Articles | Volume 71, issue 2
https://doi.org/10.5194/egqsj-71-145-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-71-145-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigating the loess–palaeosol sequence of Bahlingen-Schönenberg (Kaiserstuhl), southwestern Germany, using a multi-methodological approach
Tabea Schulze
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Lea Schwahn
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Alexander Fülling
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Christian Zeeden
Rock Physics and Borehole Geophysics, Leibniz Institute for Applied Geophysics, Hanover, Germany
Frank Preusser
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of
Freiburg, Freiburg, Germany
Tobias Sprafke
Center of Competence for Soils, BFH-HAFL, Zollikofen, Switzerland
Institute of Geography, University of Bern, Bern, Switzerland
Related authors
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Madhurima Marik, Elena Serra, Gilles Rixhon, and Frank Preusser
E&G Quaternary Sci. J., 74, 169–192, https://doi.org/10.5194/egqsj-74-169-2025, https://doi.org/10.5194/egqsj-74-169-2025, 2025
Short summary
Short summary
This study examines the evolution of the lower Bruche River valley in north-eastern France through its fluvial terraces, reflecting past river dynamics and environmental changes. Terrace formations are dated using luminescence to ~ 12–14 ka, ~ 27–35 ka, and at least 200 ka. Methodological improvements over conventional luminescence dating techniques are also discussed and refined in this study.
Felix Martin Hofmann and Frank Preusser
E&G Quaternary Sci. J., 74, 1–35, https://doi.org/10.5194/egqsj-74-1-2025, https://doi.org/10.5194/egqsj-74-1-2025, 2025
Short summary
Short summary
Previous reconstructions conclude that the southern Black Forest, south-west Germany, temporarily hosted four ice caps during the Late Pleistocene (129 000–11 700 years before present). This work reviews existing studies on glacial landforms north-east of its highest summit, Feldberg (1493 m above sea level), in the light of new observations. Whilst this study largely confirms previous work, we reject and newly describe several glacial landforms.
Alexander Fülling, Hans Rudolf Graf, Felix Martin Hofmann, Daniela Mueller, and Frank Preusser
E&G Quaternary Sci. J., 73, 203–216, https://doi.org/10.5194/egqsj-73-203-2024, https://doi.org/10.5194/egqsj-73-203-2024, 2024
Short summary
Short summary
The Mühlbach series has been given as evidence for a Late Pliocene/Early Pleistocene Aare–Rhine fluvial system in northern Switzerland and southwest Germany. We show that these deposits represent a variety of different units. At the type location, luminescence dating indicates an age of 55 ka, and we interpret the deposits as slope reworking. Beside methodological implications, our studies recommend caution regarding the interpretation of stratigraphic units for which limited data are available.
Bennet Schuster, Lukas Gegg, Sebastian Schaller, Marius W. Buechi, David C. Tanner, Ulrike Wielandt-Schuster, Flavio S. Anselmetti, and Frank Preusser
Sci. Dril., 33, 191–206, https://doi.org/10.5194/sd-33-191-2024, https://doi.org/10.5194/sd-33-191-2024, 2024
Short summary
Short summary
The Tannwald Basin, explored by drilling and formed by repeated advances of the Rhine Glacier, reveals key geological insights. Ice-contact sediments and evidence of deformation highlight gravitational and glaciotectonic processes. ICDP DOVE 5068_1_C core data define lithofacies associations, reflecting basin infill cycles, marking at least three distinct glacial advances. Integrating these findings aids understanding the broader glacial evolution of the Lake Constance amphitheater.
Felix Martin Hofmann, Claire Rambeau, Lukas Gegg, Melanie Schulz, Martin Steiner, Alexander Fülling, Laëtitia Léanni, Frank Preusser, and ASTER Team
Geochronology, 6, 147–174, https://doi.org/10.5194/gchron-6-147-2024, https://doi.org/10.5194/gchron-6-147-2024, 2024
Short summary
Short summary
We determined 10Be concentrations in moraine boulder surfaces in the southern Black Forest, SW Germany. We applied three independent dating methods to younger lake sediments. With the aid of independent age datasets, we calculated the growth of 10Be concentrations in moraine boulder surfaces.
Alison J. Smith, Emi Ito, Natalie Burls, Leon Clarke, Timme Donders, Robert Hatfield, Stephen Kuehn, Andreas Koutsodendris, Tim Lowenstein, David McGee, Peter Molnar, Alexander Prokopenko, Katie Snell, Blas Valero Garcés, Josef Werne, Christian Zeeden, and the PlioWest Working Consortium
Sci. Dril., 32, 61–72, https://doi.org/10.5194/sd-32-61-2023, https://doi.org/10.5194/sd-32-61-2023, 2023
Short summary
Short summary
Western North American contains accessible and under-recognized paleolake records that hold the keys to understanding the drivers of wetter conditions in Pliocene Epoch subtropical drylands worldwide. In a 2021 ICDP workshop, we chose five paleolake basins to study that span 7° of latitude in a unique array able to capture a detailed record of hydroclimate during the Early Pliocene warm period and subsequent Pleistocene cooling. We propose new drill cores for three of these basins.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Julia Meister, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 72, 185–187, https://doi.org/10.5194/egqsj-72-185-2023, https://doi.org/10.5194/egqsj-72-185-2023, 2023
Mathias Vinnepand, Peter Fischer, Ulrich Hambach, Olaf Jöris, Carol-Ann Craig, Christian Zeeden, Barry Thornton, Thomas Tütken, Charlotte Prud'homme, Philipp Schulte, Olivier Moine, Kathryn E. Fitzsimmons, Christian Laag, Frank Lehmkuhl, Wolfgang Schirmer, and Andreas Vött
E&G Quaternary Sci. J., 72, 163–184, https://doi.org/10.5194/egqsj-72-163-2023, https://doi.org/10.5194/egqsj-72-163-2023, 2023
Short summary
Short summary
Loess–palaeosol sequences (LPSs) represent continental and non-aquatic archives providing detailed information on Quaternary environmental and climate changes. We present an integrative approach combining sedimentological, rock magnetic, and bulk geochemical data, as well as information on Sr and Nd isotope composition. The approach adds to a comprehensive understanding of LPS formation including changes in dust composition and associated circulation patterns during Quaternary climate changes.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Lukas Gegg and Frank Preusser
E&G Quaternary Sci. J., 72, 23–36, https://doi.org/10.5194/egqsj-72-23-2023, https://doi.org/10.5194/egqsj-72-23-2023, 2023
Short summary
Short summary
Erosion processes below glacier ice have carved large and deep basins in the landscapes surrounding mountain ranges as well as polar regions. With our comparison, we show that these two groups of basins are very similar in their shapes and sizes. However, open questions still remain especially regarding the sediments that later fill up these basins. We aim to stimulate future research and promote exchange between researchers working around the Alps and the northern central European lowlands.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Mubarak Abdulkarim, Stoil Chapkanski, Damien Ertlen, Haider Mahmood, Edward Obioha, Frank Preusser, Claire Rambeau, Ferréol Salomon, Marco Schiemann, and Laurent Schmitt
E&G Quaternary Sci. J., 71, 191–212, https://doi.org/10.5194/egqsj-71-191-2022, https://doi.org/10.5194/egqsj-71-191-2022, 2022
Short summary
Short summary
We used a combination of remote sensing, field investigations, and laboratory analysis to map and characterize abandoned river channels within the French Upper Rhine alluvial plain. Our results show five major paleochannel groups with significant differences in their pattern, morphological characteristics, and sediment filling. The formation of these paleochannel groups is attributed to significant changes in environmental processes in the area during the last ~ 11 700 years.
Frank Preusser, Markus Fuchs, and Christine Thiel
E&G Quaternary Sci. J., 70, 201–203, https://doi.org/10.5194/egqsj-70-201-2021, https://doi.org/10.5194/egqsj-70-201-2021, 2021
Frank Preusser, Markus Fuchs, and Christine Thiel
DEUQUA Spec. Pub., 3, 1–3, https://doi.org/10.5194/deuquasp-3-1-2021, https://doi.org/10.5194/deuquasp-3-1-2021, 2021
Christian Zeeden, Jehangeer Ahmad Mir, Mathias Vinnepand, Christian Laag, Christian Rolf, and Reyaz Ahmad Dar
E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, https://doi.org/10.5194/egqsj-70-191-2021, 2021
Short summary
Short summary
We investigate two loess–palaeosol sequences in Kashmir. Magnetic enhancement of the loess was strong during stadial phases. Besides classical magnetic enhancement, wind vigour suggests partly strong winds. Grain sizes are dominantly in the silt range and comparable to data from central Asia, which do not suggest transport over high mountain ranges as required for non-local sources in Kashmir. Therefore, we suggest that the Kashmir loess is predominantly of local origin.
Felicia Linke, Oliver Olsson, Frank Preusser, Klaus Kümmerer, Lena Schnarr, Marcus Bork, and Jens Lange
Hydrol. Earth Syst. Sci., 25, 4495–4512, https://doi.org/10.5194/hess-25-4495-2021, https://doi.org/10.5194/hess-25-4495-2021, 2021
Short summary
Short summary
We used a two-step approach with limited sampling effort in existing storm water infrastructure to illustrate the risk of biocide emission in a 2 ha urban area 13 years after construction had ended. First samples at a swale confirmed the overall relevance of biocide pollution. Then we identified sources where biocides were used for film protection and pathways where transformation products were formed. Our results suggest that biocide pollution is a also continuous risk in aging urban areas.
Daniela Mueller, Frank Preusser, Marius W. Buechi, Lukas Gegg, and Gaudenz Deplazes
Geochronology, 2, 305–323, https://doi.org/10.5194/gchron-2-305-2020, https://doi.org/10.5194/gchron-2-305-2020, 2020
Short summary
Short summary
Luminescence properties of samples from the Rinikerfeld, northern Switzerland, are assessed. Reader-specific low preheat temperatures are invesigated to ensure suitable measurement conditions. While quartz is found to be dominated by stable fast components, signal loss is observed for feldspar and polymineral. In general, the ages of the fading corrected feldspar and the fine-grained polymineral fractions are in agreement with coarse-grained quartz, and ages indicate sedimentation during MIS6.
Cited articles
Abdulkarim, M., Grema, H. M., Adamu, I. H., Mueller, D., Schulz, M.,
Ulbrich, M., Miocic, J. M., and Preusser, F.: Effect of using different
chemical dispersing agents in grain size analyses of fluvial sediments via
laser diffraction spectrometry, Methods and Protocols, 4, 44,
https://doi.org/10.3390/mps4030044, 2021.
Anechitei-Deacu, V., Timar-Gabor, A., Constantin, D., Trandafir-Antohi, O.,
Valle, L. D., Fornós, J. J., Gómez-Pujol, L., and Wintle, A. G.:
Assessing the maximum limit of SAR-OSL dating using quartz of different
grain sizes, Geochronometria, 45, 146–159,
https://doi.org/10.1515/geochr-2015-0092, 2018.
Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A.-V.,
Hatte, C., and Fontugne, M.: High-resolution record of the last
Interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper
Rhine Area, Germany, Quatern. Int., 76/77, 211–229,
https://doi.org/10.1016/S1040-6182(00)00104-X, 2001.
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatte, C., Lang, A.,
Tissoux, H., and Zöller, L.: Rapid and cyclic aeolian deposition during
the Last Glacial in European loess: a high-resolution record from Nussloch,
Germany, Quaternary Sci. Rev., 28, 2955–2973,
https://doi.org/10.1016/j.quascirev.2009.08.001, 2009.
Antoine, P., Rousseau, D.-D., Degeai, J.-P., Moine, O., Lagroix, F.,
Kreutzer, S., Fuchs, M., Hatte, C., Gauthier, C., Svoboda, J., and Lisa, L.:
High-resolution record of the environmental response to climatic variations
during the Last Interglacial-Glacial cycle in Central Europe: the
loess-palaeosol sequence of Dolní Vestonice (Czech Republic),
Quaternary Sci. Rev., 67, 17–38,
https://doi.org/10.1016/j.quascirev.2013.01.014, 2013.
Baumgart, P., Hambach, U., Meszner, S., and Faust, D.: An environmental
magnetic fingerprint of periglacial loess: records of Late Pleistocene
loess–palaeosol sequences from Eastern Germany, Quatern. Int.,
296, 82–93, https://doi.org/10.1016/j.quaint.2012.12.021, 2013.
Begét, J. and Hawkins, D.: Influence of orbital parameters on
Pleistocene loess deposition in central Alaska, Nature, 337, 151–153,
https://doi.org/10.1038/337151a0, 1989.
Bengtsson, L. and Enell, M.: Chemical analysis, in: Handbook of Holocene Palaeoecology and Palaeohydrology, edited by: Berglund, B. E.,
John Wiley & Sons Ldt., Chichester, 423–451, ISBN 978-1-930665-80-4, 1986.
Bradák, B., Seto, Y., Stevens, T., Újvári, G., Fehér, K., and Költringer, C.: Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in loess, Palaeogeogr. Palaeoclimatol. Palaeoecol., 569, 110329, https://doi.org/10.1016/j.palaeo.2021.110329, 2021
Buoncristiani, J. F. and Campy, M.: Expansion and retreat of the Jura Ice
sheet (France) during the last glacial maximum, Sediment. Geol., 165,
253–264, https://doi.org/10.1016/j.sedgeo.2003.11.007, 2004.
Buylaert, J. P., Murray, A. S., Thomsen, K. J., and Jain, M.: Testing the
potential of an elevated temperature IRSL signal from K-feldspar, Radiat. Meas., 44, 560–565, https://doi.org/10.1016/j.radmeas.2009.02.007,
2009.
Chlachula, J., Evans, M. E., and Rutter, N. W.: A magnetic investigation of a
Late Quaternary loess/palaeosol record in Siberia, Geophys. J.
Int., 132, 128–132,
https://doi.org/10.1046/j.1365-246x.1998.00399.x, 1998.
Degering, D. and Degering, A.: Change is the only constant
– Time-dependent dose rates in luminescence dating, Quat.
Geochronol., 58, 101074, https://doi.org/10.1016/j.quageo.2020.101074,
2020.
European Standards: DIN 18132:1995-12, Soil, testing procedures and testing equipment –
Determination of water absorption, https://www.en-standard.eu/din-18132-soil-testing, last access: 1 April 2022.
Duprat-Oualid, F., Rius, D., Bégeot, C., Magny, M., Millet, L., Wulf,
S., and Appelt, O.: Vegetation response to abrupt climate changes in Western
Europe from 45 to 14.7k cal a BP: the Bergsee lacustrine record (Black
Forest, Germany), J. Quaternary Sci., 32, 1008–1021,
https://doi.org/10.1002/jqs.2972, 2017.
Ehlers, J., Gibbard, P. L., and Hughes, P. D. (Eds.): Quaternary Glaciations
– Extent and Chronology – A Closer Look, in: Developments in Quaternary Sciences, Elsevier,
15, 1108 pp., ISBN 9780444534477, 2011.
Faershtein, G., Porat, N., and Matmon, A.: Natural saturation of OSL and
TT-OSL signals of quartz grains from Nilotic origin, Quat.
Geochronol., 49, 146–152, https://doi.org/10.1016/j.quageo.2018.04.002,
2019.
Fischer, P., Jöris, O., Fitzsimmons, K., Vinnepand, M., Prud'homme, C.,
Schulte, P., Hatté, C., Hambach, U., Lindauer, S., Zeeden, C., Peric,
Z., Lehmkuhl, F., Wunderlich, T., Wilken, D., Schirmer, W., and Vött,
A.: Millennial-scale terrestrial ecosystem responses to Upper Pleistocene
climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-
Sequence (Middle Rhine Valley, Germany), Catena, 196, 104913,
https://doi.org/10.1016/j.catena.2020.104913, 2021.
Florineth, D. and Schlüchter, C.: Alpine Evidence for Atmospheric
Circulation Patterns in Europe during the Last Glacial Maximum, Quaternary
Res., 54, 295–308, https://doi.org/10.1006/qres.2000.2169, 2000.
Fuhrmann, F., Seelos, K., and Sirocko, F.: Eolian sedimentation in
central European Auel dry maar from 60 to 13 ka, Quaternary Res., 101,
4–12, https://doi.org/10.1017/qua.2020.81, 2021.
Gaar, D. and Preusser, F.: Age of the Most Extensive Glaciation of Northern
Switzerland: Evidence from the scientific drilling at Möhliner Feld,
E&G Quaternary Sci. J., 66, 1–5,
https://doi.org/10.3285/eg.66.1.er1, 2017.
Gaar, D., Graf, H. R., and Preusser, F.: New chronological constraints on the timing of Late Pleistocene glacier advances in northern Switzerland, E&G Quaternary Sci. J., 68, 53–73, https://doi.org/10.5194/egqsj-68-53-2019, 2019.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J.
M.: Optical Dating of single and multiple Grains of Quartz from Jinmium Rock
Shelter, Northern Australia: Part I, Experimental Design and Statistical
Models, Archaeometry, 41, 339–364,
https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gocke, M., Hambach, U., Eckmeier, E., Schwark, L., Zöller, L., Fuchs,
M., Löscher, M., and Wiesenberg, G. L. B.: Introducing an improved
multi-proxy approach for paleoenvironmental reconstruction of
loess–paleosol archives applied on the Late Pleistocene Nussloch sequence
(SW Germany), Palaeogeogr. Palaeocl., 410,
300–315, https://doi.org/10.1016/j.palaeo.2014.06.006, 2014.
Gribenski, N., Valla, P., Preusser, F., Roattino, T., Crouzet, C., and
Buoncristiani J.-F.: Out-of-phase Late Pleistocene glacier advances in the
western Alps reflect past changes in North Atlantic atmospheric circulation,
Geology, 49, 1096–1101, https://doi.org/10.1130/G48688.1, 2021.
Guenther, E. W.: Sedimentpetrographische Untersuchung von Lössen – Zur
Gliederung des Eiszeitalters und zur Einordnung paläolithischer
Kulturen – Teil 1 Methodische Grundlagen mit Erläuterung an Profilen,
Böhlau Verlag, Köln, Graz, p. 10, Reihe B, Bd. 1, 1961.
Guenther, E. W.: Zur Gliederung der Lösse des südlichen Oberrheintals, E&G Quaternary Sci. J., 37, 67–78, https://doi.org/10.3285/eg.37.1.07, 1987.
Guérin, G., Mercier, N., and Adamiec, G.: Dose-rate conversion factors:
Update, Ancient TL, 29, 5–8, 2011.
Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for
estimating organic and carbonate content in sediments: reproducibility and
comparability of results, J. Paleolimnol., 25, 101–110,
https://doi.org/10.1023/A:1008119611481, 2001.
Heller, F., Shen, C. D., Beer, J., Liu, X. M., Liu, T. S., Bronger, A.,
Suter, M., and Bonani, G.: Quantitative estimates of pedogenic ferromagnetic
mineral formation in Chinese loess and palaeoclimatic implications, Earth
Planet. Sc. Lett., 114, 385–390,
https://doi.org/10.1016/0012-821X(93)90038-B, 1993.
Hofmann, F. M., Rauscher, F., McCreary, W., Bischoff, J.-P., and Preusser, F.: Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany, E&G Quaternary Sci. J., 69, 61–87, https://doi.org/10.5194/egqsj-69-61-2020, 2020.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars
and the measurement and correction for it in optical dating, Can. J. Earth Sci., 38, 1093–1106, https://doi.org/10.1139/e01-013,
2001.
Institut für Länderkunde: Nationalatlas der Bundesrepublik
Deutschland, Band 3 – Natur und Umwelt II: Klima, Pflanzen und Tierwelt, ISBN 978-3827409560,
2003.
Kars, R. H., Wallinga, J., and Cohen, K. M.: A new approach towards
anomalous fading correction for feldspar IRSL dating – tests on samples in
field saturation, Radiat. Meas., 43, 786–790,
https://doi.org/10.1016/j.radmeas.2008.01.021, 2008.
Kars, R. H., Reimann, T., Ankjærgaard, C., and Wallinga, J.: Bleaching
of the post-IR IRSL signal: new insights for feldspar luminescence dating,
Boreas, 43, 780–791, https://doi.org/10.1111/bor.12082, 2014.
Krauss, L., Zens, J., Zeeden, C., Schulte, P., Eckmeier, E., and Lehmkuhl,
F.: A Multi-Proxy Analysis of two Loess-Palaeosol Sequences in the Northern
Harz Foreland, Germany, Palaeogeogr. Palaeocl.,
461, 401–417, https://doi.org/10.1016/j.palaeo.2016.09.001, 2016.
Kuhlemann, J., Rohling, E. J., Krumrei, I., Kubik, P., Ivy-Ochs, S., and
Kucera, M.: Regional synthesis of Mediterranean atmospheric circulation
during the last glacial maximum, Science, 321, 1338–1340,
https://doi.org/10.1126/science.1157638, 2008.
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., and Kels, H.:
Loess-palaeosol sequences at the northern European loess belt in Germany:
Distribution, geomorphology and stratigraphy, Quaternary Sci. Rev.,
153, 11–30, https://doi.org/10.1016/j.quascirev.2016.10.008, 2016.
Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary,
Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J.,
Marković, S. B., Obreht, I., Sümergi, P., Veres, D., Zeeden, C.,
Boemke, B., Schaubert, V., Viehweger, J., and Hambach, U.: Loess landscapes
of Europe – Mapping, geomorphology, and zonal differentiation,
Earth Sci. Rev., 215, 103496,
https://doi.org/10.1016/j.earscirev.2020.103496, 2021.
Li, B. and Li, S.-H.: Luminescence dating of K-feldspar from sediments: A
protocol without anomalous fading correction, Quat. Geochronol., 6,
468–479, https://doi.org/10.1016/j.quageo.2011.05.001, 2011.
Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57
globally distributed benthic d18O records, Paleoceanography, 20, PA10032005,
https://doi.org/10.1029/2004PA001071, 2005.
Lowick, S. E., Preusser, F., Pini, R., and Ravazzi, C.: Underestimation of
quartz OSL dating towards the Eemian: comparison with palynostratigraphy
from Azzano Decimo, northeastern Italy, Quat. Geochronol., 5,
583–590, https://doi.org/10.1016/j.quageo.2009.12.003, 2010.
Ma, M., Liu, X., Pillans, B. J., Hu, S., Lü, B., and Liu, H.: Magnetic
properties of Dashing Rocks loess at Timaru, South Island, New Zealand,
Geophys. J. Int., 195, 75–85, doi.org/10.1093/gji/ggt206,
2013.
Makó, A., Tóth, G., Weynants, M., Rajkai, K., Hermann, T., and
Tóth, B.: Pedotransfer functions for converting laser diffraction
particle-size data to conventional values, Eur. J. Soil Sci.,
68, 769–782, https://doi.org/10.1111/ejss.12456, 2017.
May, J.-H., Marx, S. K., Reynolds, W., Clark-Balzan, L., Jacobsen, G. E., and
Preusser, F.: Establishing a chronological framework for a late Quaternary
seasonal swamp in the Australian “Top End”, Quat. Geochronol., 47,
81–92, https://doi.org/10.1016/j.quageo.2018.05.010, 2018.
Mercier, J.-L. and Jeser, N.: The glacial history of the Vosges Mountains,
Developments in Quaternary Science, 2, 113–118,
https://doi.org/10.1016/S1571-0866(04)80061-7, 2004.
Meszner, S., Kreutzer, S., Fuchs, M., and Faust, D.: Late Pleistocene
landscape dynamics in Saxony, Germany: Paleoenvironmental reconstruction
using loess-palaeosol sequences, Quatern. Int., 296, 94–107,
https://doi.org/10.1016/j.quaint.2012.12.040, 2013.
Meyer-Heintze, S., Sprafke, T., Schulte, P., Terhorst, B., Lomax, J., Fuchs,
M., Lehmkuhl, F., Neugebauer-Maresch, C., Einwögerer, T., Händel,
M., Simon, U., and Solís Castillo, B.: The MIS 3/2 transition in a new
loess profile at Krems-Wachtberg East – A multi-methodological approach,
Quatern. Int., 464, 370–385,
https://doi.org/10.1016/j.quaint.2017.11.048, 2018.
Meyers, P. A. and Lallier-Verges, E.: Lacustrine sedimentary organic matter
records of Late Quaternary paleoclimates, J. Paleolimnol., 21,
345–372, https://doi.org/10.1023/A:1008073732192, 1999.
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J., Prud'homme,
C., and Rousseau, D.-D.: The impact of Last Glacial climate variability in
west-European loess revealed by radiocarbon dating of fossil earthworm
granules, PNAS, 114, 6209–6214, https://doi.org/10.1073/pnas.1614751114,
2017.
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., and Piccin, A.: The Alpine LGM in the boreal ice-sheets game, Sci. Rep., 7, 2078, https://doi.org/10.1038/s41598-017-02148-7, 2017.
Munyikwa, K., Kinnaird, T. C., and Sanderson, D. C. W.: The potential of
portable luminescence readers in geomorphological investigations: a review,
Earth Surf. Proc. Land., 46, 131–150,
https://doi.org/10.1002/esp.4975, 2021.
Murray, A. S. and Wintle, A. G.: Luminescence dating of quartz using an
improved single-aliquot regenerative-dose protocol, Radiat. Meas.,
32, 57–73, https://doi.org/10.1016/S1350-4487(99)00253-X, 2000.
Murray, A. S. and Wintle, A. G.: The single aliquot regenerative dose
protocol: potential for improvements in reliability, Radiat. Meas.,
37, 377–381, https://doi.org/10.1016/S1350-4487(03)00053-2, 2003.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates
for luminescence and ESR dating: Large depths and long-term time variations,
Radiat. Meas., 23, 497–500,
https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Preusser, F., Ramseyer, K., and Schlüchter, C.: Characterisation of low
luminescence intensity quartz from Westland, New Zealand, Radiat. Meas., 41, 871–877, https://doi.org/10.1016/j.radmeas.2006.04.019,
2006.
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J. Q. G.: Luminescence dating: basics, methods and applications, E&G Quaternary Sci. J., 57, 95–149, https://doi.org/10.3285/eg.57.1-2.5, 2008.
Preusser, F., Chithambo, M. L., Götte, T., Martini, M., Ramseyer, K.,
Sendezera, E. J., Susino, G. J., and Wintle A. G.: Quartz as a natural
luminescence dosimeter, Earth-Sci. Rev., 97, 196–226,
https://doi.org/10.1016/j.earscirev.2009.09.006, 2009.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Preusser, F., Muru, M., and Rosentau, A.: Comparing different post-IR IRSL
approaches for the dating of Holocene foredunes from Ruhnu Island, Estonia,
Geochronometria, 41, 342–351, https://doi.org/10.2478/s13386-013-0169-7,
2014.
Pye, K.: The nature, origin and accumulation of loess, Quaternary Sci. Rev., 14, 653–667, https://doi.org/10.1016/0277-3791(95)00047-X, 1995.
Rasmussen, S. O., Bigler, M., Blockley, S. P., Blunier, T., Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J B., Popp, T., Seierstadt, I. K., Steffensen, J. P., Svensson, A. M., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J., and Winstrup, M.: A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Sci. Rev., 106, 14–28, https://doi.org/10.1016/j.quascirev.2014.09.007, 2014.
Richter, D., Richter, A., and Dornich, K.: Lexsyg – A new system for
luminescence research, Geochronometria, 40, 220–228,
https://doi.org/10.2478/s13386-013-0110-0, 2013.
Richter, D., Richter, A., and Dornich, K.: Lexsyg smart – a luminescence
detection system for dosimetry, material research and dating application,
Geochronometria, 42, 202–209, https://doi.org/10.1515/geochr-2015-0022,
2015.
Rittenour, T. M.: Dates and rates of earth-surface processes revealed using
luminescence dating, Elements, 14, 21–26,
https://doi.org/10.2138/gselements.14.1.21, 2018.
Roberts, H.: The development and application of luminescence dating to loess
deposits: a perspective on the past, present and future, Boreas, 37,
483–507, https://doi.org/10.1111/j.1502-3885.2008.00057.x, 2008.
Roberts, H. M., Julie A Durcan, J. A., and Duller, G. A. T.: Exploring
procedures for the rapid assessment of optically stimulated luminescence
range-finder ages, Radiat. Meas., 44, 582–587,
https://doi.org/10.1016/j.radmeas.2009.02.006, 2009.
Rotstein, Y. and Schaming, M.: The Upper Rhine Graben (URG) revisited: Miocene transtension and transpression account for the observed first-order structures, Tectonics, 30, TC3007, https://doi.org/10.1029/2010TC002767, 2011.
Schönhals, E., Rohdenburg, H., and Semmel, A.: Ergebnisse neuerer Untersuchungen zur Würmlöß-Gliederung in Hessen, E&G Quaternary Sci. J., 15, 199–206, https://doi.org/10.3285/eg.15.1.15, 1964.
Schulte, P., Lehmkuhl, F., Steininger, F., Loibl, D., Lockot, G., Protze,
J., Fischer, P., and Stauch, G.: Influence of HCl pretreatment and
organo-mineral complexes on laser diffraction measurement of
loess–palaeosol-sequences, Catena, 137, 392–405,
https://doi.org/10.1016/j.catena.2015.10.015, 2016.
Schulte, P., Sprafke, T., Rodrigues, L., and Fitzsimmons, K. E.: Are fixed
grain size ratios useful proxies for loess sedimentation dynamics?
Experiences from Remizovka, Kazakhstan, Aeolian Res., 31, 131–140,
https://doi.org/10.1016/j.aeolia.2017.09.002, 2018.
Semmel, A.: Neue Fundstellen von vulkanischem Material in hessischen
Lössen, Notizblatt hessisches Landesamt für Bodenforschung, 95,
10–108, 1967.
Sirocko, F., Knapp, H., Dreher, F., Förster, M. W., Albert, J., Brunck,
H., Veres, D., Dietrich, S., Zech, M., Hambach, U., Röhner, M., Rudert,
S., Schwibus, K., Adams, C., and Sigl, P.: The ELSA-Vegetation-Stack:
Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar
sediments of the last 60 000 years, Global Planet. Change, 142,
108–135, https://doi.org/10.1016/j.gloplacha.2016.03.005, 2016.
Smalley, I.: Making the material: The formation of silt sized primary
mineral particles for loess deposits, Quaternary Sci. Rev., 14,
645–651, https://doi.org/10.1016/0277-3791(95)00046-1, 1995.
Smalley, I. and Obreht I.: The formation of loess ground by the process of
loessification: a history of the concept, Geologos, 24, 163–170,
https://doi.org/10.2478/logos-2018-0015, 2018.
Smalley, I., O'Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., and
Jefferson, I.: Rivers and loess: the significance of long river
transportation in the complex event-sequence approach to loess deposit
formation, Quatern. Int., 198, 7–18,
https://doi.org/10.1016/j.quaint.2008.06.009, 2009.
Smalley, I. J., Krinsley, D. H., and Vita-Finzi C.: Observations on the
Kaiserstuhl loess, Geol. Mag., 110, 29–36,
https://doi.org/10.1017/S0016756800047269, 1973.
Sprafke, T.: Löss in Niederösterreich – Archiv quartärer Klima-
und Landschaftsveränderungen, Würzburg University Press, 42–47, ISBN 978-3827409560,
2016.
Sprafke, T. and Obreht, I.: Loess: Rock, sediment or soil – What is missing
for its definition?, Quatern. Int., 399, 198–207,
https://doi.org/10.1016/j.quaint.2015.03.033, 2016.
Sprafke, T., Terhorst, B., Peticzka, R., and Thiel, C.: Paudorf locus typicus (Lower Austria) revisited: The potential of the classic loess outcrop for Middle to Late Pleistocene landscape reconstructions, E&G Quaternary Sci. J., 62, 59–72, https://doi.org/10.3285/eg.62.1.06, 2013.
Sprafke, T., Schulte, P., Meyer-Heintze, S., Händel, M., Einwögerer,
T., Simon, U., Peticka, R., Schäfer, C., Lehmkuhl, F., and Terhorst, B.:
Paleoenvironments from robust loess stratigraphy using high-resolution color
and grain-size data of the last glacial Krems-Wachtberg record (NE Austria),
Quaternary Sci. Rev., 248, 106602,
https://doi.org/10.1016/j.quascirev.2020.106602, 2020.
Stahr, K., Kandeler, E., Herrmann, L. and Streck, T.: Bodenkunde und
Standortlehre, 4th edn., Utb. Ulmer, Stuttgart, 327 pp., https://doi.org/10.36198/9783838553450, 2020.
Starnberger, R., Rodnight, H., and Spötl, C.: Chronology of the Last
Glacial Maximum in the Salzach Palaeoglacier Area (Eastern Alps), J. Quaternary Sci., 26, 502–510, https://doi.org/10.1002/jqs.1477, 2011.
Steffen, D., Preusser, F., and Schlunegger, F.: OSL quartz age
underestimation due to unstable signal components. Quat. Geochronol.,
4, 353–362, https://doi.org/10.1016/j.quageo.2009.05.015, 2009.
Steup, R. and Fuchs, M.: The loess sequence at Münzenberg
(Wetterau/Germany): A reinterpretation based on new luminescence dating
results, Z. Geomorphol. Supp., 61,
101–120, https://doi.org/10.1127/zfg_suppl/2016/0408, 2017.
Stojakowits, P., Mayr, C., Ivy-Ochs, S., Preusser, F., Reitner, J., and
Spötl, C.: Environments at the MIS 3/2 transition in the northern Alps
and their foreland, Quatern. Int., 581/582, 99–113,
https://doi.org/10.1016/j.quaint.2020.08.003, 2021.
Sun, D., Bloemendal, J., Rea, D.K., An, Z., Vandenberghe, J., Lu, H., Su,
R., and Liu, T.: Bimodal grain-size distribution of Chinese loess, and its
paleoclimatic implications, Catena, 55, 325–340.
https://doi.org/10.1016/S0341-8162(03)00109-7, 2004.
Taylor, S. N. and Lagroix, F.: Magnetic anisotropy reveals the depositional
and postdepositional history of a loess-paleosol sequence at Nussloch
(Germany), J. Geophys. Res.-Sol. Ea., 120, 2859–2876,
https://doi.org/10.1002/2014JB011803, 2015.
Terhorst, B., Sedov, S., Sprafke, T., Peticzka, R., Meyer-Heintze, S.,
Kühn, P., and Solleiro Rebolledo, E.: Austrian MIS 3/2 loess–palaeosol
records – Key sites along a west–east transect, Palaeogeogr.
Palaeocl., 418, 43–56,
https://doi.org/10.1016/j.palaeo.2014.10.020, 2015.
Thomsen, K. J., Murray, A. S., Jain, M., and Bøtter-Jensen, L.:
Laboratory fading rates of various luminescence signals from feldspar-rich
sediment extracts, Radiat. Meas., 43, 1474–1486,
https://doi.org/10.1016/j.radmeas.2008.06.002, 2008.
Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J.,
and Skjemstad, J. O.: Visible, near infrared, mid infrared or combined
diffuse reflectance spectroscopy for simultaneous assessment of various soil
properties, Geoderma, 131, 59–75,
https://doi.org/10.1016/j.geoderma.2005.03.007, 2006.
Vlaminck, S., Kehl, M., Rolf, C., Franz, S. O., Lauer, T., Lehndorff, E.,
Frechen, M., and Khormali, F.: Late Pleistocene dust dynamics and
pedogenesis in Southern Eurasia - Detailed insights from the loess profile
Toshan (NE Iran), Quaternary Sci. Rev., 180, 75–95,
https://doi.org/10.1016/j.quascirev.2017.11.010, 2018.
Wintle, A. G.: Anomalous fading of thermoluminescence in mineral samples,
Nature, 245, 143–144, https://doi.org/10.1038/245143a0, 1973.
Wright, J. S.: “Desert” loess versus “glacial” loess: quartz silt
formation, source areas and sediment pathways in the formation of loess
deposits, Geomorphology, 36, 231–256,
https://doi.org/10.1016/S0169-555X(00)00060-X, 2001.
Yi, S., Buylaert, J-P., Murray, A. S., Lu, H., Thiel, C., and Zeng, L.: A
detailed post-IR IRSL dating study of the Niuyangzigou loess site in
northeastern China, Boreas, 45, 644–657,
https://doi.org/10.1111/bor.12185, 2016.
Zeeden, C. and Hambach, U.: Magnetic susceptibility properties of loess from
the Willendorf archaeological site: Implications for the
syn/post-depositional interpretation of magnetic fabric, Front. Earth Sci., 8, 599491, https://doi.org/10.3389/feart.2020.599491, 2021.
Zeeden, C., Kels, H., Hambach, U., Schulte, P., Protze, J., Eckmeier, E.,
Markovic, S. B., Klasen, N., and Lehmkuhl, F.: Three climatic cycles
recorded in a loess-palaeosol sequence at Semlac (Romania) – Implications
for dust accumulation in south-eastern Europe, Quaternary Sci. Rev.,
154, 130–142, https://doi.org/10.1016/j.quascirev.2016.11.002, 2016.
Zeeden, C., Dietze, M., and Kreutzer, S.: Discriminating luminescence age
uncertainty composition for a robust Bayesian modelling, Quat.
Geochronol., 43, 30–39, https://doi.org/10.1016/j.quageo.2017.10.001,
2018.
Zeeden, C., Mir, J. A., Vinnepand, M., Laag, C., Rolf, C., and Dar, R. A.: Local mineral dust transported by varying wind intensities forms the main substrate for loess in Kashmir, E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, 2021.
Zhang, J.: Behavior of the electron trapping probability change in IRSL
dating of K-feldspar: A dose recovery study, Quat. Geochronol., 44,
38–46, https://doi.org/10.1016/j.quageo.2017.12.001, 2018.
Zhang, J. and Li, S.-H.: Review of the Post-IR IRSL Dating Protocols of
K-Feldspar, Methods and Protocols, 3, 7, https://doi.org/10.3390/mps3010007,
2020.
Zöller, L. and Wagner, G. A.: Thermoluminescence Dating of Loess – Recent
Developments, Quatern. Int., 7/8, 119–128,
https://doi.org/10.1016/1040-6182(90)90046-7, 1990.
Zöller, L., Stremme, H., and Wagner, G. A.: Thermolumineszenz-Datierung
an Löss-Paläoboden-Sequenzen von Nieder-, Mittel- und
Oberrhein/Bundesrepublik Deutschland, Chem. Geol., 73, 39–62,
https://doi.org/10.1016/0168-9622(88)90020-6, 1988.
Zöller, L., Fischer, M., Jary, Z., Antoine, P., and Krawczyk, M.: Chronostratigraphic and geomorphologic challenges of last glacial loess in Poland in the light of new luminescence ages, E&G Quaternary Sci. J., 71, 59–81, https://doi.org/10.5194/egqsj-71-59-2022, 2022.
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach....