Articles | Volume 72, issue 1
https://doi.org/10.5194/egqsj-72-37-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-72-37-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Palaeoenvironmental research at Hawelti–Melazo (Tigray, northern Ethiopia) – insights from sedimentological and geomorphological analyses
Physical Geography, Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
Nadav Nir
Physical Geography, Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
Christopher Lüthgens
Institute for Applied Geology, University of Natural Resources and Life Sciences, Vienna, Austria
Thomas M. Menn
freelance archaeologist: Sanaa Branch, Orient Department, German Archaeological Institute (DAI), Berlin, Germany
Brigitta Schütt
Physical Geography, Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
Related authors
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Christopher Lüthgens and Jacob Hardt
DEUQUA Spec. Pub., 4, 29–39, https://doi.org/10.5194/deuquasp-4-29-2022, https://doi.org/10.5194/deuquasp-4-29-2022, 2022
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Subham Mukherjee, Kei Namba, Katrin M. Nissen, Ehsan Razipoor, Stefan Heiland, and Brigitta Schütt
EGUsphere, https://doi.org/10.5194/egusphere-2025-469, https://doi.org/10.5194/egusphere-2025-469, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Berlin’s parks are vital for recreation, biodiversity, and climate resilience, yet they face growing challenges from socio-economic inequalities and climate change. Our review examines how factors like gentrification and extreme weather impact access to and sustainability of these parks. By analysing over 200 studies, we highlight the need for inclusive policies, community engagement, and climate-adaptive park designs to ensure that Berlin’s parks remain accessible, resilient, and socially just.
Jacob Hardt, Tim P. Dooley, and Michael R. Hudec
Earth Surf. Dynam., 12, 559–579, https://doi.org/10.5194/esurf-12-559-2024, https://doi.org/10.5194/esurf-12-559-2024, 2024
Short summary
Short summary
We investigate the reaction of salt structures on ice sheet transgressions. We used a series of sandbox models that enabled us to experiment with scaled-down versions of salt bodies from northern Germany. The strongest reactions occurred when large salt pillows were partly covered by the ice load. Subsurface salt structures may play an important role in the energy transition, e.g., as energy storage. Thus, it is important to understand all processes that affect their stability.
Christopher Lüthgens and Jacob Hardt
DEUQUA Spec. Pub., 4, 29–39, https://doi.org/10.5194/deuquasp-4-29-2022, https://doi.org/10.5194/deuquasp-4-29-2022, 2022
Sandra M. Braumann, Joerg M. Schaefer, Stephanie M. Neuhuber, Christopher Lüthgens, Alan J. Hidy, and Markus Fiebig
Clim. Past, 17, 2451–2479, https://doi.org/10.5194/cp-17-2451-2021, https://doi.org/10.5194/cp-17-2451-2021, 2021
Short summary
Short summary
Glacier reconstructions provide insights into past climatic conditions and elucidate processes and feedbacks that modulate the climate system both in the past and present. We investigate the transition from the last glacial to the current interglacial and generate beryllium-10 moraine chronologies in glaciated catchments of the eastern European Alps. We find that rapid warming was superimposed by centennial-scale cold phases that appear to have influenced large parts of the Northern Hemisphere.
Juan-Luis García, Christopher Lüthgens, Rodrigo M. Vega, Ángel Rodés, Andrew S. Hein, and Steven A. Binnie
E&G Quaternary Sci. J., 70, 105–128, https://doi.org/10.5194/egqsj-70-105-2021, https://doi.org/10.5194/egqsj-70-105-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM) about 21 kyr ago is known to have been global in extent. Nonetheless, we have limited knowledge during the pre-LGM time in the southern middle latitudes. If we want to understand the causes of the ice ages, the complete glacial period must be addressed. In this paper, we show that the Patagonian Ice Sheet in southern South America reached its full glacial extent also by 57 kyr ago and defies a climate explanation.
Moritz Nykamp, Jacob Hardt, Philipp Hoelzmann, Jens May, and Tony Reimann
E&G Quaternary Sci. J., 70, 1–17, https://doi.org/10.5194/egqsj-70-1-2021, https://doi.org/10.5194/egqsj-70-1-2021, 2021
Christopher Lüthgens, Daniela Sauer, and Michael Zech
E&G Quaternary Sci. J., 69, 261–262, https://doi.org/10.5194/egqsj-69-261-2021, https://doi.org/10.5194/egqsj-69-261-2021, 2021
Christopher Lüthgens, Jacob Hardt, and Margot Böse
E&G Quaternary Sci. J., 69, 201–223, https://doi.org/10.5194/egqsj-69-201-2020, https://doi.org/10.5194/egqsj-69-201-2020, 2020
Short summary
Short summary
Our new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression is based on existing geochronological data from Germany, Denmark and southernmost Sweden, as well as new data from north-east Germany. Previous models are mainly based on the reconstruction of morphologically continuous ice-marginal positions, whereas our model shows a strong lobate and variable character of ice advances. We strongly suggest an age- and process-based approach in the future.
Cited articles
Adamiec, G. and Aitken, M.: Dose-rate conversion factors: update, Ancient
TL, 16, 37–50, 1998.
Armitage, S. J., Bristow, C. S., and Drake, N. A.: West African monsoon
dynamics inferred from abrupt fluctuations of Lake Mega-Chad, P. Natl. Acad. Sci. USA, 112, 8543–8548, https://doi.org/10.1073/pnas.1417655112, 2015.
Auclair, M., Lamothe, M., and Huot, S.: Measurement of anomalous fading for
feldspar IRSL using SAR, Radiat. Meas., 37, 487–492, https://doi.org/10.1016/S1350-4487(03)00018-0, 2003.
Bard, K. A., Fattovich, R., Manzo, A., and Perlingieri, C.: The chronology
of Aksum (Tigrai, Ethiopia): a view from Bieta Giyorgis, Azania, 49, 285–316, https://doi.org/10.1080/0067270X.2014.943484, 2014.
Benito, G.: 13.15 Hazardous Processes: Flooding, in: Treatise on
Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego,
243–261, https://doi.org/10.1016/B978-0-12-374739-6.00363-8, 2013.
Bonnet, S., Reimann, T., Wallinga, J., Lague, D., Davy, P., and Lacoste, A.:
Landscape dynamics revealed by luminescence signals of feldspars from
fluvial terraces, Scientific Reports, 9, 8569, https://doi.org/10.1038/s41598-019-44533-4, 2019.
Bøtter-Jensen, L., Bulur, E., Duller, G. A. T., and Murray, A. S.:
Advances in luminescence instrument systems, Radiat. Meas., 32, 523–528, https://doi.org/10.1016/S1350-4487(00)00039-1, 2000.
Bøtter-Jensen, L., McKeever, S. W. S., and Wintle, A. G.: Optically
Stimulated Luminescence Dosimetry, Elsevier, 355 pp., https://doi.org/10.1016/B978-0-444-50684-9.X5077-6, 2003.
Bøtter-Jensen, L., Thomsen, K. J., and Jain, M.: Review of optically
stimulated luminescence (OSL) instrumental developments for retrospective
dosimetry, Radiat. Meas., 45, 253–257, https://doi.org/10.1016/j.radmeas.2009.11.030, 2010.
Busch, R., Hardt, J., Nir, N., and Schütt, B.: Modeling Gully Erosion
Susceptibility to Evaluate Human Impact on a Local Landscape System in
Tigray, Ethiopia, Remote Sensing, 13, 2009, https://doi.org/10.3390/rs13102009, 2021.
Cammeraat, E. L. H.: 7.33 Semiarid Hillslope Processes, in: Treatise on
Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego,
355–362, https://doi.org/10.1016/B978-0-12-374739-6.00184-6, 2013.
Coltorti, M., Dramis, F., and Ollier, C. D.: Planation surfaces in Northern
Ethiopia, Geomorphology, 89, 287–296, https://doi.org/10.1016/j.geomorph.2006.12.007, 2007.
de Contenson, H.: Les fouilles à Haoulti-Melazo en 1958, Annales
d'Ethiopie, 4, 39–60, 1961.
de Contenson, H.: Les fouilles de Haoulti en 1959 – Rapport préliminaire, Annales d'Ethiopie, 5, 41–86, 1963.
Darbyshire, I., Lamb, H., and Umer, M.: Forest clearance and regrowth in
northern Ethiopia during the last 3000 years, Holocene, 13, 537–546, https://doi.org/10.1191/0959683603hl644rp, 2003.
Dixon, J. C.: 4.3 Pedogenesis with Respect to Geomorphology, in: Treatise on
Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego, 27–43, https://doi.org/10.1016/B978-0-12-374739-6.00058-0, 2013.
Dramis, F., Umer, M., Calderoni, G., and Haile, M.: Holocene climate phases
from buried soils in Tigray (northern Ethiopia): comparison with lake level
fluctuations in the Main Ethiopian Rift, Quaternary Res., 60, 274–283,
https://doi.org/10.1016/j.yqres.2003.07.003, 2003.
Dunne, T. and Aalto, R. E.: 9.32 Large River Floodplains, in: Treatise on
Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego,
645–678, https://doi.org/10.1016/B978-0-12-374739-6.00258-X, 2013.
Duszyński, F., Migoń, P., and Strzelecki, M.C.: Escarpment retreat in
sedimentary tablelands and cuesta landscapes – Landforms, mechanisms and
patterns, Earth-Sci. Rev., 196, 102890, https://doi.org/10.1016/j.earscirev.2019.102890, 2019.
Fattovich, R.: The Development of Ancient States in the Northern Horn of Africa, c. 3000 BC–AD 1000: An Archaeological Outline, J. World Prehist., 23, 145–175, https://doi.org/10.1007/s10963-010-9035-1, 2010.
Fattovich, R.: The northern Horn of Africa in the first millennium BCE:
local traditions and external connections, Rassegna di Studi Etiopici, 4, 1–60, 2012.
Ferrari, G., Ciampalini, R., Billi, P., and Migoń, P.: Geomorphology of
the Archaeological Area of Aksum, in: Landscapes and Landforms of Ethiopia. World Geomorphological Landscapes, edited by: Billi, P., Springer, Dordrecht, 147–161, https://doi.org/10.1007/978-94-017-8026-1_7, 2015.
Foerster, V., Junginger, A., Langkamp, O., Gebru, T., Asrat, A., Umer, M.,
Lamb, H. F., Wennrich, V., Rethemeyer, J., Nowaczyk, N., Trauth, M. H., and
Schaebitz, F.: Climatic change recorded in the sediments of the Chew Bahir
basin, southern Ethiopia, during the last 45,000 years, Quatern.
Int., 274, 25–37, https://doi.org/10.1016/j.quaint.2012.06.028, 2012.
Frankl, A., Poesen, J., Deckers, J., Haile, M., and Nyssen, J.: Gully head
retreat rates in the semi-arid highlands of Northern Ethiopia, Geomorphology, 173–174, 185–195, https://doi.org/10.1016/j.geomorph.2012.06.011, 2012.
French, C., Sulas, F., and Madella, M.: New geoarchaeological investigations
of the valley systems in the Aksum area of northern Ethiopia, CATENA, 78,
218–233, https://doi.org/10.1016/j.catena.2009.02.010, 2009.
Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H., and Olley, J.
M.: Optical dating of single and multiple grains of quartz from Jinmium rock
shelter, Northern Australia: Part I, experimental design and statistical
models, Archaeometry, 41, 339–364, https://doi.org/10.1111/j.1475-4754.1999.tb00987.x, 1999.
Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J., and Williamson, D.: Climatic patterns in equatorial and southern Africa from 30,000 to 10,000
years ago reconstructed from terrestrial and near-shore proxy data,
Quaternary Sci. Rev., 27, 2316–2340, https://doi.org/10.1016/j.quascirev.2008.08.027, 2008.
Gerlach, I.: Zum äthio-sabäischen Kunsthandwerk des frühen
1. Jahrtausends v. Chr., in: Hauptsache Museum – Der alte Orient im Fokus
– Festschrift für Ralf-B. Wartke, edited by: Marzahn, J. and Pedde,
F., marru – Studien zur Vorderasiatischen Archäologie, 229–252, ISBN 978-3-96327-036-9, 2018.
Hagos, M., Koeberl, C., Kabeto, K., and Koller, F.: Geochemical
characteristics of the alkaline basalts and phonolite-trachyte plugs of the
Axum area, northern Ethiopia, Austrian J. Earth Sc., 103, 153–170, 2010.
Harrower, M. J., Dumitru, I. A., Perlingieri, C., Nathan, S., Zerue, K.,
Lamont, J. L., Bausi, A., Swerida, J. L., Bongers, J. L., Woldekiros, H. S.,
Poolman, L. A., Pohl, C. M., Brandt, S. A., and Peterson, E. A.: Beta
Samati: discovery and excavation of an Aksumite town, Antiquity, 93,
1534–1552, https://doi.org/10.15184/aqy.2019.84, 2019.
Harrower, M. J., Nathan, S., Mazzariello, J. C., Zerue, K., Dumitru, I. A.,
Meresa, Y., Bongers, J. L., Gebreegziabher, G., Zaitchik, B. F., and
Anderson, M. C.: Water, Geography, and Aksumite Civilization: The Southern
Red Sea Archaeological Histories (SRSAH) Project Survey (2009–2016),
Afr. Archaeol. Rev., 37, 51–67, https://doi.org/10.1007/s10437-020-09369-8, 2020.
Hoelzmann, P., Gasse, F., Dupont, L., Salzmann, U., Staubwasser, M.,
Leuschner, D., and Sirocko, F.: Palaeoenvironmental changes in the arid and
sub arid belt (Sahara-Sahel-Arabian Peninsula) from 150 kyr to present, in: Past Climate Variability through Europe and Africa. Developments in Paleoenvironmental Research, edited by: Battarbee, R. W., Gasse, F., and Stickley, C. E., Springer, Dordrecht, 6, 219–256, https://doi.org/10.1007/978-1-4020-2121-3_12, 2007.
Hofmann, C., Courtillot, V., Féraud, G., Rochette, P., Yirgu, G.,
Ketefo, E., and Pik, R.: Timing of the Ethiopian flood basalt event and
implications for plume birth and global change, Nature, 389, 838–841,
https://doi.org/10.1038/39853, 1997.
Hooke, J. M.: 6.26 - River Meandering, in: Treatise on Geomorphology (Second
Edition), edited by: Shroder, J. F., Academic Press, Oxford, 480–516,
https://doi.org/10.1016/B978-0-12-409548-9.12517-5, 2022.
Huntley, D. and Baril, M.: The K content of the K-feldspars being measured
in optical and thermoluminescence dating, Ancient TL, 15, 11–13, 1997.
Huntley, D. J. and Lamothe, M.: Ubiquity of anomalous fading in K-feldspars
and the measurement and correction for it in optical dating, Can. J. Earth Sci., 38, 1093–1106, https://doi.org/10.1139/e01-013, 2001.
Japp, S., Gerlach, I., Hitgen, H., and Schnelle, M.: Yeha and Hawelti:
cultural contacts between Saba' and D´MT – New research by the German
Archaeological Institute in Ethiopia, Proc. Sem. Arab. Stud., 41, 145–160, 2011.
JAXA: ALOS Global Digital Surface Model (DSM) ALOS World 3D-30m (AW3D30)
Ver. 2.2, JAXA – Japan Aerospace Exploration Agency [data set], https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (last access: 17 January 2023), 2005.
Junge, A., Lomax, J., Shahack-Gross, R., Finkelstein, I., and Fuchs, M.:
Chronology of an ancient water reservoir and the history of human activity
in the Negev Highlands, Israel, Geoarchaeology, 33, 695–707, https://doi.org/10.1002/gea.21682, 2018.
Kennedy, D. M. and Woods, J. L. D.: 14.22 Determining Organic and Carbonate
Content in Sediments, in: Treatise on Geomorphology, edited by: Shroder, J.
F., Academic Press, San Diego, 262–273, https://doi.org/10.1016/B978-0-12-374739-6.00389-4, 2013.
Knox, J. C. and Daniels, J. M.: Watershed Scale and the Stratigraphic Record
of Large Floods, in: Ancient Floods, Modern Hazards, 237–255,
https://doi.org/10.1029/WS005p0237, 2002.
Korup, O.: 9.15 Landslides in the Fluvial System, in: Treatise on
Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego,
244–259, https://doi.org/10.1016/B978-0-12-374739-6.00240-2, 2013.
Krbetschek, M. R., Götze, J., Dietrich, A., and Trautmann, T.: Spectral
information from minerals relevant for luminescence dating, Radiat. Meas., 27, 695–748, https://doi.org/10.1016/S1350-4487(97)00223-0, 1997.
Kreutzer, S., Schmidt, C., Fuchs, M. C., Dietze, M., Fischer, M., and Fuchs,
M.: Introducing an R package for luminescence dating analysis, Ancient TL,
30, 1–8, 2012.
Kulig, G.: Erstellung einer Auswertesoftware zur Altersbestimmung mittels
Lumineszenzverfahren unter spezieller Berücksichtigung des Einflusses
radioaktiver Ungleichgewichte in der 238-U-Zerfallsreihe, Bakkalaureusarbeit Network Computing, TU Freiberg, unpublished thesis, 2005.
Lamb, H. F., Leng, M. J., Telford, R. J., Ayenew, T., and Umer, M.: Oxygen
and carbon isotope composition of authigenic carbonate from an Ethiopian
lake: a climate record of the last 2000 years, Holocene, 17, 517–526,
https://doi.org/10.1177/0959683607076452, 2007a.
Lamb, H. F., Bates, C. R., Coombes, P. V., Marshall, M. H., Umer, M.,
Davies, S. J., and Dejen, E.: Late Pleistocene desiccation of Lake Tana,
source of the Blue Nile, Quaternary Sci. Rev., 26, 287–299, https://doi.org/10.1016/j.quascirev.2006.11.020, 2007b.
Lamb, H. F., Bates, C. R., Bryant, C. L., Davies, S. J., Huws, D. G.,
Marshall, M. H., Roberts, H. M., and Toland, H.: 150,000-year palaeoclimate
record from northern Ethiopia supports early, multiple dispersals of modern
humans from Africa, Scientific Reports, 8, 1077, https://doi.org/10.1038/s41598-018-19601-w, 2018.
Lanckriet, S., Schwenninger, J.-L., Frankl, A., and Nyssen, J.: The
Late-Holocene geomorphic history of the Ethiopian Highlands: Supportive
evidence from May Tsimble, CATENA, 135, 290–303,
https://doi.org/10.1016/j.catena.2015.08.011, 2015.
Leclant, J.: Haoulti-Melazo (1955–1956), Annales d'Ethiopie, 3, 43–82, 1959.
Lüthgens, C., Neuhuber, S., Grupe, S., Payer, T., Peresson, M., and
Fiebig, M.: Geochronological investigations using a combination of
luminescence and cosmogenic nuclide burial dating of drill cores from the
Vienna Basin, Z. Dtsch. Ges. Geowiss., 168, 115–140, https://doi.org/10.1127/zdgg/2017/0081, 2017.
Machado, M.: Geomorphology of the Adwa District, in: Landscapes and
Landforms of Ethiopia, World Geomorphological Landscapes, edited by: Billi,
P., Springer, Dordrecht, 163–178, https://doi.org/10.1007/978-94-017-8026-1_8, 2015.
Machado, M. J., Pérez-González, A., and Benito, G.:
Paleoenvironmental Changes during the Last 4000 yr in the Tigray, Northern
Ethiopia, Quaternary Res., 49, 312–321, https://doi.org/10.1006/qres.1998.1965, 1998.
Marshall, M., Lamb, H., Davies, S., Leng, M., Bedaso, Z., Umer, M., and
Bryant, C.: Climatic change in northern Ethiopia during the past 17,000
years: A diatom and stable isotope record from Lake Ashenge, Palaeogeogr. Palaeocl., 279, 114–127, https://doi.org/10.1016/j.palaeo.2009.05.003, 2009.
McGuire, C. and Rhodes, E. J.: Downstream MET-IRSL single-grain
distributions in the Mojave River, southern California: Testing assumptions
of a virtual velocity model, Quat. Geochronol., 30, 239–244, https://doi.org/10.1016/j.quageo.2015.02.004, 2015.
Mejdahl, V.: Thermoluminescence dating: beta attenuation in quartz grains,
Archaeometry, 21, 61–72, https://doi.org/10.1111/j.1475-4754.1979.tb00241.x, 1979.
Menn, T. M.: Hawelti-Melazo: the French legacy and recent research – In
memoriam Henri de Contenson (1926-2019), Annales d'Éthiopie, 33,
155–166, 2020.
Ménot, G., Pivot, S., Bouloubassi, I., Davtian, N., Hennekam, R., Bosch,
D., Ducassou, E., Bard, E., Migeon, S., and Revel, M.: Timing and stepwise
transitions of the African Humid Period from geochemical proxies in the Nile
deep-sea fan sediments, Quaternary Sci. Rev., 228, 106071, https://doi.org/10.1016/j.quascirev.2019.106071, 2020.
Miall, A. D.: The geology of fluvial deposits: sedimentary facies, basin
analysis, and petroleum geology, Springer, Berlin [u.a.], XVI, 582 pp., https://doi.org/10.1007/978-3-662-03237-4, 1996.
Moeyersons, J., Nyssen, J., Poesen, J., Deckers, J., and Haile, M.: Age and
backfill/overfill stratigraphy of two tufa dams, Tigray Highlands, Ethiopia:
Evidence for Late Pleistocene and Holocene wet conditions, Palaeogeogr.
Palaeocl., 230, 165–181, https://doi.org/10.1016/j.palaeo.2005.07.013, 2006.
Nir, N., Knitter, D., Hardt, J., and Schütt, B.: Human movement and
gully erosion: Investigating feedback mechanisms using Frequency Ratio and
Least Cost Path analysis in Tigray, Ethiopia, PLoS ONE, 16, e0245248,
https://doi.org/10.1371/journal.pone.0245248, 2021.
Nir, N., Stahlschmidt, M., Busch, R., Lüthgens, C., Schütt, B., and
Hardt, J.: Footpaths: Pedogenic and geomorphological long-term effects of
human trampling, CATENA, 215, 106312, https://doi.org/10.1016/j.catena.2022.106312, 2022.
Nyssen, J., Moeyersons, J., Poesen, J., Haile, M., and Deckers, J. A.:
Argillipedoturbation and the development of rock fragment covers on
Vertisols in the Ethiopian Highlands, BELGEO, 2, 183–194,
https://doi.org/10.4000/belgeo.16184, 2002.
Nyssen, J., Poesen, J., Moeyersons, J., Deckers, J., Haile, M., and Lang,
A.: Human impact on the environment in the Ethiopian and Eritrean
highlands – a state of the art, Earth-Sci. Rev., 64, 273–320,
https://doi.org/10.1016/S0012-8252(03)00078-3, 2004.
Nyssen, J., Poesen, J., Moeyersons, J., Deckers, J., and Haile, M.: Processes and rates of rock fragment displacement on cliffs and scree slopes
in an amba landscape, Ethiopia, Geomorphology, 81, 265–275, https://doi.org/10.1016/j.geomorph.2006.04.021, 2006a.
Nyssen, J., Poesen, J., Veyret-Picot, M., Moeyersons, J., Haile, M.,
Deckers, J., Dewit, J., Naudts, J., Teka, K., and Govers, G.: Assessment of
gully erosion rates through interviews and measurements: a case study from
northern Ethiopia, Earth Surf. Proc. Land., 31, 167–185,
https://doi.org/10.1002/esp.1317, 2006b.
Nyssen, J., Naudts, J., De Geyndt, K., Haile, M., Poesen, J., Moeyersons,
J., and Deckers, J.: Soils and land use in the Tigray highlands (Northern
Ethiopia), Land Degrad. Dev., 19, 257–274, https://doi.org/10.1002/ldr.840, 2008.
Nyssen, J., Frankl, A., Haile, M., Hurni, H., Descheemaeker, K., Crummey,
D., Ritler, A., Portner, B., Nievergelt, B., Moeyersons, J., Munro, N.,
Deckers, J., Billi, P., and Poesen, J.: Environmental conditions and human
drivers for changes to north Ethiopian mountain landscapes over 145 years,
Sci. Total Environ., 485-486, 164–179, https://doi.org/10.1016/j.scitotenv.2014.03.052, 2014.
Pazzaglia, F. J.: 9.22 Fluvial Terraces, in: Treatise on Geomorphology,
edited by: Shroder, J. F., Academic Press, San Diego, 379–412, https://doi.org/10.1016/B978-0-12-374739-6.00248-7, 2013.
Phillipson, D. W.: Foundations of an African civilisation: Aksum & the
Northern Horn, 1000 BC – AD 1300, 1st edn., Eastern Africa series, Currey, Woodbridge, X, 293 pp., ISBN 9781846158735, 2012.
Pietsch, D. and Machado, M. J.: Colluvial deposits – proxies for climate
change and cultural chronology. A case study from Tigray, Ethiopia,
Z. Geomorphol, 58, 119–136, https://doi.org/10.1127/0372-8854/2012/S-00114, 2014.
Prescott, J. R. and Hutton, J. T.: Cosmic ray contributions to dose rates
for luminescence and ESR dating: Large depths and long-term time variations,
Radiat. Meas., 23, 497–500, https://doi.org/10.1016/1350-4487(94)90086-8, 1994.
Prescott, J. R. and Stephan, L. G.: The contribution of cosmic radiation to
the environmental dose for thermoluminescence dating. Latitude, altitude and
depth dependences, PACT, 6, 17–25, 1982.
Rades, E. F., Fiebig, M., and Lüthgens, C.: Luminescence dating of the
Rissian type section in southern Germany as a base for correlation,
Quatern. Int., 478, 38–50, https://doi.org/10.1016/j.quaint.2016.07.055, 2018.
Reeves, C. C. (Ed.): Chapter 6 Lacustrine Sediments: Clastic, in: Developments in Sedimentology, Elsevier, 77–85, https://doi.org/10.1016/S0070-4571(08)70829-X, 1968.
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey,
C. B., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P.
M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T. J.,
Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B.,
Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M.,
Southon, J. R., Staff, R. A., Turney, C. S. M., and van der Plicht, J.:
Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal
BP, Radiocarbon, 55, 1869–1887, 2013.
Revel, M., Ducassou, E., Grousset, F. E., Bernasconi, S. M., Migeon, S.,
Revillon, S., Mascle, J., Murat, A., Zaragosi, S., and Bosch, D.: 100,000
Years of African monsoon variability recorded in sediments of the Nile
margin, Quaternary Sci. Rev., 29, 1342–1362, https://doi.org/10.1016/j.quascirev.2010.02.006, 2010.
Rhodes, E. J.: Optically Stimulated Luminescence Dating of Sediments over the Past 200,000 Years, Annu. Rev. Earth Pl. Sc., 39, 461–488, https://doi.org/10.1146/annurev-earth-040610-133425, 2011.
Sloss, C. R., Westaway, K. E., Hua, Q., and Murray-Wallace, C. V.: 14.30 An
Introduction to Dating Techniques: A Guide for Geomorphologists, in:
Treatise on Geomorphology, edited by: Shroder, J. F., Academic Press, San
Diego, 346–369, https://doi.org/10.1016/B978-0-12-374739-6.00399-7, 2013.
Stoops, G.: Guidelines for Analysis and Description of Soil and Regolith
Thin Sections, 2nd edn., Soil Science Society of America, Inc.,
https://doi.org/10.1002/9780891189763, 2020.
Tadesse, T.: Geological Map 1:25000 ND 37-6 Axum, Geological Survey of
Ethiopia, 1999.
Thrasher, I. M., Mauz, B., Chiverrell, R. C., and Lang, A.: Luminescence
dating of glaciofluvial deposits: A review, Earth-Sci. Rev., 97, 133–146, https://doi.org/10.1016/j.earscirev.2009.09.001, 2009.
Umer, M., Legesse, D., Gasse, F., Bonnefille, R., Lamb, H. F., Leng, M. J.,
and Lamb, A. A.: Late Quaternary climate changes in the Horn of Africa, in:
Past Climate Variability through Europe and Africa, edited by: Battarbee, R.
W., Gasse, F., and Stickley, C. E., Springer Netherlands, Dordrecht,
159–180, https://doi.org/10.1007/978-1-4020-2121-3_9, 2004.
Verrecchia, E. P. and Trombino, L.: Pedogenic Features, in: A Visual Atlas
for Soil Micromorphologists, Springer International Publishing, Cham,
93–133, https://doi.org/10.1007/978-3-030-67806-7_4, 2021.
Wallinga, J., Murray, A., and Wintle, A.: The single-aliquot
regenerative-dose (SAR) protocol applied to coarse-grain feldspar, Radiat.
Meas., 32, 529–533, https://doi.org/10.1016/S1350-4487(00)00091-3, 2000.
Williams, M., Talbot, M., Aharon, P., Abdl Salaam, Y., Williams, F., and
Inge Brendeland, K.: Abrupt return of the summer monsoon 15,000 years ago:
new supporting evidence from the lower White Nile valley and Lake Albert,
Quaternary Sci. Rev., 25, 2651–2665, https://doi.org/10.1016/j.quascirev.2005.07.019, 2006.
Zgłobicki, W., Poesen, J., De Geeter, S., Boardman, J., Gawrysiak, L., Golosov, V., Ionita, I., Niacsu, L., Rodzik, J., Stankoviansky, M., and Stolz, C.: Sunken lanes – Development and functions in landscapes, Earth-Sci. Rev., 221, 103757, https://doi.org/10.1016/j.earscirev.2021.103757, 2021.
Short summary
We investigated the geomorphological and geological characteristics of the archaeological sites Hawelti–Melazo and the surroundings. We performed sedimentological analyses, as well as direct (luminescence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions, which we integrated into the wider context of Tigray.
We investigated the geomorphological and geological characteristics of the archaeological sites...