Articles | Volume 69, issue 1
https://doi.org/10.5194/egqsj-69-33-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/egqsj-69-33-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The genesis of Yedoma Ice Complex permafrost – grain-size endmember modeling analysis from Siberia and Alaska
Lutz Schirrmeister
CORRESPONDING AUTHOR
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Elisabeth Dietze
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Section 3.2 Organic Geochemistry, German Research Centre for Geosciences GFZ,
Helmholtz Centre Potsdam, Potsdam, Germany
Heidrun Matthes
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Guido Grosse
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Jens Strauss
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Sebastian Laboor
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Mathias Ulrich
Institute for Geography, Leipzig University, Leipzig, Germany
Frank Kienast
Research Station of Quaternary Palaeontology, Senckenberg Research Institute, Weimar, Germany
Sebastian Wetterich
Alfred Wegener Institute Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Related authors
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Boehmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-74, https://doi.org/10.5194/cp-2024-74, 2024
Preprint under review for CP
Short summary
Short summary
The strong ecosystem response to the Last Interglacial warming, reflected in the high diversity of proxies, shows the sensitivity of permafrost regions to rising temperatures. In particular, the development of thermokarst landscapes created a mosaic of terrestrial, wetland, and aquatic habitats, fostering an increase in biodiversity. This biodiversity is evident in the rich variety of terrestrial insects, vegetation, and aquatic invertebrates preserved in these deposits.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019, https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Short summary
To reconstruct past winter climate, we studied ice wedges at two sites in the Yana Highlands, interior Yakutia (Russia), the most continental region of the Northern Hemisphere. Our ice wedges of the upper ice complex unit of the Batagay megaslump and a river terrace show much more depleted stable-isotope compositions than other study sites in coastal and central Yakutia, reflecting lower winter temperatures and a higher continentality of the study region during Marine Isotope Stages 3 and 1.
Josefine Walz, Christian Knoblauch, Ronja Tigges, Thomas Opel, Lutz Schirrmeister, and Eva-Maria Pfeiffer
Biogeosciences, 15, 5423–5436, https://doi.org/10.5194/bg-15-5423-2018, https://doi.org/10.5194/bg-15-5423-2018, 2018
Short summary
Short summary
We investigate potential CO2 and CH4 production in degrading ice-rich permafrost in northeastern Siberia, deposited under different climatic conditions. With laboratory incubations, it could be shown that Late Pleistocene yedoma deposits generally produced more CO2 than Holocene deposits. Thus, OM decomposability needs to be interpreted against the paleoenvironmental background. However, OM decomposability cannot be generalized solely based on the stratigraphic position.
Janina G. Stapel, Georg Schwamborn, Lutz Schirrmeister, Brian Horsfield, and Kai Mangelsdorf
Biogeosciences, 15, 1969–1985, https://doi.org/10.5194/bg-15-1969-2018, https://doi.org/10.5194/bg-15-1969-2018, 2018
Short summary
Short summary
Climate warming in the Arctic results in thawing of permafrost deposits. This promotes the accessibility of freeze-locked old organic matter (OM) accumulated during the past. Characterizing OM of different depositional ages, we were able to show that OM from last glacial Yedoma deposits possess the highest potential to provide organic substrates such as acetate for microbial greenhouse gas production and therefore to accelerate the carbon–climate feedback cycle during ongoing global warming.
Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast
Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, https://doi.org/10.5194/cp-13-795-2017, 2017
Short summary
Short summary
We present the first detailed description and sedimentological analyses of an 80 m permafrost sequence exposed in a mega-thaw slump near Batagay in the Yana Highlands, Russia, and attempt to deduce its genesis. First dating results (14C, OSL) show that the sequence represents a continental climate record spanning from the Middle Pleistocene to the Holocene. We suggest that the characteristics of the studied deposits are a result of various seasonally controlled climatically induced processes.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
Thomas Opel, Sebastian Wetterich, Hanno Meyer, Alexander Y. Dereviagin, Margret C. Fuchs, and Lutz Schirrmeister
Clim. Past, 13, 587–611, https://doi.org/10.5194/cp-13-587-2017, https://doi.org/10.5194/cp-13-587-2017, 2017
Short summary
Short summary
We studied late Quaternary permafrost at the Oyogos Yar coast (Dmitry Laptev Strait) to reconstruct palaeoclimate and palaeonvironmental conditions in the Northeast Siberian Arctic. Our ice-wedge stable isotope record, combined with data from Bol'shoy Lyakhovsky Island, indicates coldest winter temperatures during MIS5 and MIS2, warmest conditions during the Holocene, i.e. today, and non-stable winter climate during MIS3. New IRSL ages reveal high climate variability during MIS5.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Pier Paul Overduin, Sebastian Wetterich, Frank Günther, Mikhail N. Grigoriev, Guido Grosse, Lutz Schirrmeister, Hans-Wolfgang Hubberten, and Aleksandr Makarov
The Cryosphere, 10, 1449–1462, https://doi.org/10.5194/tc-10-1449-2016, https://doi.org/10.5194/tc-10-1449-2016, 2016
Short summary
Short summary
How fast does permafrost warm up and thaw after it is covered by the sea? Ice-rich permafrost in the Laptev Sea, Siberia, is rapidly eroded by warm air and waves. We used a floating electrical technique to measure the depth of permafrost thaw below the sea, and compared it to 60 years of coastline retreat and permafrost depths from drilling 30 years ago. Thaw is rapid right after flooding of the land and slows over time. The depth of permafrost is related to how fast the coast retreats.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
T. Schneider von Deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike
Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015, https://doi.org/10.5194/bg-12-3469-2015, 2015
Short summary
Short summary
We have modelled the carbon release from thawing permafrost soils under various scenarios of future warming. Our results suggests that up to about 140Pg of carbon could be released under strong warming by end of the century. We have shown that abrupt thaw processes under thermokarst lakes can unlock large amounts of perennially frozen carbon stored in deep deposits (which extend many metres into the soil).
J. Strauss, L. Schirrmeister, K. Mangelsdorf, L. Eichhorn, S. Wetterich, and U. Herzschuh
Biogeosciences, 12, 2227–2245, https://doi.org/10.5194/bg-12-2227-2015, https://doi.org/10.5194/bg-12-2227-2015, 2015
Short summary
Short summary
Climatic warming is affecting permafrost, including decomposition of organic matter (OM). However, quantitative data for the quality of OM and its availability for decomposition is limited. We analyzed the quality of OM in late Pleistocene (Yedoma) and Holocene (thermokarst) deposits. A lack of depth trends reveals a constant quality of OM showing that permafrost acts like a freezer, preserving OM quality. This OM will be susceptible to decomposition under climatic warming.
G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C.-L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O'Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry
Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, https://doi.org/10.5194/bg-11-6573-2014, 2014
Short summary
Short summary
This study provides an updated estimate of organic carbon stored in the northern permafrost region. The study includes estimates for carbon in soils (0 to 3 m depth) and deeper sediments in river deltas and the Yedoma region. We find that field data is still scarce from many regions. Total estimated carbon storage is ~1300 Pg with an uncertainty range of between 1100 and 1500 Pg. Around 800 Pg carbon is perennially frozen, equivalent to all carbon dioxide currently in the Earth's atmosphere.
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
G. Schwamborn, L. Schirrmeister, and B. Diekmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-6255-2013, https://doi.org/10.5194/cpd-9-6255-2013, 2013
Preprint withdrawn
Tabea Rettelbach, Ingmar Nitze, Inge Grünberg, Jennika Hammar, Simon Schäffler, Daniel Hein, Matthias Gessner, Tilman Bucher, Jörg Brauchle, Jörg Hartmann, Torsten Sachs, Julia Boike, and Guido Grosse
Earth Syst. Sci. Data, 16, 5767–5798, https://doi.org/10.5194/essd-16-5767-2024, https://doi.org/10.5194/essd-16-5767-2024, 2024
Short summary
Short summary
Permafrost landscapes in the Arctic are rapidly changing due to climate warming. Here, we publish aerial images and elevation models with very high spatial detail that help study these landscapes in northwestern Canada and Alaska. The images were collected using the Modular Aerial Camera System (MACS). This dataset has significant implications for understanding permafrost landscape dynamics in response to climate change. It is publicly available for further research.
Frieda P. Giest, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Kai Mangelsdorf, Torben Windirsch, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2024-3683, https://doi.org/10.5194/egusphere-2024-3683, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate warming causes permafrost to thaw, releasing greenhouse gases and affecting ecosystems. We studied sediments from Arctic coastal landscapes, including land, lakes, lagoons, and the ocean, finding that organic carbon storage and quality vary with landscape features and saltwater influence. Freshwater and land areas store more carbon, while saltwater reduces its quality. These findings improve predictions of Arctic responses to climate change and their impact on global carbon cycling.
Lutz Schirrmeister, Margret C. Fuchs, Thomas Opel, Andrei Andreev, Frank Kienast, Andrea Schneider, Larisa Nazarova, Larisa Frolova, Svetlana Kuzmina, Tatiana Kuznetsova, Vladimir Tumskoy, Heidrun Matthes, Gerit Lohmann, Guido Grosse, Viktor Kunitsky, Hanno Meyer, Heike H. Zimmermann, Ulrike Herzschuh, Thomas Boehmer, Stuart Umbo, Sevi Modestou, Sebastian F. M. Breitenbach, Anfisa Pismeniuk, Georg Schwamborn, Stephanie Kusch, and Sebastian Wetterich
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-74, https://doi.org/10.5194/cp-2024-74, 2024
Preprint under review for CP
Short summary
Short summary
The strong ecosystem response to the Last Interglacial warming, reflected in the high diversity of proxies, shows the sensitivity of permafrost regions to rising temperatures. In particular, the development of thermokarst landscapes created a mosaic of terrestrial, wetland, and aquatic habitats, fostering an increase in biodiversity. This biodiversity is evident in the rich variety of terrestrial insects, vegetation, and aquatic invertebrates preserved in these deposits.
Lydia Stolpmann, Ingmar Nitze, Ingeborg Bussmann, Benjamin M. Jones, Josefine Lenz, Hanno Meyer, Juliane Wolter, and Guido Grosse
EGUsphere, https://doi.org/10.5194/egusphere-2024-2822, https://doi.org/10.5194/egusphere-2024-2822, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We combine hydrochemical and lake change data to show consequences of permafrost thaw induced lake changes on hydrochemistry, which are relevant for the global carbon cycle. We found higher methane concentrations in lakes that do not freeze to the ground and show that lagoons have lower methane concentrations than lakes. Our detailed lake sampling approach show higher concentrations in Dissolved Organic Carbon in areas of higher erosion rates, that might increase under the climate warming.
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Maren Jenrich, Juliane Wolter, Susanne Liebner, Christian Knoblauch, Guido Grosse, Fiona Giebeler, Dustin Whalen, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2024-2891, https://doi.org/10.5194/egusphere-2024-2891, 2024
Short summary
Short summary
Climate warming in the Arctic is causing the erosion of permafrost coasts and the transformation of permafrost lakes into lagoons. To understand how this affects greenhouse gas (GHG) emissions, we studied carbon dioxide (CO₂) and methane (CH₄) production in lagoons with varying sea connections. Younger lagoons produce more CH₄, while CO₂ increases in more marine conditions. Flooding of permafrost lowlands due to rising sea levels may lead to higher GHG emissions from Arctic coasts in the future.
Cecile B. Menard, Sirpa Rasmus, Ioanna Merkouriadi, Gianpaolo Balsamo, Annett Bartsch, Chris Derksen, Florent Domine, Marie Dumont, Dorothee Ehrich, Richard Essery, Bruce C. Forbes, Gerhard Krinner, David Lawrence, Glen Liston, Heidrun Matthes, Nick Rutter, Melody Sandells, Martin Schneebeli, and Sari Stark
The Cryosphere, 18, 4671–4686, https://doi.org/10.5194/tc-18-4671-2024, https://doi.org/10.5194/tc-18-4671-2024, 2024
Short summary
Short summary
Computer models, like those used in climate change studies, are written by modellers who have to decide how best to construct the models in order to satisfy the purpose they serve. Using snow modelling as an example, we examine the process behind the decisions to understand what motivates or limits modellers in their decision-making. We find that the context in which research is undertaken is often more crucial than scientific limitations. We argue for more transparency in our research practice.
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024, https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
Short summary
Arctic warming, leading to permafrost degradation, poses primary threats to infrastructure and secondary ecological hazards from possible infrastructure failure. Our study created a comprehensive Alaska inventory combining various data sources with which we improved infrastructure classification and data on contaminated sites. This resource is presented as a GeoPackage allowing planning of infrastructure damage and possible implications for Arctic communities facing permafrost challenges.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Andreas Marent, Jens Strauss, Dorothee Wilhelms–Dick, Luidmila A. Pestryakova, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2470, https://doi.org/10.5194/egusphere-2024-2470, 2024
Short summary
Short summary
Globally, lake ecosystems have undergone significant shifts since the 1950s due to human activities. This study offers a unique 220-year sediment record from a remote Siberian boreal lake, revealing the impacts of climate warming and pollution. Multi-proxy analyses, including diatom taxonomy, silicon isotopes, carbon and nitrogen proxies, reveal complex biogeochemical interactions, highlighting the need for further research to mitigate anthropogenic effects on these vital water resources.
Adrien Damseaux, Heidrun Matthes, Victoria R. Dutch, Leanne Wake, and Nick Rutter
EGUsphere, https://doi.org/10.5194/egusphere-2024-1412, https://doi.org/10.5194/egusphere-2024-1412, 2024
Short summary
Short summary
Models often underestimate the role of snow cover in permafrost regions, leading to soil temperatures and permafrost dynamics inaccuracies. Through the use of a snow thermal conductivity scheme better adapted to this region, we mitigated soil temperature biases and permafrost extent overestimation within a land surface model. Our study sheds light on the importance of refining snow-related processes in models to enhance our understanding of permafrost dynamics in the context of climate change.
Amelie Stieg, Boris K. Biskaborn, Ulrike Herzschuh, Jens Strauss, Luidmila Pestryakova, and Hanno Meyer
Clim. Past, 20, 909–933, https://doi.org/10.5194/cp-20-909-2024, https://doi.org/10.5194/cp-20-909-2024, 2024
Short summary
Short summary
Siberia is impacted by recent climate warming and experiences extreme hydroclimate events. We present a 220-year-long sub-decadal stable oxygen isotope record of diatoms from Lake Khamra. Our analysis identifies winter precipitation as the key process impacting the isotope variability. Two possible hydroclimatic anomalies were found to coincide with significant changes in lake internal conditions and increased wildfire activity in the region.
Boris K. Biskaborn, Amy Forster, Gregor Pfalz, Lyudmila A. Pestryakova, Kathleen Stoof-Leichsenring, Jens Strauss, Tim Kröger, and Ulrike Herzschuh
Biogeosciences, 20, 1691–1712, https://doi.org/10.5194/bg-20-1691-2023, https://doi.org/10.5194/bg-20-1691-2023, 2023
Short summary
Short summary
Lake sediment from the Russian Arctic was studied for microalgae and organic matter chemistry dated back to the last glacial 28 000 years. Species and chemistry responded to environmental changes such as the Younger Dryas cold event and the Holocene thermal maximum. Organic carbon accumulation correlated with rates of microalgae deposition only during warm episodes but not during the cold glacial.
Olga Ogneva, Gesine Mollenhauer, Bennet Juhls, Tina Sanders, Juri Palmtag, Matthias Fuchs, Hendrik Grotheer, Paul J. Mann, and Jens Strauss
Biogeosciences, 20, 1423–1441, https://doi.org/10.5194/bg-20-1423-2023, https://doi.org/10.5194/bg-20-1423-2023, 2023
Short summary
Short summary
Arctic warming accelerates permafrost thaw and release of terrestrial organic matter (OM) via rivers to the Arctic Ocean. We compared particulate organic carbon (POC), total suspended matter, and C isotopes (δ13C and Δ14C of POC) in the Lena delta and Lena River along a ~1600 km transect. We show that the Lena delta, as an interface between the Lena River and the Arctic Ocean, plays a crucial role in determining the qualitative and quantitative composition of OM discharged into the Arctic Ocean.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Simeon Lisovski, Alexandra Runge, Iuliia Shevtsova, Nele Landgraf, Anne Morgenstern, Ronald Reagan Okoth, Matthias Fuchs, Nikolay Lashchinskiy, Carl Stadie, Alison Beamish, Ulrike Herzschuh, Guido Grosse, and Birgit Heim
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-36, https://doi.org/10.5194/essd-2023-36, 2023
Revised manuscript has not been submitted
Short summary
Short summary
The Lena Delta is the largest river delta in the Arctic, and represents a biodiversity hotspot. Here, we describe multiple field datasets and a detailed habitat classification map for the Lena Delta. We present context and methods of these openly available datasets and show how they can improve our understanding of the rapidly changing Arctic tundra system.
Mauricio Arboleda-Zapata, Michael Angelopoulos, Pier Paul Overduin, Guido Grosse, Benjamin M. Jones, and Jens Tronicke
The Cryosphere, 16, 4423–4445, https://doi.org/10.5194/tc-16-4423-2022, https://doi.org/10.5194/tc-16-4423-2022, 2022
Short summary
Short summary
We demonstrate how we can reliably estimate the thawed–frozen permafrost interface with its associated uncertainties in subsea permafrost environments using 2D electrical resistivity tomography (ERT) data. In addition, we show how further analyses considering 1D inversion and sensitivity assessments can help quantify and better understand 2D ERT inversion results. Our results illustrate the capabilities of the ERT method to get insights into the development of the subsea permafrost.
Loeka L. Jongejans, Kai Mangelsdorf, Cornelia Karger, Thomas Opel, Sebastian Wetterich, Jérémy Courtin, Hanno Meyer, Alexander I. Kizyakov, Guido Grosse, Andrei G. Shepelev, Igor I. Syromyatnikov, Alexander N. Fedorov, and Jens Strauss
The Cryosphere, 16, 3601–3617, https://doi.org/10.5194/tc-16-3601-2022, https://doi.org/10.5194/tc-16-3601-2022, 2022
Short summary
Short summary
Large parts of Arctic Siberia are underlain by permafrost. Climate warming leads to permafrost thaw. At the Batagay megaslump, permafrost sediments up to ~ 650 kyr old are exposed. We took sediment samples and analysed the organic matter (e.g. plant remains). We found distinct differences in the biomarker distributions between the glacial and interglacial deposits with generally stronger microbial activity during interglacial periods. Further permafrost thaw enhances greenhouse gas emissions.
Jan Nitzbon, Damir Gadylyaev, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike
The Cryosphere, 16, 3507–3515, https://doi.org/10.5194/tc-16-3507-2022, https://doi.org/10.5194/tc-16-3507-2022, 2022
Short summary
Short summary
The microstructure of permafrost soils contains clues to its formation and its preconditioning to future change. We used X-ray computed tomography (CT) to measure the composition of a permafrost drill core from Siberia. By combining CT with laboratory measurements, we determined the the proportions of pore ice, excess ice, minerals, organic matter, and gas contained in the core at an unprecedented resolution. Our work demonstrates the potential of CT to study permafrost properties and processes.
Ramesh Glückler, Rongwei Geng, Lennart Grimm, Izabella Baisheva, Ulrike Herzschuh, Kathleen R. Stoof-Leichsenring, Stefan Kruse, Andrei Andreev, Luidmila Pestryakova, and Elisabeth Dietze
EGUsphere, https://doi.org/10.5194/egusphere-2022-395, https://doi.org/10.5194/egusphere-2022-395, 2022
Preprint archived
Short summary
Short summary
Despite rapidly intensifying wildfire seasons in Siberian boreal forests, little is known about long-term relationships between changes in vegetation and shifts in wildfire activity. Using lake sediment proxies, we reconstruct such environmental changes over the past 10,800 years in Central Yakutia. We find that a more open forest may facilitate increased amounts of vegetation burning. The present-day dense larch forest might yet be mediating the current climate-driven wildfire intensification.
Matthias Fuchs, Juri Palmtag, Bennet Juhls, Pier Paul Overduin, Guido Grosse, Ahmed Abdelwahab, Michael Bedington, Tina Sanders, Olga Ogneva, Irina V. Fedorova, Nikita S. Zimov, Paul J. Mann, and Jens Strauss
Earth Syst. Sci. Data, 14, 2279–2301, https://doi.org/10.5194/essd-14-2279-2022, https://doi.org/10.5194/essd-14-2279-2022, 2022
Short summary
Short summary
We created digital, high-resolution bathymetry data sets for the Lena Delta and Kolyma Gulf regions in northeastern Siberia. Based on nautical charts, we digitized depth points and isobath lines, which serve as an input for a 50 m bathymetry model. The benefit of this data set is the accurate mapping of near-shore areas as well as the offshore continuation of the main deep river channels. This will improve the estimation of river outflow and the nutrient flux output into the coastal zone.
Charlotte Haugk, Loeka L. Jongejans, Kai Mangelsdorf, Matthias Fuchs, Olga Ogneva, Juri Palmtag, Gesine Mollenhauer, Paul J. Mann, P. Paul Overduin, Guido Grosse, Tina Sanders, Robyn E. Tuerena, Lutz Schirrmeister, Sebastian Wetterich, Alexander Kizyakov, Cornelia Karger, and Jens Strauss
Biogeosciences, 19, 2079–2094, https://doi.org/10.5194/bg-19-2079-2022, https://doi.org/10.5194/bg-19-2079-2022, 2022
Short summary
Short summary
Buried animal and plant remains (carbon) from the last ice age were freeze-locked in permafrost. At an extremely fast eroding permafrost cliff in the Lena Delta (Siberia), we found this formerly frozen carbon well preserved. Our results show that ongoing degradation releases substantial amounts of this carbon, making it available for future carbon emissions. This mobilisation at the studied cliff and also similarly eroding sites bear the potential to affect rivers and oceans negatively.
Michael Fritz, Sebastian Wetterich, Joel McAlister, and Hanno Meyer
Earth Syst. Sci. Data, 14, 57–63, https://doi.org/10.5194/essd-14-57-2022, https://doi.org/10.5194/essd-14-57-2022, 2022
Short summary
Short summary
From 2015 to 2018 we collected rain and snow samples in Inuvik, Canada. We measured the stable water isotope composition of oxygen (δ18O) and hydrogen (δ2H) with a mass spectrometer. This data will be of interest for other scientists who work in the Arctic. They will be able to compare our modern data with their own isotope data in old ice, for example in glaciers, and in permafrost. This will help to correctly interpret the climate signals of the environmental history of the Earth.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Bruce C. Forbes, Mathias Göckede, Juliane Wolter, Marc Macias-Fauria, Johan Olofsson, Nikita Zimov, and Jens Strauss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-227, https://doi.org/10.5194/bg-2021-227, 2021
Revised manuscript not accepted
Short summary
Short summary
With global warming, permafrost thaw and associated carbon release are of increasing importance. We examined how large herbivorous animals affect Arctic landscapes and how they might contribute to reduction of these emissions. We show that over a short timespan of roughly 25 years, these animals have already changed the vegetation and landscape. On pastures in a permafrost area in Siberia we found smaller thaw depth and higher carbon content than in surrounding non-pasture areas.
Ramesh Glückler, Ulrike Herzschuh, Stefan Kruse, Andrei Andreev, Stuart Andrew Vyse, Bettina Winkler, Boris K. Biskaborn, Luidmila Pestryakova, and Elisabeth Dietze
Biogeosciences, 18, 4185–4209, https://doi.org/10.5194/bg-18-4185-2021, https://doi.org/10.5194/bg-18-4185-2021, 2021
Short summary
Short summary
Data about past fire activity are very sparse in Siberia. This study presents a first high-resolution record of charcoal particles from lake sediments in boreal eastern Siberia. It indicates that current levels of charcoal accumulation are not unprecedented. While a recent increase in reconstructed fire frequency coincides with rising temperatures and increasing human activity, vegetation composition does not seem to be a major driver behind changes in the fire regime in the past two millennia.
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
Michael Krautblatter, Lutz Schirrmeister, and Josefine Lenz
Polarforschung, 89, 69–71, https://doi.org/10.5194/polf-89-69-2021, https://doi.org/10.5194/polf-89-69-2021, 2021
Ines Spangenberg, Pier Paul Overduin, Ellen Damm, Ingeborg Bussmann, Hanno Meyer, Susanne Liebner, Michael Angelopoulos, Boris K. Biskaborn, Mikhail N. Grigoriev, and Guido Grosse
The Cryosphere, 15, 1607–1625, https://doi.org/10.5194/tc-15-1607-2021, https://doi.org/10.5194/tc-15-1607-2021, 2021
Short summary
Short summary
Thermokarst lakes are common on ice-rich permafrost. Many studies have shown that they are sources of methane to the atmosphere. Although they are usually covered by ice, little is known about what happens to methane in winter. We studied how much methane is contained in the ice of a thermokarst lake, a thermokarst lagoon and offshore. Methane concentrations differed strongly, depending on water body type. Microbes can also oxidize methane in ice and lower the concentrations during winter.
Sebastian Wetterich, Alexander Kizyakov, Michael Fritz, Juliane Wolter, Gesine Mollenhauer, Hanno Meyer, Matthias Fuchs, Aleksei Aksenov, Heidrun Matthes, Lutz Schirrmeister, and Thomas Opel
The Cryosphere, 14, 4525–4551, https://doi.org/10.5194/tc-14-4525-2020, https://doi.org/10.5194/tc-14-4525-2020, 2020
Short summary
Short summary
In the present study, we analysed geochemical and sedimentological properties of relict permafrost and ground ice exposed at the Sobo-Sise Yedoma cliff in the eastern Lena delta in NE Siberia. We obtained insight into permafrost aggradation and degradation over the last approximately 52 000 years and the climatic and morphodynamic controls on regional-scale permafrost dynamics of the central Laptev Sea coastal region.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Ingmar Nitze, Sarah W. Cooley, Claude R. Duguay, Benjamin M. Jones, and Guido Grosse
The Cryosphere, 14, 4279–4297, https://doi.org/10.5194/tc-14-4279-2020, https://doi.org/10.5194/tc-14-4279-2020, 2020
Short summary
Short summary
In summer 2018, northwestern Alaska was affected by widespread lake drainage which strongly exceeded previous observations. We analyzed the spatial and temporal patterns with remote sensing observations, weather data and lake-ice simulations. The preceding fall and winter season was the second warmest and wettest on record, causing the destabilization of permafrost and elevated water levels which likely led to widespread and rapid lake drainage during or right after ice breakup.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Lutz Schirrmeister, Alexander N. Fedorov, Pavel Y. Konstantinov, Matthias Fuchs, Loeka L. Jongejans, Juliane Wolter, Thomas Opel, and Jens Strauss
Biogeosciences, 17, 3797–3814, https://doi.org/10.5194/bg-17-3797-2020, https://doi.org/10.5194/bg-17-3797-2020, 2020
Short summary
Short summary
To extend the knowledge on circumpolar deep permafrost carbon storage, we examined two deep permafrost deposit types (Yedoma and alas) in central Yakutia. We found little but partially undecomposed organic carbon as a result of largely changing sedimentation processes. The carbon stock of the examined Yedoma deposits is about 50 % lower than the general Yedoma domain mean, implying a very hetererogeneous Yedoma composition, while the alas is approximately 80 % below the thermokarst deposit mean.
Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Cornelia Karger, Laura T. Schreuder, Ellen C. Hopmans, Oliver Rach, Dirk Sachse, Volker Wennrich, and Ulrike Herzschuh
Clim. Past, 16, 799–818, https://doi.org/10.5194/cp-16-799-2020, https://doi.org/10.5194/cp-16-799-2020, 2020
Short summary
Short summary
Long-term climate change impacts on fire, vegetation and permafrost in the Arctic are uncertain. Here, we show the high potential of organic compounds from low-temperature biomass burning to serve as proxies for surface fires in lake deposits. During warm periods of the last 430 000 years, surface fires are closely linked to the larch taiga forest with its moss–lichen ground vegetation that isolates the permafrost. They have reduced in warm–wet, spruce–dominated and cool–dry steppe environments.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Christopher Lüthgens, Daniela Sauer, Michael Zech, Becky Briant, Eleanor Brown, Elisabeth Dietze, Markus Fuchs, Nicole Klasen, Sven Lukas, Jan-Hendrik May, Julia Meister, Tony Reimann, Gilles Rixhon, Zsófia Ruszkiczay-Rüdiger, Bernhard Salcher, Tobias Sprafke, Ingmar Unkel, Hans von Suchodoletz, and Christian Zeeden
E&G Quaternary Sci. J., 68, 243–244, https://doi.org/10.5194/egqsj-68-243-2020, https://doi.org/10.5194/egqsj-68-243-2020, 2020
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Sebastian Wetterich, Thomas A. Davidson, Anatoly Bobrov, Thomas Opel, Torben Windirsch, Kasper L. Johansen, Ivan González-Bergonzoni, Anders Mosbech, and Erik Jeppesen
Biogeosciences, 16, 4261–4275, https://doi.org/10.5194/bg-16-4261-2019, https://doi.org/10.5194/bg-16-4261-2019, 2019
Short summary
Short summary
The effects of seabird presence on permafrost peat evolution in NW Greenland were studied by tracing changes in stable C and N isotope composition along the path from bird sources into permafrost peat. The permafrost growth was triggered by organic matter and nutrient input since the neoglacial cooling and concurrent polynya establishment. The study deals with the complex response of biologic and permafrost dynamics to High Arctic climatic and oceanographic conditions of the Late Holocene.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019, https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Short summary
To reconstruct past winter climate, we studied ice wedges at two sites in the Yana Highlands, interior Yakutia (Russia), the most continental region of the Northern Hemisphere. Our ice wedges of the upper ice complex unit of the Batagay megaslump and a river terrace show much more depleted stable-isotope compositions than other study sites in coastal and central Yakutia, reflecting lower winter temperatures and a higher continentality of the study region during Marine Isotope Stages 3 and 1.
Elisabeth Dietze and Michael Dietze
E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, https://doi.org/10.5194/egqsj-68-29-2019, 2019
Short summary
Short summary
Sedimentary deposits provide insights into past Earth surface dynamics via the size distribution of mineral grains documenting the erosion, transport and deposition history. This study introduces structured procedures to decipher the distinct grain-size distributions of sediment samples that were mixed during/after deposition, using the free statistical tool EMMAgeo. Compared with other algorithms, EMMAgeo is unique as it provides uncertainty estimates and allows expert knowledge to be included.
Loeka L. Jongejans, Jens Strauss, Josefine Lenz, Francien Peterse, Kai Mangelsdorf, Matthias Fuchs, and Guido Grosse
Biogeosciences, 15, 6033–6048, https://doi.org/10.5194/bg-15-6033-2018, https://doi.org/10.5194/bg-15-6033-2018, 2018
Short summary
Short summary
Arctic warming mobilizes belowground organic matter in northern high latitudes. This study focused on the size of organic carbon pools and organic matter quality in ice-rich permafrost on the Baldwin Peninsula, West Alaska. We analyzed biogeochemistry and found that three-quarters of the carbon is stored in degraded permafrost deposits. Nonetheless, using biomarker analyses, we showed that the organic matter in undisturbed yedoma permafrost has a higher potential for decomposition.
Josefine Walz, Christian Knoblauch, Ronja Tigges, Thomas Opel, Lutz Schirrmeister, and Eva-Maria Pfeiffer
Biogeosciences, 15, 5423–5436, https://doi.org/10.5194/bg-15-5423-2018, https://doi.org/10.5194/bg-15-5423-2018, 2018
Short summary
Short summary
We investigate potential CO2 and CH4 production in degrading ice-rich permafrost in northeastern Siberia, deposited under different climatic conditions. With laboratory incubations, it could be shown that Late Pleistocene yedoma deposits generally produced more CO2 than Holocene deposits. Thus, OM decomposability needs to be interpreted against the paleoenvironmental background. However, OM decomposability cannot be generalized solely based on the stratigraphic position.
Janina G. Stapel, Georg Schwamborn, Lutz Schirrmeister, Brian Horsfield, and Kai Mangelsdorf
Biogeosciences, 15, 1969–1985, https://doi.org/10.5194/bg-15-1969-2018, https://doi.org/10.5194/bg-15-1969-2018, 2018
Short summary
Short summary
Climate warming in the Arctic results in thawing of permafrost deposits. This promotes the accessibility of freeze-locked old organic matter (OM) accumulated during the past. Characterizing OM of different depositional ages, we were able to show that OM from last glacial Yedoma deposits possess the highest potential to provide organic substrates such as acetate for microbial greenhouse gas production and therefore to accelerate the carbon–climate feedback cycle during ongoing global warming.
Matthias Fuchs, Guido Grosse, Jens Strauss, Frank Günther, Mikhail Grigoriev, Georgy M. Maximov, and Gustaf Hugelius
Biogeosciences, 15, 953–971, https://doi.org/10.5194/bg-15-953-2018, https://doi.org/10.5194/bg-15-953-2018, 2018
Short summary
Short summary
Our paper investigates soil organic carbon and nitrogen in permafrost soils on Sobo-Sise Island and Bykovsky Peninsula in the north of eastern Siberia. We collected and analysed permafrost soil cores and upscaled carbon and nitrogen stocks to landscape level. We found large amounts of carbon and nitrogen stored in these frozen soils, reconstructed sedimentation rates and estimated the potential increase in organic carbon availability if permafrost continues to thaw and active layer deepens.
Simon Zwieback, Steven V. Kokelj, Frank Günther, Julia Boike, Guido Grosse, and Irena Hajnsek
The Cryosphere, 12, 549–564, https://doi.org/10.5194/tc-12-549-2018, https://doi.org/10.5194/tc-12-549-2018, 2018
Short summary
Short summary
We analyse elevation losses at thaw slumps, at which icy sediments are exposed. As ice requires a large amount of energy to melt, one would expect that mass wasting is governed by the available energy. However, we observe very little mass wasting in June, despite the ample energy supply. Also, in summer, mass wasting is not always energy limited. This highlights the importance of other processes, such as the formation of a protective veneer, in shaping mass wasting at sub-seasonal scales.
Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast
Clim. Past, 13, 795–818, https://doi.org/10.5194/cp-13-795-2017, https://doi.org/10.5194/cp-13-795-2017, 2017
Short summary
Short summary
We present the first detailed description and sedimentological analyses of an 80 m permafrost sequence exposed in a mega-thaw slump near Batagay in the Yana Highlands, Russia, and attempt to deduce its genesis. First dating results (14C, OSL) show that the sequence represents a continental climate record spanning from the Middle Pleistocene to the Holocene. We suggest that the characteristics of the studied deposits are a result of various seasonally controlled climatically induced processes.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Thomas Opel, Sebastian Wetterich, Hanno Meyer, Alexander Y. Dereviagin, Margret C. Fuchs, and Lutz Schirrmeister
Clim. Past, 13, 587–611, https://doi.org/10.5194/cp-13-587-2017, https://doi.org/10.5194/cp-13-587-2017, 2017
Short summary
Short summary
We studied late Quaternary permafrost at the Oyogos Yar coast (Dmitry Laptev Strait) to reconstruct palaeoclimate and palaeonvironmental conditions in the Northeast Siberian Arctic. Our ice-wedge stable isotope record, combined with data from Bol'shoy Lyakhovsky Island, indicates coldest winter temperatures during MIS5 and MIS2, warmest conditions during the Holocene, i.e. today, and non-stable winter climate during MIS3. New IRSL ages reveal high climate variability during MIS5.
Lutz Schirrmeister, Georg Schwamborn, Pier Paul Overduin, Jens Strauss, Margret C. Fuchs, Mikhail Grigoriev, Irina Yakshina, Janet Rethemeyer, Elisabeth Dietze, and Sebastian Wetterich
Biogeosciences, 14, 1261–1283, https://doi.org/10.5194/bg-14-1261-2017, https://doi.org/10.5194/bg-14-1261-2017, 2017
Short summary
Short summary
We investigate late Pleistocene permafrost at the Buor Khaya Peninsula (Laptev Sea, Siberia) for cryolithological, geochemical, and geochronological parameters. The sequences were composed of ice-oversaturated silts and fine-grained sands with 0.2 to 24 wt% of organic matter. The deposition was between 54.1 and 9.7 kyr BP. Due to coastal erosion, the biogeochemical signature of the deposits represents the terrestrial end-member, and is related to organic matter deposited in the marine realm.
Heike Hildegard Zimmermann, Elena Raschke, Laura Saskia Epp, Kathleen Rosmarie Stoof-Leichsenring, Georg Schwamborn, Lutz Schirrmeister, Pier Paul Overduin, and Ulrike Herzschuh
Biogeosciences, 14, 575–596, https://doi.org/10.5194/bg-14-575-2017, https://doi.org/10.5194/bg-14-575-2017, 2017
Short summary
Short summary
Organic matter stored in permafrost will start decomposing due to climate warming. To better understand its composition in ice-rich Yedoma, we analyzed ancient sedimentary DNA, pollen and non-pollen palynomorphs throughout an 18.9 m long permafrost core. The combination of both proxies allow an interpretation both of regional floristic changes and of the local environmental conditions at the time of deposition.
Benjamin M. Jones, Carson A. Baughman, Vladimir E. Romanovsky, Andrew D. Parsekian, Esther L. Babcock, Eva Stephani, Miriam C. Jones, Guido Grosse, and Edward E. Berg
The Cryosphere, 10, 2673–2692, https://doi.org/10.5194/tc-10-2673-2016, https://doi.org/10.5194/tc-10-2673-2016, 2016
Short summary
Short summary
We combined field data collection with remote sensing data to document the presence and rapid degradation of permafrost in south-central Alaska during 1950–present. Ground temperature measurements confirmed permafrost presence in the region, but remotely sensed images showed that permafrost plateau extent decreased by 60 % since 1950. Better understanding these vulnerable permafrost deposits is important for predicting future permafrost extent across all permafrost regions that are warming.
Pier Paul Overduin, Sebastian Wetterich, Frank Günther, Mikhail N. Grigoriev, Guido Grosse, Lutz Schirrmeister, Hans-Wolfgang Hubberten, and Aleksandr Makarov
The Cryosphere, 10, 1449–1462, https://doi.org/10.5194/tc-10-1449-2016, https://doi.org/10.5194/tc-10-1449-2016, 2016
Short summary
Short summary
How fast does permafrost warm up and thaw after it is covered by the sea? Ice-rich permafrost in the Laptev Sea, Siberia, is rapidly eroded by warm air and waves. We used a floating electrical technique to measure the depth of permafrost thaw below the sea, and compared it to 60 years of coastline retreat and permafrost depths from drilling 30 years ago. Thaw is rapid right after flooding of the land and slows over time. The depth of permafrost is related to how fast the coast retreats.
Fabian Beermann, Moritz Langer, Sebastian Wetterich, Jens Strauss, Julia Boike, Claudia Fiencke, Lutz Schirrmeister, Eva-Maria Pfeiffer, and Lars Kutzbach
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-117, https://doi.org/10.5194/bg-2016-117, 2016
Revised manuscript not accepted
Short summary
Short summary
This paper aims to quantify pools of inorganic nitrogen in permafrost soils of arctic Siberia and to estimate annual release rates of this nitrogen due to permafrost thaw. We report for the first time stores of inorganic nitrogen in Siberian permafrost soils. These nitrogen stores are important as permafrost thaw can mobilize substantial amounts of nitrogen, potentially changing the nutrient balance of these soils and representing a significant non-carbon permafrost climate feedback.
P. R. Lindgren, G. Grosse, K. M. Walter Anthony, and F. J. Meyer
Biogeosciences, 13, 27–44, https://doi.org/10.5194/bg-13-27-2016, https://doi.org/10.5194/bg-13-27-2016, 2016
Short summary
Short summary
We mapped and characterized methane ebullition bubbles trapped in lake ice, and estimated whole-lake methane emission using high-resolution aerial images of a lake acquired following freeze-up. We identified the location and relative sizes of high- and low-flux seepage zones within the lake. A large number of seeps showed spatiotemporal stability over our study period. Our approach is applicable to other regions to improve the estimation of methane emission from lakes at the regional scale.
J. K. Heslop, K. M. Walter Anthony, A. Sepulveda-Jauregui, K. Martinez-Cruz, A. Bondurant, G. Grosse, and M. C. Jones
Biogeosciences, 12, 4317–4331, https://doi.org/10.5194/bg-12-4317-2015, https://doi.org/10.5194/bg-12-4317-2015, 2015
Short summary
Short summary
The relative magnitude of thermokarst lake CH4 production in surface sediments vs. deeper-thawed permafrost is not well understood. We assessed CH4 production potentials from a lake sediment core and adjacent permafrost tunnel in interior Alaska. CH4 production was highest in the organic-rich surface lake sediments and recently thawed permafrost at the bottom of the talik, implying CH4 production is highly variable and that both modern and ancient OM are important to lake CH4 production.
T. Schneider von Deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike
Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015, https://doi.org/10.5194/bg-12-3469-2015, 2015
Short summary
Short summary
We have modelled the carbon release from thawing permafrost soils under various scenarios of future warming. Our results suggests that up to about 140Pg of carbon could be released under strong warming by end of the century. We have shown that abrupt thaw processes under thermokarst lakes can unlock large amounts of perennially frozen carbon stored in deep deposits (which extend many metres into the soil).
J. Strauss, L. Schirrmeister, K. Mangelsdorf, L. Eichhorn, S. Wetterich, and U. Herzschuh
Biogeosciences, 12, 2227–2245, https://doi.org/10.5194/bg-12-2227-2015, https://doi.org/10.5194/bg-12-2227-2015, 2015
Short summary
Short summary
Climatic warming is affecting permafrost, including decomposition of organic matter (OM). However, quantitative data for the quality of OM and its availability for decomposition is limited. We analyzed the quality of OM in late Pleistocene (Yedoma) and Holocene (thermokarst) deposits. A lack of depth trends reveals a constant quality of OM showing that permafrost acts like a freezer, preserving OM quality. This OM will be susceptible to decomposition under climatic warming.
C. D. Arp, M. S. Whitman, B. M. Jones, G. Grosse, B. V. Gaglioti, and K. C. Heim
Biogeosciences, 12, 29–47, https://doi.org/10.5194/bg-12-29-2015, https://doi.org/10.5194/bg-12-29-2015, 2015
Short summary
Short summary
Beaded streams have deep elliptical pools connected by narrow runs that we show are common landforms in the continuous permafrost zone. These fluvial systems often initiate from lakes and occur predictably in headwater portions of moderately sloping watersheds. Snow capture along stream courses reduces ice thickness allowing thawed sediment to persist under most pools. Interpool thermal variability and hydrologic regimes provide important aquatic habitat and connectivity in Arctic landscapes.
G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C.-L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O'Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry
Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, https://doi.org/10.5194/bg-11-6573-2014, 2014
Short summary
Short summary
This study provides an updated estimate of organic carbon stored in the northern permafrost region. The study includes estimates for carbon in soils (0 to 3 m depth) and deeper sediments in river deltas and the Yedoma region. We find that field data is still scarce from many regions. Total estimated carbon storage is ~1300 Pg with an uncertainty range of between 1100 and 1500 Pg. Around 800 Pg carbon is perennially frozen, equivalent to all carbon dioxide currently in the Earth's atmosphere.
G. Schwamborn, H. Meyer, L. Schirrmeister, and G. Fedorov
Clim. Past, 10, 1109–1123, https://doi.org/10.5194/cp-10-1109-2014, https://doi.org/10.5194/cp-10-1109-2014, 2014
L. Liu, K. Schaefer, A. Gusmeroli, G. Grosse, B. M. Jones, T. Zhang, A. D. Parsekian, and H. A. Zebker
The Cryosphere, 8, 815–826, https://doi.org/10.5194/tc-8-815-2014, https://doi.org/10.5194/tc-8-815-2014, 2014
E. Dietze, F. Maussion, M. Ahlborn, B. Diekmann, K. Hartmann, K. Henkel, T. Kasper, G. Lockot, S. Opitz, and T. Haberzettl
Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, https://doi.org/10.5194/cp-10-91-2014, 2014
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
M. Engram, K. W. Anthony, F. J. Meyer, and G. Grosse
The Cryosphere, 7, 1741–1752, https://doi.org/10.5194/tc-7-1741-2013, https://doi.org/10.5194/tc-7-1741-2013, 2013
G. Schwamborn, L. Schirrmeister, and B. Diekmann
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-6255-2013, https://doi.org/10.5194/cpd-9-6255-2013, 2013
Preprint withdrawn
R. Zibulski, U. Herzschuh, L. A. Pestryakova, J. Wolter, S. Müller, N. Schilling, S. Wetterich, L. Schirrmeister, and F. Tian
Biogeosciences, 10, 5703–5728, https://doi.org/10.5194/bg-10-5703-2013, https://doi.org/10.5194/bg-10-5703-2013, 2013
F. Günther, P. P. Overduin, A. V. Sandakov, G. Grosse, and M. N. Grigoriev
Biogeosciences, 10, 4297–4318, https://doi.org/10.5194/bg-10-4297-2013, https://doi.org/10.5194/bg-10-4297-2013, 2013
S. Zubrzycki, L. Kutzbach, G. Grosse, A. Desyatkin, and E.-M. Pfeiffer
Biogeosciences, 10, 3507–3524, https://doi.org/10.5194/bg-10-3507-2013, https://doi.org/10.5194/bg-10-3507-2013, 2013
A. Gusmeroli and G. Grosse
The Cryosphere, 6, 1435–1443, https://doi.org/10.5194/tc-6-1435-2012, https://doi.org/10.5194/tc-6-1435-2012, 2012
Related subject area
Paleo-environments
Diverse phenotypes of Late Glacial–Early Holocene downy birch (Betula pubescens Erh.) and the morphology of early Preboreal tree stands in southern Schleswig-Holstein
Reconstructing the Eemian to Middle Pleniglacial pedosedimentary evolution of the Baix loess–palaeosol sequence (Rhône Rift Valley, southern France) – basic chronostratigraphic framework and palaeosol characterisation
A 1100-year multi-proxy palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany
Palaeoenvironmental research at Hawelti–Melazo (Tigray, northern Ethiopia) – insights from sedimentological and geomorphological analyses
Multi-method study of the Middle Pleistocene loess–palaeosol sequence of Köndringen, SW Germany
Fluvial activity of the late-glacial to Holocene “Bergstraßenneckar” in the Upper Rhine Graben near Heidelberg, Germany – first results
Investigating the loess–palaeosol sequence of Bahlingen-Schönenberg (Kaiserstuhl), southwestern Germany, using a multi-methodological approach
Holocene vegetation reconstruction in the forest–steppe of Mongolia based on leaf waxes and macro-charcoals in soils
Evaluation of geochemical proxies and radiocarbon data from a loess record of the Upper Palaeolithic site Kammern-Grubgraben, Lower Austria
The Quaternary palaeobotany of Madeira and Azores volcanic archipelagos (Portugal): insights into the past diversity, ecology, biogeography and evolution
Local mineral dust transported by varying wind intensities forms the main substrate for loess in Kashmir
Palaeoenvironmental reconstruction on the basis of Quaternary palaeo dune sequences on Fuerteventura
Reconstruction of palaeoenvironmental variability based on an inter-comparison of four lacustrine archives on the Peloponnese (Greece) for the last 5000 years
Anthropogenic and climate signals in late-Holocene peat layers of an ombrotrophic bog in the Styrian Enns valley (Austrian Alps)
Long-term human impact and environmental change in mid-western Ireland, with particular reference to Céide Fields – an overview
Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions – Part 1: stable isotopes and sugar biomarkers
Chemotaxonomic patterns of vegetation and soils along altitudinal transects of the Bale Mountains, Ethiopia, and implications for paleovegetation reconstructions – Part II: lignin-derived phenols and leaf-wax-derived n-alkanes
Coastal lowland and floodplain evolution along the lower reaches of the Supsa River (western Georgia)
Grain-size distribution unmixing using the R package EMMAgeo
6200 years of human activities and environmental change in the northern central Alps
Sascha Krüger
E&G Quaternary Sci. J., 73, 23–40, https://doi.org/10.5194/egqsj-73-23-2024, https://doi.org/10.5194/egqsj-73-23-2024, 2024
Short summary
Short summary
In reconstructing the living conditions of the late ice age and the early warm periods, archaeologists rely on palaeobotany. Since the 1940s, there has been the common image of a treeless tundra, which changes to a light birch forest within only a few years at the transition between the periods. By using environmental data, it is demonstrated that this image must be refined, and examples are given for a better understanding of palaeobotanical data and their use in archaeological reconstructions.
Nora Pfaffner, Annette Kadereit, Volker Karius, Thomas Kolb, Sebastian Kreutzer, and Daniela Sauer
E&G Quaternary Sci. J., 73, 1–22, https://doi.org/10.5194/egqsj-73-1-2024, https://doi.org/10.5194/egqsj-73-1-2024, 2024
Short summary
Short summary
We present results of the Baix loess–palaeosol sequence, SE France. Reconstructed intense soil formation under warm, moist conditions before and into the last ice age and less intense soil formations in warm (temporarily moist) phases during the generally cold, dry ice age were validated with laboratory and dating techniques. This is particularly relevant as Baix is located in the temperate–Mediterranean climate transition zone, a sensitive zone that is susceptible to future climate changes.
Sudip Acharya, Maximilian Prochnow, Thomas Kasper, Linda Langhans, Peter Frenzel, Paul Strobel, Marcel Bliedtner, Gerhard Daut, Christopher Berndt, Sönke Szidat, Gary Salazar, Antje Schwalb, and Roland Zech
E&G Quaternary Sci. J., 72, 219–234, https://doi.org/10.5194/egqsj-72-219-2023, https://doi.org/10.5194/egqsj-72-219-2023, 2023
Short summary
Short summary
This study presents a palaeoenvironmental record from Lake Höglwörth, Bavaria, Germany. Before 870 CE peat deposits existed. Erosion increased from 1240 to 1380 CE, followed by aquatic productivity and anoxia from 1310 to 1470 CE. Increased allochthonous input and a substantial shift in the aquatic community in 1701 were caused by construction of a mill. Recent anoxia has been observed since the 1960s.
Jacob Hardt, Nadav Nir, Christopher Lüthgens, Thomas M. Menn, and Brigitta Schütt
E&G Quaternary Sci. J., 72, 37–55, https://doi.org/10.5194/egqsj-72-37-2023, https://doi.org/10.5194/egqsj-72-37-2023, 2023
Short summary
Short summary
We investigated the geomorphological and geological characteristics of the archaeological sites Hawelti–Melazo and the surroundings. We performed sedimentological analyses, as well as direct (luminescence) and indirect (radiocarbon) sediment dating, to reconstruct the palaeoenvironmental conditions, which we integrated into the wider context of Tigray.
Lea Schwahn, Tabea Schulze, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 72, 1–21, https://doi.org/10.5194/egqsj-72-1-2023, https://doi.org/10.5194/egqsj-72-1-2023, 2023
Short summary
Short summary
The loess sequence of Köndringen, Upper Rhine Graben, comprises several glacial–interglacial cycles. It has been investigated using a multi-method approach including the measurement of colour, grain size, organic matter, and carbonate content. The analyses reveal that the sequence comprises several fossil soils and layers of reworked soil material. According to luminescence dating, it reaches back more than 500 000 years.
Max Engel, Felix Henselowsky, Fabian Roth, Annette Kadereit, Manuel Herzog, Stefan Hecht, Susanne Lindauer, Olaf Bubenzer, and Gerd Schukraft
E&G Quaternary Sci. J., 71, 213–226, https://doi.org/10.5194/egqsj-71-213-2022, https://doi.org/10.5194/egqsj-71-213-2022, 2022
Short summary
Short summary
The late-glacial Bergstraßenneckar is a former course of the Neckar River in the Upper Rhine Graben of southwest Germany at a time when the confluence with the Rhine river was 50 km further to the north. The former river bends are still visible in topographic maps and satellite imagery. Sediment cores and geophysical measurements from the former river channels let us reconstruct the shift from a running river to silting-up meanders and permit us to date this to ca. 11 000 to 10 500 years ago.
Tabea Schulze, Lea Schwahn, Alexander Fülling, Christian Zeeden, Frank Preusser, and Tobias Sprafke
E&G Quaternary Sci. J., 71, 145–162, https://doi.org/10.5194/egqsj-71-145-2022, https://doi.org/10.5194/egqsj-71-145-2022, 2022
Short summary
Short summary
A loess sequence in SW Germany was investigated using a high-resolution multi-method approach. It dates to 34–27 ka and comprises layers of initial soil formation. Drier conditions and a different atmospheric circulation pattern during the time of deposition are expected as the soil layers are less strongly developed compared to similar horizons further north. Dust accumulation predates the last advance of Alpine glaciers, and no loess deposition is recorded for the time of maximum ice extent.
Marcel Lerch, Julia Unkelbach, Florian Schneider, Michael Zech, and Michael Klinge
E&G Quaternary Sci. J., 71, 91–110, https://doi.org/10.5194/egqsj-71-91-2022, https://doi.org/10.5194/egqsj-71-91-2022, 2022
Short summary
Short summary
Charcoals and leaf waxes from vegetation accumulate in the soil and provide information about past vegetation because they are mostly resistant against physical and biological degradation. Analyzing and comparing ratios of both element types helped us to improve the evidence for vegetation reconstruction. We found that the accumulation processes and preservation of these elements depend on different environmental conditions at forest- and steppe-dominated sites in the Mongolian forest–steppe.
Lilian Reiss, Christian Stüwe, Thomas Einwögerer, Marc Händel, Andreas Maier, Stefan Meng, Kerstin Pasda, Ulrich Simon, Bernd Zolitschka, and Christoph Mayr
E&G Quaternary Sci. J., 71, 23–43, https://doi.org/10.5194/egqsj-71-23-2022, https://doi.org/10.5194/egqsj-71-23-2022, 2022
Short summary
Short summary
We aim at testing and evaluating geochemical proxies and material for radiocarbon dating for their reliability and consistency at the Palaeolithic site Kammern-Grubgraben (Lower Austria). While carbonate and organic carbon contents are interpreted in terms of palaeoclimate variability, pedogenic carbonates turned out to be of Holocene age. As a consequence, the proxy data assessed here are differentially suitable for environmental reconstructions.
Carlos A. Góis-Marques
E&G Quaternary Sci. J., 70, 197–199, https://doi.org/10.5194/egqsj-70-197-2021, https://doi.org/10.5194/egqsj-70-197-2021, 2021
Short summary
Short summary
Palaeobotanical research on oceanic islands has been largely ignored despite its importance for providing empirical proofs to disentangle insular plant diversity, evolution, ecology and biogeography. Here we explore the oceanic archipelagos of Madeira and the Azores to demonstrate the existence of well-preserved and palaeobiologically informative plant fossils.
Christian Zeeden, Jehangeer Ahmad Mir, Mathias Vinnepand, Christian Laag, Christian Rolf, and Reyaz Ahmad Dar
E&G Quaternary Sci. J., 70, 191–195, https://doi.org/10.5194/egqsj-70-191-2021, https://doi.org/10.5194/egqsj-70-191-2021, 2021
Short summary
Short summary
We investigate two loess–palaeosol sequences in Kashmir. Magnetic enhancement of the loess was strong during stadial phases. Besides classical magnetic enhancement, wind vigour suggests partly strong winds. Grain sizes are dominantly in the silt range and comparable to data from central Asia, which do not suggest transport over high mountain ranges as required for non-local sources in Kashmir. Therefore, we suggest that the Kashmir loess is predominantly of local origin.
Christopher-Bastian Roettig
E&G Quaternary Sci. J., 69, 161–163, https://doi.org/10.5194/egqsj-69-161-2020, https://doi.org/10.5194/egqsj-69-161-2020, 2020
Joana Seguin, Pavlos Avramidis, Annette Haug, Torben Kessler, Arndt Schimmelmann, and Ingmar Unkel
E&G Quaternary Sci. J., 69, 165–186, https://doi.org/10.5194/egqsj-69-165-2020, https://doi.org/10.5194/egqsj-69-165-2020, 2020
Short summary
Short summary
We present two new palaeolake archives of Pheneos and Kaisari, Peloponnese, and compare them with records from Stymphalia and Asea by applying the same set of analyses to all sites. We focus on different spatial scales to estimate the validity range of the proxy signals. Geochemical ratios depict hydrological variation and environmental changes over the last 5000 years. They indicate drier phases, but timing and duration vary, which may be explained by site-specific ecosystem responses.
Wolfgang Knierzinger, Ruth Drescher-Schneider, Klaus-Holger Knorr, Simon Drollinger, Andreas Limbeck, Lukas Brunnbauer, Felix Horak, Daniela Festi, and Michael Wagreich
E&G Quaternary Sci. J., 69, 121–137, https://doi.org/10.5194/egqsj-69-121-2020, https://doi.org/10.5194/egqsj-69-121-2020, 2020
Short summary
Short summary
We present multi-proxy analyses of a 14C-dated peat core covering the past ⁓5000 years from the ombrotrophic Pürgschachen Moor. Pronounced increases in cultural indicators suggest significant human activity in the Bronze Age and in the period of the late La Tène culture. We found strong, climate-controlled interrelations between the pollen record, the humification degree and the ash content. Human activity is reflected in the pollen record and by heavy metals.
Michael O'Connell, Karen Molloy, and Eneda Jennings
E&G Quaternary Sci. J., 69, 1–32, https://doi.org/10.5194/egqsj-69-1-2020, https://doi.org/10.5194/egqsj-69-1-2020, 2020
Short summary
Short summary
Long-term environmental change in Co. Mayo, on the mid-Atlantic seaboard of Ireland, is discussed. Pollen diagrams and bog pine, dated by 14C and dendrochronology, provide evidence for woodlands, farming and climate change. Intensive farming is dated to the early Neolithic (3800–3400 BC) prior to wide-scale spread of blanket bog. Construction of the peat-covered, stone-wall field system at Céide Fields occurred at this time which is unexpectedly early. Bronze and Iron Age activity is detailed.
Betelhem Mekonnen, Wolfgang Zech, Bruno Glaser, Bruk Lemma, Tobias Bromm, Sileshi Nemomissa, Tamrat Bekele, and Michael Zech
E&G Quaternary Sci. J., 68, 177–188, https://doi.org/10.5194/egqsj-68-177-2019, https://doi.org/10.5194/egqsj-68-177-2019, 2019
Short summary
Short summary
The study evaluates the ability of stable isotopes (δ13C and δ15N) and sugar biomarkers to distinguish Erica from the dominant vegetation of the Bale Mountains in order to reconstruct the past extent of Erica on the Sanetti Plateau. No significant differences in stable isotopes are found between the dominant plant species. Although Erica is characterized by quite high (G+M)/(A+X) ratios, it cannot be unambiguously distinguished from other plants due to degradation and soil microbial effects.
Bruk Lemma, Betelhem Mekonnen, Bruno Glaser, Wolfgang Zech, Sileshi Nemomissa, Tamrat Bekele, Lucas Bittner, and Michael Zech
E&G Quaternary Sci. J., 68, 189–200, https://doi.org/10.5194/egqsj-68-189-2019, https://doi.org/10.5194/egqsj-68-189-2019, 2019
Short summary
Short summary
Chemotaxonomic identification of keystone plant species in the Bale Mountains are possible using lignin phenols. However, Erica could not be differentiated chemotaxonomically from all other investigated plants using n-alkanes. Unambiguous characteristic patterns of lignin phenols reflected in the plant samples were not sustained in the organic layers and mineral topsoils. This is due to degradation and organic matter inputs by roots. Therefore, the past extent of Erica is still speculative.
Hannes Laermanns, Simon Matthias May, Daniel Kelterbaum, Giorgi Kirkitadze, Stephan Opitz, Levan Navrozashvili, Mikheil Elashvili, and Helmut Brückner
E&G Quaternary Sci. J., 68, 119–139, https://doi.org/10.5194/egqsj-68-119-2019, https://doi.org/10.5194/egqsj-68-119-2019, 2019
Short summary
Short summary
The landscape on the Black Sea coast of Georgia has changed significantly during the last few millennia. By using granulometric and geochemical analyses, we reconstructed significant sea level, coastline and palaeoenvironmental changes that have taken place in the surroundings of the Supsa fan since at least 4000 BCE.
Elisabeth Dietze and Michael Dietze
E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, https://doi.org/10.5194/egqsj-68-29-2019, 2019
Short summary
Short summary
Sedimentary deposits provide insights into past Earth surface dynamics via the size distribution of mineral grains documenting the erosion, transport and deposition history. This study introduces structured procedures to decipher the distinct grain-size distributions of sediment samples that were mixed during/after deposition, using the free statistical tool EMMAgeo. Compared with other algorithms, EMMAgeo is unique as it provides uncertainty estimates and allows expert knowledge to be included.
Clemens von Scheffer, Annika Lange, François De Vleeschouwer, Joachim Schrautzer, and Ingmar Unkel
E&G Quaternary Sci. J., 68, 13–28, https://doi.org/10.5194/egqsj-68-13-2019, https://doi.org/10.5194/egqsj-68-13-2019, 2019
Short summary
Short summary
By using geochemical and pollen data, this study wanted to close knowledge gaps on the interconnection of climate, environment and human impact in the Kleinwalser Valley (Kleinwalsertal, northern central Alps) over the past 6200 years. For a long time, the Walser people were believed to be the first settlers, who cultivated the valley. However, humans have recurrently used and modified the landscape for at least 5500 years by burning or cutting down forests and practicing pasture management.
Cited articles
Anderberg, M. R.: Cluster Analysis for Applications, Academic Press, New
York, p. 376, ISBN 0120576503, 1973.
Andreev, A. A., Schirrmeister, L., Tarasov, P. E., Ganopolski, A., Brovkin,
V., Siegert, C., and Hubberten, H.-W.: Vegetation and climate history in the
Laptev Sea region (arctic Siberia) during Late Quaternary inferred from
pollen records, Quaternary Sci. Rev., 30, 2182–2199, https://doi.org/10.1016/j.quascirev.2010.12.026, 2011.
Ashastina, K., Schirrmeister, L., Fuchs, M. C., and Kienast, F.: OSL age determination and sedimentological characteristics of the Batagay thaw slump, Northeastern Siberia, PANGAEA, https://doi.org/10.1594/PANGAEA.877346, 2017a.
Ashastina, K., Schirrmeister, L., Scheidemann, D., Fuchs, M. C., and Kienast, F.: Grain size distribution of the Batagay thaw slump, Northeastern Siberia, PANGAEA, https://doi.org/10.1594/PANGAEA.877345, 2017b.
Ashastina, K., Kuzmina, S., Rudaya, N., Troeva, E., Schoch, W. H., Römermann, C., Reinecke, J., Otte, V., Savvinov, G., Wesche, K., and Kienast, F.: Woodlands and steppes: Pleistocene vegetation in Yakutia's most continental part recorded in the Batagay permafrost sequence. Quaternary Sci. Rev., 196, 38–61, https://doi.org/10.1016/j.quascirev.2018.07.032, 2018.
Bartholdy, J., Christiansen, C., and Pedersen, J. B. T.: Comparing spatial
grain-size trends inferred from textural parameters using percentile
statistical parameters and those based on the log-hyperbolic method,
Sediment. Geol., 202, 436–452, https://doi.org/10.1016/j.sedgeo.2007.03.008, 2007.
Bateman, M. D.: Aeolian processes in periglacial environments, in: Treatise
on Geomorphology, edited by: Shroder, J., San Diego, CA, Academic Press,
416–429, https://doi.org/10.1016/B978-0-12-374739-6.00219-0, 2013.
Blott, S. J. and Pye, K. A.: GRADISTAT grain size distribution and statistics
package for the analysis of unconsolidated sediments, Earth Surf. Processes
Landf., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Cockburn, J. M. H. and Lamoureux, S. F.: Inflow and lake controls on
short-term mass accumulation and sedimentary particle size in a High Arctic
lake: implications for interpreting varved lacustrine sedimentary records, J.
Paleolimnol., 40, 923–942, https://doi.org/10.1007/s10933-008-9207-5, 2008.
Dall'Amico, M., Endrizzi, S., Gruber, S., and Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil, The Cryosphere, 5, 469–484, https://doi.org/10.5194/tc-5-469-2011, 2011.
Dietrich, W. E.: Settling velocity of natural particles, Water Resour.
Res., 18, 1615–1626, https://doi.org/10.1029/WR018i006p01615, 1982.
Dietze, E. and Dietze, M.: Grain-size distribution unmixing using the R package EMMAgeo, E&G Quaternary Sci. J., 68, 29–46, https://doi.org/10.5194/egqsj-68-29-2019, 2019.
Dietze, E., Hartmann, K., Diekmann, B., IJmker, J., Lehmkuhl, F., Opitz, S.,
Stauch, G., Wünnemann, B., and Borchers, A.: An end-member algorithm for
deciphering modern detrital processes from lake sediments of Lake Donggi
Cona, NE Tibetan Plateau, China, Sediment. Geol., 243–244, 169–180,
https://doi.org/10.1016/j.sedgeo.2011.09.014, 2012.
Dietze, E., Maussion, F., Ahlborn, M., Diekmann, B., Hartmann, K., Henkel, K., Kasper, T., Lockot, G., Opitz, S., and Haberzettl, T.: Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments, Clim. Past, 10, 91–106, https://doi.org/10.5194/cp-10-91-2014, 2014.
Ehlers, J., Gibbard, P. L., and Hughes, P. D.: Quaternary Glaciations – Extent
and Chronology: a Closer Look, Developments in Quaternary Science, vol. 15,
Elsevier, Amsterdam, available at: https://booksite.elsevier.com/9780444534477, last access: 2011.
ETOPO2: National Geophysical Data Center, NESDIS, NOAA, U.S. Department of
Commerce, 2-minute Gridded Global Relief Data (ETOPO2) v2, https://doi.org/10.7289/v5j1012q, 2006.
Folk, R. L. and Ward, W. C.: A study in the significance of grain-size
parameters, J. Sediment. Petrol., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957.
Fradkina, A. F., Alekseev, M. N., Andreev, A. A., and Klimanov, V. A.: East
Siberia, in: Cenozoic Climatic and Environmental Changes in Russia, edited
by: Velichko, A. A. and Nechaev, V. P., The Geological Society of America
Special Paper, 382, 89–103, 2005a.
Fradkina, A. F., Grinenko, O. V., Laukhin, S. A., Nechaev, V. P., Andreev, A. A.,
and Klimanov, V. A.: North-eastern Asia, in: Cenozoic Climatic and
Environmental Changes in Russia, edited by: Velichko, A. A. and Nechaev,
V. P., The Geological Society of America Special Paper, 382, 105–120, 2005b.
Francus, P., Bradley, R., Lewis, T., Abbott, M., Retelle, M., and Stoner,
J.: Limnological and sedimentary processes at Sawtooth Lake, Canadian High
Arctic, and their influence on varve formation, J. Paleolimnol.,
40, 963–985, https://doi.org/10.1007/s10933-008-9210-x, 2008.
Franke, D., Hinz, K., Block, M., Drachev, S. S., Neben, S., Kos'ko, M. K.,
Reichert, C., and Roeser, H. A.: Tectonics of the Laptev Sea Region in
Northeastern Siberia, Polarforschung, 68, 51–58, 2000.
French, H. M.: The Periglacial Environment, 4th Edition, Wiley,
Chichester, UK, and Hoboken, New Jersey, 544 pp., 2018.
Galabala, R. O.: Pereletki and the initiation of glaciation in Siberia,
Quaternary Int., 41–42, 27–32, https://doi.org/10.1016/S1040-6182(96)00033-X,
1997.
Goossens, D.: Quantification of the dry aeolian deposition of dust on
horizontal surfaces: an experimental comparison of theory and measurements,
Sedimentology, 52, 859–873, https://doi.org/10.1111/j.1365-3091.2005.00719.x, 2005.
Grigoriev, M. N., Imaev, V. S., Koz'min, B. M., Kunitski, V. V., Larionov, A. G.,
Mikulenko, K. I., Skryabin, R. M., and Timirshin, K. V.: Geology, seismicity
and cryogenic processes in the arctic areas of western Yakutia, 80,
Scientific Center SD RAS, Yakutsk, 1996 (in Russian).
Hultén, E.: Outline of the History of Arctic and Boreal Biota during the
Quaternary Period, Bokförlags aktiebolaget Thule, Stockholm, 168 pp.,
1937.
Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T., and Stephani, E.:
Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in
northern Alaska, Itkillik River exposure, Quaternary Res., 75, 584–596,
https://doi.org/10.1016/j.yqres.2010.12.003, 2011.
Kanevskiy, M., Shur, Y. L., Strauss, J., Jorgenson, M. T., Fortier, D.,
Stephani, E., and Vasiliev, A.: Patterns and rates of riverbank erosion in the
area of ice-rich permafrost (yedoma) in northern Alaska, Geomorphology 253,
370–384, https://doi.org/10.1016/j.geomorph.2015.10.023, 2016.
Kaplina, T. P.: History of the frozen strata of northern Yakutia in the late
Cenozoic, in: History of permafrost development in Eurasia, “Nauka”
Publishing House, Moscow, 153–181, 1981 (in Russian).
Kienast, F., Schirrmeister, L., Siegert, C., and Tarasov, P.: Palaeobotanical
evidence for warm summers in the East Siberian Arctic during the last cold
stage, Quaternary Res., 63, 283–300, https://doi.org/10.1016/j.yqres.2005.01.003, 2005.
Kunitsky, V., Schirrmeister, L., Grosse, G., and Kienast, F.: Snow patches
in nival landscapes and their role for the Ice Complex formation in the
Laptev Sea coastal lowlands, Polarforschung, 70, 53–67, https://doi.org/10.2312/polarforschung.70.53, 2002.
Langer, M., Westermann, S., Boike, J., Kirillin, G., Grosse, G., Peng, S.,
and Krinner, G.: Rapid degradation of permafrost underneath waterbodies in
tundra landscapes-Toward a representation of thermokarst in land surface
models, J. Geophys. Res.-Earth Surf., 121, 2446–2470,
https://doi.org/10.1002/2016JF003956, 2016.
Lenton, T. M.: Arctic Climate Tipping Points, Ambio, 41, 10–22, https://doi.org/10.1007/s13280-011-0221-x, 2012.
Macumber, A. L., Patterson, R. T., Galloway, J. M., Falck, H., and Swindles,
G. T.: Reconstruction of Holocene hydroclimatic variability in subarctic
treeline lakes using lake sediment grain-size end-members, The Holocene,
28, 845–857, https://doi.org/10.1177/0959683617752836, 2018.
Muhs, D. R., Ager, T. A., Skipp, G., Beann, J., Budahn, J., and McGeehin,
J. P.: Paleoclimatic significance of chemical weathering in loess-derived
paleosols of subarctic central Alaska, Arct. Antarct. Alp.
Res., 40, 396–411, https://doi.org/10.1657/1523-0430(07-022)[MUHS]2.0.CO;2, 2008.
Munroe, J. S. and Bockheim, J. G.: Soil development in low-arctic tundra of
the northern Brooks Range, Alaska, U.S.A., Arct. Antarct. Alp.
Res., 33, 78–87, https://doi.org/10.2307/1552280, 2001.
Murton, J. B., Goslar, T., Edwards, M. E., Bateman, M. D., Danilov, P. P.,
Savvinov, G. N., and Gubin, S. V.: Palaeoenvironmental interpretation of
Yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar,
northeast Siberia, Permafrost Periglac., 26, 208–288, https://doi.org/10.1002/ppp.1843, 2015.
Murton, J. B., Edwards, M. E., Lozhkin, A. V., Anderson, P. M., Savvinov, G. N.,
Bakulina, N., Bondarenko, O. V., Cherepanova, M., Danilov, P. P., Boeskorov,
V., Goslar, T., Grigoriev, S., Gubin, S. V., Korzun, J., Lupachev, A. V.,
Tikhonov, A., Tsygankova, V. I., and Zanina, O. G.: Preliminary
paleoenvironmental analysis of permafrost deposits at Batagaika megaslump,
Yana Uplands, northeast Siberia, Quaternary Res., 87, 314–330, https://doi.org/10.1017/qua.2016.15, 2017.
North, C. P. and Davidson, S. K.: Unconfined alluvial flow processes:
Recognition and interpretation of their deposits, and the significance for
palaeogeographic reconstruction, Earth-Sci. Rev., 111, 199–223, 2012.
Palmtag, J. and Kuhry, P.: Grain size controls on cryoturbation and soil
organic carbon density in permafrost-affected soils, Permafrost
Periglac., 29, 112–120, https://doi.org/10.1002/ppp.1975, 2018.
Pendea, I. F., Gray, J. T., Ghaleb, B., Tantau, I., Badarau, A. S., and
Nicorici, C.: Episodic build-up of alluvial fan deposits during the
Weichselian Pleniglacial in the western Transylvanian Basin, Romania and
their paleoenvironmental significance, Quaternary Int., 198, 98–112,
https://doi.org/10.1016/j.quaint.2008.05.002, 2009.
Péwé, T. L.: Origin of the upland silt near Fairbanks, Alaska,
Geol. Soc. Am. Bull., 66, 699–724, 1955.
Péwé, T. L.: Quaternary geology of Alaska, U.S. Geological Survey
Professional Paper, 835, p. 143, 1975.
Péwé, T. L. and Journaux, A.: Origin and character of loess-like
silt in unglaciated south-central Yakutia, Siberia, USSR, US Geological
Survey Professional Paper, 1262, p. 46, 1983.
Ping, C. L., Jastrow, J. D., Jorgenson, M. T., Michaelson, G. J., and Shur, Y. L.: Permafrost soils and carbon cycling, SOIL, 1, 147–171, https://doi.org/10.5194/soil-1-147-2015, 2015.
Schirrmeister, L.: Documentation of sediment profile Kha-3, PANGAEA, https://doi.org/10.1594/PANGAEA.611549, 2007a.
Schirrmeister, L.: Documentation of outcrop Mamontovy Khayata, PANGAEA, https://doi.org/10.1594/PANGAEA.615798, 2007b.
Schirrmeister, L.: Cryolitholgical, biogeochemical and geochronological data from Byk_98_Mkh, Bykovsky Peninsula in 1998, Alfred Wegener Institute – Research Unit Potsdam, PANGAEA, https://doi.org/10.1594/PANGAEA.877882, 2017a.
Schirrmeister, L.: Cryolitholgical, biogeochemical and geochronological data from Byk_99_Mkh, Bykovsky Peninsula in 1999, Alfred Wegener Institute – Research Unit Potsdam, PANGAEA, https://doi.org/10.1594/PANGAEA.877886, 2017b.
Schirrmeister, L., Kunitsky, V. V., Grosse, G., Wetterich, S., Meyer, H.,
Schwamborn, G., Babiy, O., Derevyagin, A. Y., and Siegert, C.: Sedimentary
characteristics and origin of the Late Pleistocene Ice Complex on North-East
Siberian Arctic coastal lowlands and islands – a review, Quaternary
Int., 241, 3–25, https://doi.org/10.1016/j.quaint.2010.04.004, 2011.
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G., and Wetterich, S.:
Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia, in: The
Encyclopedia of Quaternary Science 2nd Edition, vol. 3, edited by: Elias,
S. A., Elsevier, Amsterdam, 542–552, 2013.
Schirrmeister, L., Pestryakova, L. A., Schneider, A., and Wetterich, S.: Characteristics of samples obtained during Pokhodsk 2012-2013 campaigns in the joint Russian-German POLYGON Project, PANGAEA, https://doi.org/10.1594/PANGAEA.858643, 2016.
Schirrmeister, L., Grosse, G., Kunitsky, V. V., and Siegert, C.: Sedimentological, biogeochemical and geochronological data from the Lena Delta 2000, PANGAEA, https://doi.org/10.1594/PANGAEA.884072, 2017a.
Schirrmeister, L., Grosse, G., Kunitsky, V. V., and Siegert, C.: Sedimentological, biogeochemical and geochronological data from permafrost deposit Nagym, PANGAEA, https://doi.org/10.1594/PANGAEA.884063, 2017b.
Schirrmeister, L., Grosse, G., Kunitsky, V. V., and Siegert, C.: Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site 1TZ, Alfred Wegener Institute – Research Unit Potsdam, PANGAEA, https://doi.org/10.1594/PANGAEA.880929, 2017c.
Schirrmeister, L., Grosse, G., Kunitsky, V. V., and Siegert, C.: Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site 3TZ, Alfred Wegener Institute – Research Unit Potsdam, PANGAEA, https://doi.org/10.1594/PANGAEA.880931, 2017d.
Schirrmeister, L., Grosse, G., Kunitsky, V. V., and Siegert, C.: Sedimentological, biogeochemical and geochronological data from permafrost exposures of the Bol'shoy Lyakhovsky Island (Expedition 1999), site R8+50, Alfred Wegener Institute – Research Unit Potsdam, PANGAEA, https://doi.org/10.1594/PANGAEA.880951, 2017e.
Schirrmeister, L., Grosse, G., Kunitsky, V. V., and Siegert, C.: Sedimentological, biogeochemical and geochronological data from permafrost deposit Kurungnakh, PANGAEA, https://doi.org/10.1594/PANGAEA.884069, 2017f.
Schirrmeister, L., Bobrov, A. A., Raschke, E., and Wetterich, S.: Sediment, ground ice, geochronological and paleoecological data from polygon cores in the Siberian Arctic, PANGAEA, https://doi.org/10.1594/PANGAEA.887933, 2018a.
Schirrmeister, L., Bobrov, A. A., Raschke, E., and Wetterich, S.: Sediment data from polygon core in the Siberian Arctic, Alfred Wegener Institute – Research Unit Potsdam, PANGAEA, https://doi.org/10.1594/PANGAEA.887931, 2018b.
Schwamborn, G., Schirrmeister, L., Frütsch, F., and Diekmann, B.: Quartz
weathering in freeze-thaw cycles; experiment and application to the
El'gygytgyn Crater lake record for tracing Siberian permafrost history,
Geografiska annaler Series A, Phys. Geogr., 94, 481–499, https://doi.org/10.1111/j.1468-0459.2012.00472.x, 2012.
Sher, A.: Yedoma as a store of paleoenvironmental records in Beringida, in:
Beringian Paleoenvironmental Workshop (abstracts and program), edited by:
Elias, S. and Brigham-Grette, J., Ohana Productions, Nepean, ON, Canada,
92–94, 1997.
Sher, A. V., Kuzmina, S. A., Kuznetsova, T. V., and Sulerzhitsky, L. D.: New
insights into the Weichselian environment and climate of the East Siberian
Arctic, derived from fossil insects, plants, and mammals, Quaternary Sci.
Rev., 24, 533–569, https://doi.org/10.1016/j.quascirev.2004.09.007, 2005.
Siegert, C., Schirrmeister, L., and Babiy, O.: The sedimentological,
mineralogical and geochemical composition of late Pleistocene deposits from
the ice complex on the Bykovsky peninsula, northern Siberia, Polarforschung,
70, 3–11, https://doi.org/10.2312/polarforschung.70.3, 2002.
Stauch, G., Ijmkera, J., Pötsch, S., Zhao, H., Hilgers, A., Diekmann, B.,
Dietze, E., Hartmann, K., Opitz, S., Wünnemann, B., and Lehmkuhl, F.:
Aeolian sediments on the north-eastern Tibetan Plateau, Quaternary Sci.
Rev., 57, 71–74, https://doi.org/10.1016/j.quascirev.2012.10.001, 2012.
Strauss, J., Schirrmeister, L., Wetterich, S., Borchers, A., and Davydov,
S. P.: Grain-size properties and organic-carbon stock of Yedoma Ice Complex
permafrost from the Kolyma lowland, northeastern Siberia, Global
Biogeochem. Cycles,, 26, GB3003, https://doi.org/10.1029/2011GB004104, 2012.
Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M.,
Herzschuh, U., and Hubberten, H.-W.: The deep permafrost carbon pool of the
Yedoma region in Siberia and Alaska, Geophys. Res. Lett., 40, 6165–6170, https://doi.org/10.1002/2013GL058088, 2013.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T.,
Schuur, E.A.G., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma
permafrost: A synthesis of depositional characteristics and carbon
vulnerability, Earth-Sci. Rev., 172, 75–86, https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Sun, D., Bloemendal, J., Rea, D. K., Vandenberghe, J., Jiang, F., An, Z., and
Su, R.: Grain-size distribution function of polymodal sediments in hydraulic
and aeolian environments, and numerical partitioning of the sedimentary
components, Sediment. Geol., 152, 263–277, https://doi.org/10.1016/S0037-0738(02)00082-9, 2002.
Suzuki, R. and Shimodaira, H.: Pvclust: an R package for assessing the
uncertainty in hierarchical clustering, Bioinformatics, 22, 1540–1542,
https://doi.org/10.1093/bioinformatics/btl117, 2006.
Tomirdiaro, S. V.: Palaeogeography of Beringia and Arctida, in: American
Beginnings: The Prehistory and Palaeoecology of Beringia, edited by: West,
C. F., University of Chicago Press, Chicago and London, 58–69, 1996.
Tsoar, H. and Pye, K.: Dust transport and the question of desert loess
formation, Sedimentology, 34, 139–153, https://doi.org/10.1111/j.1365-3091.1987.tb00566.x, 1987.
Ulrich, M., Grosse, G., Strauss, J., and Schirrmeister, L.: Quantifying
wedge-ice volumes in Yedoma and thermokarst basin deposits, Permafrost Periglac., 25, 151–161, https://doi.org/10.1002/ppp.1810, 2014.
Ulrich, M., Matthes, H., Schmidt, J., Fedorov, A. N. Schirrmeister, L.,
Siegert, C., Schneider, B., Strauss, J., and Zielhofer, C.: Holocene
thermokarst dynamics in Central Yakutia – A multi-core and robust
grain-size endmember modeling approach, Quaternary Sci. Rev., 218,
10–33, https://doi.org/10.1016/j.quascirev.2019.06.010, 2019.
Vandenberghe, J.: Grain size of fine-grained windblown sediment: A powerful
proxy for process identification, Earth-Sci. Rev., 121, 18–30, https://doi.org/10.1016/j.earscirev.2013.03.001, 2013.
Vandenberghe, J., Sun, Y., Wang, X., Abels, H. A., and Liu, X.: Grain-size
characterization of reworked fine-grained aeolian deposits, Earth-Sci.
Rev., 177, 43–52, https://doi.org/10.1016/j.earscirev.2017.11.005, 2018.
van Huissteden, J., Vandenberghe, J., Gibbard, P. L., and Lewin, J.:
Periglacial rivers, in: The Encyclopedia of Quaternary Science, 2nd edition,
edited by: Elias, A. E. and Mock, C. J., Elsevier, Amsterdam, 490–499, 2013.
Viran, P. A. G. and Binal, A.: Effects of repeated freeze–thaw cycles on
physico-mechanical properties of cohesive soils, Arab. J.
Geosci., 11, 250, https://doi.org/10.1007/s12517-018-3592-5, 2018.
Visher, G. S.: Grain size distributions and depositional processes, J. Sediment. Res., 39, 1074–1106, https://doi.org/10.4236/ijg.2016.712099, 1969.
Walter Anthony, K. M., Zimov, S. A., Grosse, G., Jones, M. C., Anthony, P. M.,
Chapin III, F. S., Finlay, J. C., Mack, M. C., Davydov, S., Frenzel, P., and
Frolking, S.: A shift of thermokarst lakes from carbon sources to sinks
during the Holocene epoch, Nature, 511, 452–456, https://doi.org/10.1038/nature13560,
2014.
Weltje, G. J. and Prins, M. A.: Genetically meaningful decomposition of
grain-size distributions, Sediment. Geol., 202, 409–424, https://doi.org/10.1016/j.sedgeo.2007.03.007, 2007.
Woronko, B. and Pisarska-Jamroży, M.: Micro-Scale Frost Weathering of
Sand-Sized Quartz Grains, Permafrost Periglac., 27, 109–122,
https://doi.org/10.1002/ppp.1855, 2016.
Short summary
Late Pleistocene Yedoma deposits of Siberia and Alaska are prone to degradation with warming temperatures.
Multimodal grain-size distributions of >700 samples indicate varieties of sediment production, transport, and deposition.
These processes were disentangled using robust endmember modeling analysis.
Nine robust grain-size endmembers characterize these deposits.
The data set was finally classified using cluster analysis.
The polygenetic Yedoma origin is proved.
Late Pleistocene Yedoma deposits of Siberia and Alaska are prone to degradation with warming...