 1481–1503, https://doi.org/10.5194/esurf-9-1481-2021, https://doi.org/10.5194/esurf-9-1481-2021, 2021
Short summary
Short summary
This study provides amphibious investigations of debris flow fans (DFFs). We characterize active DFFs, combining laser scan and sonar surveys at Plansee. We discover a 4000-year debris flow record in sediment cores, providing evidence for a 7-fold debris flow frequency increase in the 20th and 21st centuries, coincident with 2-fold enhanced rainstorm activity in the northern European Alps. Our results indicate climate change as being the main factor controlling debris flow activity.
Nilendu Singh, Mayank Shekhar, Jayendra Singh, Anil K. Gupta, Achim Bräuning, Christoph Mayr, and Mohit Singhal
The Cryosphere, 15, 95–112, https://doi.org/10.5194/tc-15-95-2021, https://doi.org/10.5194/tc-15-95-2021, 2021
Short summary
Short summary
Tree-ring isotope records from the central Himalaya provided a basis for previously lacking regional multi-century glacier mass balance (MB) reconstruction. Isotopic and climate coherency analyses specify an eastward-declining influence of the westerlies, an increase in east–west climate heterogeneity, and an increase in ice mass loss since the 1960s. Reasons for this are attributed to anthropogenic climate change, including concurrent alterations in atmospheric circulation patterns.
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Kerstin Pasda, Matthias López Correa, Philipp Stojakowits, Bernhard Häck, Jérôme Prieto, Najat al-Fudhaili, and Christoph Mayr
E&G Quaternary Sci. J., 69, 187–200, https://doi.org/10.5194/egqsj-69-187-2020, https://doi.org/10.5194/egqsj-69-187-2020, 2020
Short summary
Short summary
The radiocarbon dating of Late Iron Age origin and anthropogenic traces such as cut marks on bones of a male elk skeleton found by a local resident in a pit cave prove an archaeological origin. So far known archaeological settlements are several tens of kilometres apart from the finds. The location and the dating are unique in that they are the first evidence of elk hunting during the Late Iron Age in the Bavarian Alps.
Cited articles
Adovasio, J. M., Soffer, O., and Klíma, B.: Upper Palaeolithic fibre technology: interlaced woven finds from Pavlov I, Czech Republic, c. 26,000 years ago, Antiquity, 70, 526–534,
https://doi.org/10.1017/S0003598X0008368X, 1996.
Aitchison, J.: The statistical analysis of compositional data, J. Roy. Stat. Soc. B, 44, 139–177, 1982.
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang,
A., Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition
during the Last Glacial in European loess: a high-resolution record from
Nussloch, Germany, Quaternary Sci. Rev., 28, 2955–2973, 2009.
Antoine, P., Rousseau, D.-D., Degeai, J.-P., Moine, O., Lagroix, F.,
Kreutzer, S., Fuchs, M., Hatté, C., Gauthier, C., Svoboda, J., and
Lisá, L: High-resolution record of the environment response to
climatic variations during the Last Interglacial-Glacial cycle in Central
Europe: the loess paleosol sequence of Dolní Vĕstonice (Czech
Republic), Quaternary Sci. Rev., 67, 17–38, 2013.
Arppe, L., Aaris-Sørensen, K., Daugnora, L., Lõugas, L., Wojtal, P.,
and Zupiòš, I.: The palaeoenvironmental δ13C record in
European woolly mammoth tooth enamel, Quatern. Int., 245,
2885–290, 2011.
Barta, G.: Secondary carbonates in loess-paleosoil sequences: a general
review, Cent. Eur. J. Geosci., 3, 129–146, 2011.
Barta, G.: Paleoenvironmental reconstruction based on the morphology and
distribution of secondary carbonates of the loess-paleosol sequence at
Süttő, Hungary, Quatern. Int., 319, 64–75, 2014.
Becze-Deák, J., Langohr, R., and Verrecchia, E. P.: Small scale
secondary CaCO3 accumulations in selected sections of the European
loess belt. Morphological forms and potential for paleoenvironmental
reconstructions, Geoderma, 76, 221–252., 1997.
Blott, S. J. and Pye, K: GRADISTAT: A grain size distribution and statistic
package for the analysis of unconsolidated sediments, Earth Surf.
Proc. Land., 26, 1237–1248, 2001.
Bowling, D. R., Pataki, D. E., and Randerson, J. T.: Carbon isotopes in
terrestrial ecosystem pools and CO2 fluxes, New Phytol., 178, 24–40,
https://doi.org/10.1111/j.1469-8137.2007.02342.x, 2008.
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T:
Assessment of international reference materials for isotope-ratio analysis
(IUPAC Technical Report), Pure Appl. Chem., 86, 425–467, 2014.
Brandtner, F.: Zur geostratigraphischen und kulturellen Zuordnung der
Paläolithstation Grubgraben bei Kammern, NÖ, in:
Paleolithic in the Middle Danube Region, edited by: Svoboda, J., Festschrift for B. Klíma, Dolní Věstonice Studies 4, Brno, 121–146, 1996.
Bronger, A.: Löß-Paläoboden-Sequenzen Zentralasiens als Indikatoren einer globalen Kimageschichte des Quartärs?, E&G Quaternary Sci. J., 49, 35–54, https://doi.org/10.3285/eg.49.1.03, 1999.
Bronger, A.: Correlation of loess-paleosol sequences in East and Central
Asia with SE Central Europe: towards a continental Quaternary
pedostratigraphy and paleoclimatic history, Quatern. Int.,
106–107, 11–31, 2003.
Buch, M. W. and Zöller, L.: Gliederung und Thermolumineszenz-Chronologie der Würmlösse im Raum Regensburg, E&G Quaternary Sci. J., 40, 63–84, https://doi.org/10.3285/eg.40.1.05, 1990.
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Marković, S.,
Glaser, I., and Gerasimenko, N.: Geochemical characterization and origin of
Southeastern and Eastern European loesses (Serbia, Romania, Ukraine),
Quaternary Sci. Rev., 27, 1058–1075, 2008.
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Marković, S.,
Glaser, I., and Zöller, L.: Stratigraphy, and spatial and temporal
paleoclimatic trends in Southeastern/Eastern European loess-paleosol
sequences, Quatern. Int., 196, 86–106, 2009.
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., and Marković, S.:
An evaluation of geochemical weathering indices in loess-paleosol studies,
Quatern. Int., 240, 12–21, 2011.
Cerling, T. E.: The stable isotopic composition of modern soil carbonate and
its relationship to climate, Earth Planet. Sc. Lett., 71, 229–240,
1984.
Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The last glacial maximum, Science 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
d-maps: Landkarte Niederösterreich (Österreich), d-maps,
https://d-maps.com/carte.php?num_car=33842&lang=de, last access:
28 April 2021.
Dworkin, S. I., Nordt, L., and Atchley, S.: Determining terrestrial
paleotemperatures using the oxygen isotopic composition of pedogenic
carbonate, Earth Planet. Sc. Lett., 237, 56–68, 2005.
Fewlass, H., Talamo, S., Kromer, B., Bard, E., Tuna, T., Fagault, Y.,
Sponheimer, M., Ryder, C., Hublin, J.-J., Perri, A., Sázelová, S.,
and Svoboda, J.: Direct radiocarbon dates of mid Upper Palaeolithic human
remains from Dolní Věstonice II and Pavlov I, Czech Republic,
J. Archaeol. Sci.: Reports, 27, 102000,
https://doi.org/10.1016/j.jasrep.2019.102000, 2019.
Fink, J.: Die fossilen Böden im österreichischen Löss,
Quartär, 6, 85–108, 1954.
Fink, J.: Studien zur absoluten und relativen Chronologie der fossilen
Böden in Österreich. II. Wetzleinsdorf und Stillfried, Archaeologia
Austriaca, 31, 1–18, 1962.
Fink, J.: Exkursion durch den österreichischen Teil des Alpenvorlandes
und den Donauraum zwischen Krems und Wiener Pforte, Mitteilungen der
Quartärkommission der Österreichischen Akademie der Wissenschaften, Vienna, 1, 1–113, 1976–1978.
Fitzsimmons, K. E., Marković, S. B., and Hambach, U.: Pleistocene
environmental dynamics recorded in the loess of the middle and lower Danube
basin, Quaternary Sci. Rev., 41, 104–118, 2012.
Frank, C.: Plio-pleistozäne und holozäne Mollusken Österreichs,
Mitteilungen der Prähistorischen Kommission, 62, 860 pp., ISBN 978-3-7001-3674-3, 2006.
Frank, C. and Rabeder, G.: Neue malakologische Befunde aus dem
jüngstpleistozänen Lößprofil vom Grubgraben bei Kammern
(Niederösterreich), Beiträge zur Paläontologie, 21, 21–31, 1996.
Frank, C. and Rabeder, G.: Grubgraben bei Kammern, in: Pliozäne und pleistozäne Faunen Österreichs, edited by: Döppes, D. und
Rabeder, G., Mitteilungen der Kommission für Quartärforschung,
Österreichische Akademie der Wissenschaften, 10, 16–20, 1997.
Frechen, M., Oches, E. A., and Kohfeld, K. E.: Loess in Europe – mass
accumulation rates during the Last Glacial Period, Quaternary Sci. Rev., 22, 1835–1857, 2003.
Fűköh, L.: Holocene malacology in Hungary, Scripta Geologica,
Special Issue 2, 121–125, 1993.
Gavrilov, M. B., Marković, S. B., Schaetzl, R. J., Tošić, I.,
Zeeden, C., Obreht, I., Sipos, G., Ruman, A., Putniković, S., Emunds,
K., Perić, Z., Hambach, U., and Lehmkuhl, F.: Prevailing surface winds
in Northern Serbia in the recent and past time periods; modern- and past
dust deposition, Aeolian Res., 31, 117–129,
https://doi.org/10.1016/j.aeolia.2017.07.008, 2018.
Gocke, M.: Pedogenic carbonates in loess formation rates, formation
conditions and source apportionment assessed by isotopes and molecular
proxies, Dissertation, Bayreuth, 1–179,
https://epub.uni-bayreuth.de/id/eprint/360 (last access: 18 June 2021), 2011.
Gocke, M., Pustovoytov, K., Kühn, P., Wiesenberg, G. L. B., Löscher,
M., and Kuzyakov, Y.: Carbonate rhizoliths in loess and their implications
for paleoenvironmental reconstruction – revealed by isotopic composition:
δ13C, 14C, Chem. Geol., 283, 251–260, 2011.
Gocke, M., Hambach, U., Eckmeier, E., Schwark, L., Zöller, L., Fuchs,
M., Löscher, M., and Wiesenberg, G. L. B.: Introducing an improved
multi-proxy approach for paleoenvironmental reconstruction of loess-paleosol
archives applied on the Late Pleistocene Nussloch sequence (SW Germany),
Paleogeogr. Paleocl., 410, 300–315, 2014.
Goff, K., Schaetzl, R. J., Chakraborty, S., Weindorf, D. C., Kasmerchak, C.,
and Bettis III, E. A.: Impact of sample preparation methods for
characterizing the geochemistry of soils and sediments by portable X-ray
fluorescence, Soil Sci. Soc. Am. J., 84, 131–143,
https://doi.org/10.1002/saj2.20004, 2020.
Haesaerts, P.: Stratigraphy of the Grubgraben Loess Sequence, in:
The epigravettian site of Grubgraben, Lower Austria:
The 1986 and 1987 excavations, edited by: Montet-White, A., Eraul, 40, 15–35, OCLC-number 24578227, 1990.
Haesaerts, P. and Damblon, F.: The Late Palaeolithic Site of
Kammern-Grubgraben (Lower Austria). Additional Data on Loess Stratigraphy
and Palaeoenvironment, Archaeologia Austriaca, 100, 255–269, 2016.
Haesaerts, P., Damblon, F., Neugebauer-Maresch, C., and Einwögerer, T.:
Radiocarbon Chronology of the Late Palaeolithic Loess Site of
Kammern-Grubgraben (Lower Austria), Archaeologia Austriaca, 100, 271–277,
2016.
Händel, M., Simon, U., Einwögerer, T., and Neugebauer-Maresch, C.:
Loess deposits and the conservation of the archaeological record – The
Krems-Wachtberg example, Quatern. Int., 198, 46–50, 2009.
Händel, M., Einwögerer, T., Simon, U., and Neugebauer-Maresch, C.:
Krems-Wachtberg excavations 2005-12: Main profiles, sampling, stratigraphy,
and site formation, Quatern. Int., 351, 38–49, 2014.
Händel, M., Simon, U., Maier, A., Brandl, M., Groza-Săcaciu, S. M.,
Timar-Gabor, A., and Einwögerer, T.: Kammern-Grubgraben revisited –
First results from renewed investigations at a well-known LGM site in east
Austria, Quatern. Int., 587–588, 137–157,
https://doi.org/10.1016/j.quaint.2020.06.012, 2021.
Hatté, C., Fotugne, M., Rousseau, D.-D., Antoine, P., Zöller, L.,
Tisnérat-Laborde, N., and Bentaleb, I: δ13C variations of
loess organic matter as a record of the vegetation response to climatic
changes during Weichselian, Geology, 26, 583–586, 1998.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for
estimating organic and carbonate content in sediments: reproducibility and
comparability of results, J. Paleolimnol., 25, 101–110, 2001.
Hughes, P. D. and Gibbard, P. L.: A stratigraphical basis for the Last
Glacial Maximum (LGM), Quatern. Int., 383, 174–185,
https://doi.org/10.1016/j.quaint.2014.06.006, 2015.
Koeniger, P., Barta, G., Thiel, C., Bajnóczi, B., Novothny, Á.,
Horváth, E., Techmer, A., and Frechen, M.: Stable isotope composition of
bulk and secondary carbonates from the Quaternary loess-paleosol sequence in
Süttő, Hungary, Quatern. Int., 319, 38–49, 2014.
Kovács, J., Moravcová, M., Újvári, G., and Pintér, A.
G.: Reconstructing the paleoenvironment of East Central Europe in the Late
Pleistocene using oxygen and carbon isotopic signal of tooth in large mammal
remains, Quatern. Int., 276–277, 145–154, 2012.
Krolopp, E. and Sümegi, P.: Palaeoecological reconstruction of the late
Pleistocene, based on loess malacofauna in Hungary, GeoJournal, 36,
213–222, 1995.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M.: Sea level
and global ice volumes from the Last Glacial Maximum to the Holocene, P. Natl. Acad. Sci. USA, 111, 15296–15303, https://doi.org/10.1073/pnas.1411762111, 2014.
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., and Kels, H.:
Loess-paleosol sequences at the northern European loess belt in Germany:
Distribution, geomorphology and stratigraphy, Quaternary Sci. Rev.,
153, 11–30, 2016.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary,
Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J.,
Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C.,
Boemke, B.. Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes
of Europe – Mapping, geomorphology, and zonal differentiation,
Earth-Sci. Rev., 215, 103496,
https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Liang, L., Sun, Y., Yao, Z., Liu, Y., and Wu, F.: Evaluation of
high-resolution elemental analyses of Chinese loess deposits measured by
X-ray fluorescence core scanner, CATENA, 92, 75–82, 2012.
Logan, B.: The hunted of Grubgraben: an analysis of faunal remains, in: The Epigravettian Site of Grubgraben, Lower Austria: The
1986 and 1987 Excavations, edited by: Montet-White, A., ERAUL – Études et Recherche Archéologiques de l'Université de Liège 40, Liège 1990, 65–91, OCLC-number 24578227, 1990.
Lowe, J. and Walker, M.: Reconstructing Quaternary Environments, 3rd
edition, Routledge, London, New York, https://doi.org/10.4324/9781315797496, 2015.
Ložek, V.: Die Quartärmollusken der Tschechoslowakei, Rozpravy
ústředního ústavo geologického, 31, 374 pp., ark:/13960/t2996v274, 1964.
Ložek, V.: Faunengeschichtliche Grundlinien zur spät- und
nacheiszeitlichen Entwicklung der Molluskenbestände in Mitteleuropa.
Rozpravy Českoslov, Akad. Věd, Řada Mat. Přirod. Věd.,
92, 106 pp., 1982.
Ludwig, P., Gavrilov, M. B., Marković, S. B., Újvári, G., and
Lehmkuhl, F.: Simulated regional dust cycle in the Carpathian Basin and the
Adriatic Sea region during the Last Glacial Maximum, Quatern. Int., 581–582, 114–127, 2021.
Luetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R.
L., Frisia, S., Hof, F., and Müller, W.: North Altlantic storm track
changes during the Last Glacial Maximum recorded by Alpine speleothems,
Nat. Commun., 6, 1–6, https://doi.org/10.1038/ncomms7344, 2015.
Luo, X., Wang, H., An, Z., Zhang, Z., and Liu, W.: Carbon and oxygen
isotopes of calcified root cells, carbonate nodules and total inorganic
carbon in the Chinese loess–paleosol sequence: The application of
paleoenvironmental studies, J. Asian Earth Sci., 201, 104515,
https://doi.org/10.1016/j.jseaes.2020.104515, 2020.
Maier, A., Stojakowits, P., Mayr, C., Pfeifer, S., Preusser, F., Zolitschka,
B., Anghelinu, M., Bobak, D., Duprat-Oualid, F., Einwögerer, T.,
Hambach, U., Händel, M., Kaminská, L., Kämpf, L., Łanczont,
M., Lehmkuhl, F., Ludwig, P., Magyari, E., Mroczek, P., Nemergut, A.,
Nerudová, Z., Niţă, L., Polanská, M., Połtowicz-Bobak, M.,
Rius, D., Römer, W., Simon, U., Škrdla, P., Újvári, G., and
Veres, D.: Cultural evolution and environmental change in Central Europe
between 40 and 15 ka, Quatern. Int., 581–582, 225–240, 2021.
Mania, D.: Paläoökologie, Faunenentwicklung und Stratigraphie des
Eiszeitalters im mittleren Elbe-Saalegebiet auf Grund von
Molluskengesellschaften, Geologie, 21, 1–175, 1973.
Marković, S. B., Stevens, T., Kukla, G. J., Hambach, U., Fitzsimmons, K.
E., Gibbard, P., Buggle B., Zech, M., Guo, Z., Hao, Q., Wu, H., O'Hara
Dhand, K., Smalley, I. J., Újvári, G., Sümegi, P., Timar-Gabor,
A., Veres, F. Sirocko, D., Vasiljević, D. A., Jary, Z., Svensson, A.,
Jović, V., Lehmkuhl, F., Kovács, J., and Svirčev, Z.: Danube
loess stratigraphy – Towards a pan-European loess stratigraphic model,
Earth-Sci. Rev., 148, 228–258, 2015.
Martin-Puertas, C., Tjallingii, R., Bloemsma, M., and Brauer, A.: Varved
sediment responses to early Holocene climate and environmental changes in
Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro
X-ray fluorescence core scanning data, J. Quaternary Sci., 32,
427–436, 2017.
Mayr, C., Brandlmeier, B., Diersche, V., Stojakowits, P., Kirscher, U.,
Matzke-Karasz, R., Bachtadse V., Eigler M., Haas U., Lempe B., Reimer P.,
and Spötl, C.: Nesseltalgraben, a new reference section of the last
glacial period in southern Germany, J. Paleolimnol., 58, 213–229,
2017a.
Mayr, C., Matzke-Karasz, R., Stojakowits, P., Lowick, S. E., Zolitschka, B., Heigl, T., Mollath, R., Theuerkauf, M., Weckend, M.-O., Bäumler, R., and Gregor, H.-J.: Palaeoenvironments during MIS 3 and MIS 2 inferred from lacustrine intercalations in the loess–palaeosol sequence at Bobingen (southern Germany), E&G Quaternary Sci. J., 66, 73–89, https://doi.org/10.5194/egqsj-66-73-2017, 2017b.
Mayr, C., Stojakowits, P., Lempe, B., Blaauw, M., Diersche, V., Grohganz,
M., López Correa, M., Ohlendorf, C., Reimer, P., and Zolitschka, B.:
High-resolution geochemical record of environmental changes during MIS 3
from the northern Alps (Nesseltalgraben, Germany), Quaternary Sci. Rev., 218, 122–136, https://doi.org/10.1016/j.quascirev.2019.06.013, 2019.
Meyer-Heintze, S., Sprafke, T., Schulte, P., Terhorst, B., Lomax, J., Fuchs,
M., Lehmkuhl, F., Neugebauer-Maresch, C., Einwögerer, T., Händel,
M., Simon, U., and Castillo, B. S.: The MIS 3/2 transition in a new loess
profile at Krems-Wachtberg East – A multi-methodological approach,
Quatern. Int., 464, 370–385, 2018.
Mix, A. C., Bard, E., and Schneider, R.: Environmental processes of the ice
age: land, oceans, glaciers (EPILOG), Quaternary Sci. Rev., 20,
627–657, https://doi.org/10.1016/S0277-3791(00)00145-1, 2001.
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud'homme,
C., and Rousseau, D.-D.: The impact of Last Glacial climate variability in
wet-European loess revealed by radiocarbon dating of fossil earthworm
granules, P. Natl. Acad. Sci. USA, 114, 6209–6214, https://doi.org/10.1073/pnas.1614751114,
2017.
Monger, C. H.: Pedogenic carbonate: links between biotic and abiotic CaCO3, in: Proc. 17th World Congress of Soil Science, 14–21 August 2002, Bangkok, Thailand, 897, 1–9, OCLC-number: 796897124, 2002.
Montet-White, A. (Ed.): The Epigravettian Site of Grubgraben, Lower
Austria: The 1986 and 1987 Excavations, ERAUL – Études et Recherche
Archéologiques de l'Université de Liège 40, Liège 1990,
159–162, OCLC-number 24578227, 1990.
Montet-White, A., Haesaerts, P., and Logan, B.: The Epigravettian of
Grubgraben: an overview of the 1986/87 excavations, in: The Epigravettian Site of Grubgraben, Lower Austria: The 1986 and 1987 Excavations, edited by: Montet-White, A., ERAUL – Études et Recherche Archéologiques de
l'Université de Liège 40, Liège 1990, 159–162, OCLC-number 24578227, 1990.
Muhs, D. R. and Bettis III, E. A.: Geochemical variations in Peoria loess of
Western Iowa indicate paleowinds of midcontinental North America during last
glaciation, Quaternary Res., 53, 49–61, 2000.
Neugebauer-Maresch, C., Einwögerer, T., Richter, J., Maier, A., and
Hussain, S. T.: Kammern-Grubgraben. Neue Erkenntnisse zu den Grabungen
1989–1994, Archaeologia Austriaca, 100, 225–254,
https://doi.org/10.1553/archaeologia100s225, 2016.
Nigst, P. R., Viola, T. B., Haesaerts, P., Blockley, S., Damblon, F.,
Frank, C., Fuchs, M., Götzinger, M., Hambach, U., Mallol, C., Moreau,
L., Niven, L., Richards, M., Richter, D., Zöller, L., Trnka, G., and
Hublin, J.-J.: New research on the Aurignacian of Central Europe: A first
note on the 2006 fieldwork at Willendorf II, Quartär, 55, 9–15, 2008.
Novothny, Á., Frechen, M., Horváth, E., Wacha, L., and Rolf, C.:
Investigating the penultimate and last glacial cycles of the Süttő
loess section (Hungary) using luminescence dating, high-resolution grain
size, and magnetic susceptibility data, Quatern. Int., 234,
75–85, 2011.
Oehlerich, M., Baumer, M., Lücke, A., and Mayr, C.: Effects of organic
matter on carbonate stable isotope ratios (δ13C, δ18O values) – implications for analyses of bulk sediments, Rapid
Commun. Mass Sp., 27, 707–712, 2013.
O'Leary, M. H.: Carbon isotope fractionation in plants, Phytochemistry, 20,
553–567, 1981.
Pécsi, M.: Loess is not just the accumulation of dust, Quatern. Int., 7–8, 1–21, 1990.
Pigati, J. S., Rech, J. A., and Nekola, J. C.: Radiocarbon dating of small
terrestrial gastropod shells in North America, Quat. Geochronol., 5,
519–532, 2010.
Porter, S.: Chinese loess record of monsoon climate during the last
glacial–interglacial cycle, Earth-Sci. Rev., 54, 115–128, 2001.
Pötter, S., Schmitz, A., Lücke, A., Schulte, P., Obreht, I., Zech,
M., Wissel, H., Marković, S. B., and Lehmkuhl, F.: Middle to Late
Pleistocene environments based on stable organic carbon and nitrogen
isotopes of loess-palaeosol sequences from the Carpathian Basin, Boreas, 50,
184–204, https://doi.org/10.1111/bor.12470, 2020.
Profe, J. and Ohlendorf, C.: X-ray fluorescence scanning of discrete samples
– An economical perspective, Quatern. Int., 514, 68–75, 2019.
Profe, J., Wacha, L., Frechen, M., Ohlendorf, C., and Zolitschka, B.: XRF
scanning of discrete samples – A chemostratigraphic approach exemplified
for loess-paleosol sequences from the Island of Susak, Croatia, Quatern. Int., 494, 34–51, 2018a.
Profe, J., Neumann, L., Novothny, Á., Barta, G., Rolf, C., Frechen, M.,
Ohlendorf, C., and Zolitschka, B.: Paleoenvironmental conditions and
sedimentation dynamics in Central Europe inferred from geochemical data of
the loess-paleosol sequence at Süttő (Hungary), Quaternary Sci. Rev., 196, 1–17, https://doi.org/10.1016/j.quascirev.2018.07.034, 2018b.
Pustovoytov, K. and Terhorst, B.: An isotope study of a late Quaternary
loess-paleosol sequence in SW Germany, Rev. Mex. Cienc. Geol., 21, 88–93, 2004.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L.,
Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer,
H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J B., Popp,
T., Seierstadt, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P.,
Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A
stratigraphic framework for abrupt climatic changes during the Last Glacial
period based on three synchronized Greenland ice-core records: refining and
extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106,
14–28, 2014.
Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G.,
Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R. L., Friedrich, M.,
Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G.,
Hughen, K. A., Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G.,
Pearson, C., van der Plicht, J., Reimer, R. W., Richards, D. A., Scott, E.
M., Southon, J. R., Turney, C. S. M., Wacker, L., Adolphi, F., Büntgen,
U., Capano, M., Fahrni, S. M., Fogtmann-Schulz, A., Friedrich, R.,
Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M.,
Sookdeo, A., and Talamo, S.: The IntCal20 Northern Hemisphere Radiocarbon
Age Calibration Curve (0–55 cal kBP), Radiocarbon, 62, 725–757, 2020.
Renssen, H., Kasse, C., Vandenberghe, J., and Lorenz, S. J.: Weichselian
Late Pleniglacial surface winds over northwest and central Europe: a
model-data comparison, J. Quaternary Sci., 22, 281–293, 2007.
Rounick, J. S. and Winterbourn, M. J.: Stable carbon isotopes and carbon
flow in ecosystems, BioScience, 36, 171–177, 1986.
Rousseau, D. D., Antoine, P., Hatté, C., Lang, A., Zöller, L.,
Fontugne, M., Othman, D. B., Luck, J. M., Moine, O., Labonne, M., Bentaleb,
I., and Jolly, D.: Abrupt millennial climatic changes from Nussloch
(Germany) Upper Weichselian eolian records during the Last Glaciation,
Quaternary Sci. Rev., 21, 1577–1582, 2002.
Runge, E. C. A., Goh, K. M., and Rafter, T. A.: Radiocarbon Chronology and
Problems in Its Interpretation for Quaternary Loess Deposits-South
Canterbury, New Zealand, Soil Sci. Soc. Am. Pro., 37, 742–746, 1973.
Schatz, A. K., Zech, M., Buggle, B., Gulyás, S., Hambach, U.,
Marković, S. B., Sümegi, P., and Scholten, T.: The late Quaternary
loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation
and climate using stable C and N isotopes and biomarkers, Quatern. Int., 240, 52–61, 2011.
Smalley, I., O'Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., and
Jefferson, I.: Rivers and loess: The significance of long river
transportation in the complex event-sequence approach to loess deposit
formation, Quatern. Int., 198, 7–18, 2009.
Smalley, I., Marković, S. B., and Svirčev, Z.: Loess is [almost
totally formed by] the accumulation of dust, Quatern. Int., 240,
4–11, 2011.
Sprafke, T.: Löss in Niederösterreich: Archiv quartärer Klima-
und Landschaftsveränderungen, Dissertation, Würzburg University
Press, Würzburg, 1–272, https://doi.org/10.25972/WUP-978-3-95826-039-9,
2016.
Sprafke, T., Schulte, P., Meyer-Heintze, S., Händel, M., Einwögerer,
T., Simon, U., Peticzka, R., Schäfer, C., Lehmkuhl, F., and Terhorst,
B.: Paleoenvironments from robust loess stratigraphy using high-resolution
color and grain-size data of the last glacial Krems-Wachtberg record (NE
Austria), Quaternary Sci. Rev., 248, 106602,
https://doi.org/10.1016/j.quascirev.2020.106602, 2020.
Stojakowits, P., Mayr, C., Ivy-Ochs, S., Preusser, F., Reitner, J. M., and
Spötl, C.: Environments at the MIS 3/2 transition in the northern Alps
and their foreland, Quatern. Int., 581–582, 99–113, 2021.
Stuiver, M., Reimer, P. J., and Reimer, R. W: CALIB 8.2., http://calib.org/calib/, last access: 21 October 2020.
Sun, Y., Liang, L., Bloemendal, J., Li, Y., Wu, F., Yao, Z., and Liu, Y.:
High-resolution scanning XRF investigation of Chinese loess and its
implications for millennial-scale monsoon variability, J. Quaternary Sci., 31, 191–202, 2016.
Svoboda, J.: The Pavlov Site, Czech Republic: Lithic Evidence from the Upper
Palaelithic, J. Field Archaeol., 21, 69–81,
https://doi.org/10.1179/jfa.1994.21.1.69, 1994.
Svoboda, J., Hladilová, Š., Horáček, I., Kaiser, J.,
Králík, M., Novák, J., Novák, M., Pokorný, P.,
Sázelová, S., Smolíková, L., and Zikmund, T.: Dolní
Vĕstonice IIa: Gravettian microstratigraphy, environment, and the origin
of baked clay production in Moravia, Quatern. Int., 359–360,
195–210, 2015.
Terhorst, B., Tiehl, C., Peticzka, R., Sprafke, T., Frechen, M., Fladerer,
F. A., Roetzel, R., and Neugebauer-Maresch, C.: Casting new light on the
chronology of the loess/paleosol sequences in Lower Austria, Quaternary
Sci. J., 60, 270–277, https://doi.org/10.3285/eg.60.2-3.04, 2011.
Terhorst, B., Kühn, P., Damm, B., Hambach, U., Meyer-Heintze, S., and
Sedov, S.: Palaeoenvironmental fluctuations as recorded in the
loess-paleosol sequence of the Upper Paleolithic site Krems-Wachtberg,
Quatern. Int., 351, 67–82, 2014.
Teyssandier, N. and Zilhão, J.: On the Entity and Antiquity of the
Aurignacian at Willendorf (Austria): Implications for Modern Human Emergence
in Europe, Journal of Paleolithic Archaeology, 1, 107–138, 2018.
Thiel, C., Buylaert, J.-P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto,
S., and Frechen, M.: Luminescence dating of the Stratzing loess profile
(Austria) – Testing the potential of an elevated temperature post-IR IRSL
protocol, Quatern. Int., 234, 23–31, 2011a.
Thiel, C., Terhorst, B., Jaburová, I., Buylaert, J.-P., Murray, A. S.,
Fladerer, F. A., Damm, B., Frechen, M., and Ottner, F.: Sedimentation and
erosion processes in Middle to Late Pleistocene sequencesexposed in the
brickyard of Langenlois/Lower Austria, Geomorphology, 135, 295–307,
https://doi.org/10.1016/j.geomorph.2011.02.011, 2011b.
Tomášová, S.: A site in history: archaeology at Dolní
Věstonice/Unterwisternitz, Antiquity, 69, 301–316, 1995.
Újvári, G. and Klötzli, U.: U–Pb ages and Hf isotopic composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways, Int. J. Earth Sci., 104, 1365–1385, https://doi.org/10.1007/s00531-014-1139-x, 2015.
Újvári, G., Molnár, M., Novothny, Á., Páll-Gergely, B.,
Kovács, J., and Várhegyi, A.: AMS 14C and OSL/IRSL dating of
the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka
and implications for establishing reliable age-depth models for the last 40 ka, Quaternary Sci. Rev., 106, 140–154, 2014.
Újvári, G., Molnár, M., and Páll-Gergely, B.: Charcoal and
mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary,
Quat. Geochronol., 35, 43–53, 2016a.
Újvári, G., Kok, J. F., Varga, G., and Kovács, J.: The physics of
wind-blown loess: implications for grain size proxy interpretations in
Quaternary paleoclimate studies, Earth-Sci. Rev., 154, 247–278, https://doi.org/10.1016/j.earscirev.2016.01.006, 2016b.
Urbanek, M.: A review of archaeological research at Grubgraben prior to
1980, in: The Epigravettian Site of Grubgraben, Lower
Austria: The 1986 and 1987 Excavations, edited by: Montet-White, A., ERAUL – Études et Recherche Archéologiques de l'Université de Liège 40, Liège 1990, 7–13, OCLC-number 24578227, 1990.
Vanderberghe, J.: Grain size of fine-grained windblown sediment : A powerful
proxy for process identification, Earth-Sci. Rev., 121, 18–30,
https://doi.org/10.1016/j.earscirev.2013.03.001, 2013.
Vanderberghe, J., Zhisheng, A., Nugteren, G., Huayu, L., and Van Huissteden,
K.: New absolute time scale for the Quaternary climate in Chinese loess
region by grain size analysis, Geology, 25, 35–38, 1997.
Veres, D., Tecsa, V., Gerasimenko, N., Zeeden, C., Hambach, U., and
Timar-Gabor, A.: Short-term soil formation events in last glacial east
European loess, evidence from multi-method luminescence dating, Quaternary Sci. Rev., 200, 34–51, 2018.
Wang, H. and Greenberg, S. E.: Reconstructing the response of C3 and
C4 plants to decadal-scale climate change during the late Pleistocene
in southern Illinois using isotope analyses of calcified rootlets,
Quaternary Res., 67, 136–142, 2007.
Wang, Z., Zhao, H., Dong, G., Zhou, A., Liu, J., and Zhang, D.: Reliability
of radiocarbon dating on various fractions of loess-soil sequence for
Dadiwan section in the western Chinese Loess Plateau, Front. Earth
Sci., 8, 540–546, https://doi.org/10.1007/s11707-014-0431-1, 2014.
Ward, C. R., Kelloway, S. J., Vohra, J., French, D., Cohen, D. R., Marjo, C.
E., and Wainwright, I. E.: In-situ inorganic analysis of coal seams using a
hand-held field-portable XRF Analyser, Int. J. Coal Geol., 191, 172–188, 2018.
Weltje, G., Bloemsma, M., Tjallingii, R., Heslop, D., Röhl, U.,
Croudace, I.: Prediction of Geochemical Composition from XRF Core Scanner
Data: A New Multivariate Approach Including Automatic Selection of
Calibration Samples and Quantification of Uncertainties, in: Micro-XRF Studies of Sediment Cores, edited by: Croudace, I. and Rothwell, R., Springer, Dordrecht, 507–534, https://doi.org/10.1007/978-94-017-9849-5_21, 2015.
West, D.: Hunting strategies in Central Europe during the last glacial
maximum, British Archaeological Reports International Series 672, Hadrian
Books, Oxford, 1–153, ISBN 9780860549123, 1997.
Xu, B., Gu, Z., Han, J., Hao, Q., Lu, Y., Wang, L., Wu, N., and Peng, Y.:
Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau,
Quat. Geochronol., 6, 383–389, 2011.
Zech, M., Zech, R., and Glaser, B.: A 240,000-year stable carbon and
nitrogen isotope record from a loess-like palaeosol sequence in the Tumara
Valley, Northeast Siberia, Chem. Geol., 242, 307–318, 2007.
Zech, R., Zech, M., Marković, S., Hambach, U., and Huang, Y.: Humid
glacials, arid interglacials? Critical thoughts on pedogenesis and
paleoclimate based on multi-proxy analyses of the loess-paleosol sequence
Crvenka, Northern Serbia, Palaeogeogr. Palaeocl.,
387, 165–175, 2013.
Zeeden, C. and Hambach, U.: Magnetic Susceptibility Properties of Loess from
the Willendorf Archaeological Site: Implications for the
Syn/Post-Depositional Interpretation of Magnetic Fabric, Front. Earth
Sci., 8, 1–11, https://doi.org/10.3389/feart.2020.599491, 2021.
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for...